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Abstract: The Bohemian magmatic complex belongs to granitoid plutons of the Central European
Variscides. Hydrothermal uranium mineralization evolved in the small uranium deposits Nahošín
and Mečichov is associated with N–S shear zones occurring on the SW margin of the Central
Bohemian plutonic complex formed by amphibole-bearing biotite granodiorites of the Blatná suite.
The purpose of presented study is description of uranium mineralization bounded on brittle shear
zones, which is coupled with intense low-temperature hydrothermal alteration of granitic rocks.
Uranium mineralization, formed predominantly of coffinite, rare uraninite, and thorite, is accompanied
by intense hematitization, albitization, chloritization, and carbonatization of original granitic rocks
that could be described as aceites. These alterations are accompanied by the enrichment in U, Ti, Mg,
Ca, Na, K, Y, and Zr and depletion in Si, Ba, and Sr. The analyzed coffinite is enriched in Y (up to
3.1 wt % Y2O3). Uraninite is enriched in Th (up to 9.8 wt % ThO2) and thorite is enriched in Zr (up to
5.7 wt % ZrO2). The REE-elements are concentrated in the REE-fluorcarbonate synchysite-(Ce).

Keywords: uranium mineralization; aceite; coffinite; uraninite; thorite; synchysite; mineralogy;
geochemistry; Bohemian Massif; Central European Variscides

1. Introduction

The Bohemian Massif as a part of the European Variscan belt hosts a significant quantity of
vein-type uranium deposits (Aue/Oberschlema, Příbram, and Jáchymov) and uranium deposits
coupled with brittle shear zones developed in high-grade metamorphic rocks (Rožná, Zadní Chodov,
and Okrouhlá Radouň) and/or in S-type granitic rocks (Vítkov II and Okrouhlá Radouň) [1–7]. The small
uranium deposits Nahošín and Mečichov described in a recent paper are good examples of uranium
deposits coupled with shear zones which are accompanied by extensive low-temperature hydrothermal
alterations, usually described as episyenites [8–10] and/or as aceites [11,12]. The aim of this paper is to
provide a detailed study of mineralogy and geochemistry of U-Th-REE mineralization evolved in the
I-type granitic rocks of the Central Bohemian plutonic complex.

2. Geological Setting

The Central Bohemian plutonic complex is a large composite magmatic body that occupies an
extensive area (3200 km2) between Prague and Klatovy. This plutonic complex represents in its
composition petrographically the most differentiated Variscan magmatic body on the Bohemian Massif
(Figure 1). The most widespread rock types of the plutonic complex are hornblende-biotite granites
and granodiorites, accompanied by biotite granites on one hand and by tonalites and melagranites
along with melasyenites (durbachites) on the other. Gabbro’s and gabbrodiorites along with a wide
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suite of dyke rocks of predominantly intermediate to mafic composition (microgabbros, microdiorites,
and lamprophyres) emphasize the diversity of this plutonic complex [13–15].

Minerals 2020, 10, x FOR PEER REVIEW 2 of 17 

 

with a wide suite of dyke rocks of predominantly intermediate to mafic composition (microgabbros, 
microdiorites, and lamprophyres) emphasize the diversity of this plutonic complex [13–15]. 

 
Figure 1. Geologic map of the Central Bohemian plutonic complex, modified from [13]. 

The uranium deposits Nahošín and Mečichov are situated in the amphibole-bearing biotite 
granodiorites of the Blatná suite, especially in the Blatná granodiorites (Nahošín) and in the Červená 
granodiorites (Mečichov) [16–19]. The Blatná suite occurs in the southern and southwestern margin 
of the Central Bohemian plutonic complex. The Blatná suite is formed by more petrographic rock 
types (Klatovy, Kozárovice, Blatná and Červená granites, granodiorites, and tonalites) [13,14,20,21] 
occurring in the southern and southwestern margin of the Central Bohemian plutonic complex. The 
most common rock type of the Blatná suite, occurring in area of the both uranium deposits, is an 
amphibole-biotite granodiorite, with the modal content of amphibole gradually decreasing inwards 
[22]. These granitoids intruded during the Variscan magmatic event (346.7 ± 1.6 Ma, U/Pb TIMS 
analyses on zircon) [14]. To the south and south-eastern, the Blatná granodiorite grades in the 
Červená granodiorite, this is richer in amphibole (up 2 vol. %). 

The uranium deposits Nahošín and Mečichov were found as one of the last explored uranium 
deposits in the Czech Republic during geological mapping, radiometric exploration, and following 
extensive borehole exploration (150–500 m) (1978–1989) performed by the exploration organization 
of the Czechoslovak Uranium industry (ČSUP) [16–19]. During the exploration activity a low-grade 
uranium mineralization associated with the N–S shear zones, was found (Figure 2). The concentration 
of uranium in these shear zones is 0.01–0.5 wt % U [16]. The origin of the N–S shear zones could be 
correlated with the Variscan post-orogenic extension of the central part of the Bohemian Massif 
during the Late Westphalian and Stephanian (307–300 Ma) [1,5]. The total approved prognostic 
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The uranium deposits Nahošín and Mečichov are situated in the amphibole-bearing biotite
granodiorites of the Blatná suite, especially in the Blatná granodiorites (Nahošín) and in the Červená
granodiorites (Mečichov) [16–19]. The Blatná suite occurs in the southern and southwestern margin of
the Central Bohemian plutonic complex. The Blatná suite is formed by more petrographic rock types
(Klatovy, Kozárovice, Blatná and Červená granites, granodiorites, and tonalites) [13,14,20,21] occurring
in the southern and southwestern margin of the Central Bohemian plutonic complex. The most common
rock type of the Blatná suite, occurring in area of the both uranium deposits, is an amphibole-biotite
granodiorite, with the modal content of amphibole gradually decreasing inwards [22]. These granitoids
intruded during the Variscan magmatic event (346.7 ± 1.6 Ma, U/Pb TIMS analyses on zircon) [14].
To the south and south-eastern, the Blatná granodiorite grades in the Červená granodiorite, this is
richer in amphibole (up 2 vol. %).

The uranium deposits Nahošín and Mečichov were found as one of the last explored uranium
deposits in the Czech Republic during geological mapping, radiometric exploration, and following
extensive borehole exploration (150–500 m) (1978–1989) performed by the exploration organization
of the Czechoslovak Uranium industry (ČSUP) [16–19]. During the exploration activity a low-grade
uranium mineralization associated with the N–S shear zones, was found (Figure 2). The concentration
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of uranium in these shear zones is 0.01–0.5 wt % U [16]. The origin of the N–S shear zones could be
correlated with the Variscan post-orogenic extension of the central part of the Bohemian Massif during
the Late Westphalian and Stephanian (307–300 Ma) [1,5]. The total approved prognostic resources
of the both deposits were estimated as 1824 t U [23]. The uranium deposit Nahošín was in 1983
opened by exploration shaft Nr. 82 down to level 190 m. During 1987 and 1988 this uranium deposit
was mined with a total production of 4.2 t U [24]. Investigations connected the exploration activity
of the ČSUP were concentrated only on detailed geological and mineralogical study of uranium
mineralization [16–19]. For this research, samples were taken from three boreholes performed in area
of the Nahošín uranium deposit and from six boreholes performed in area of the Mečichov uranium
deposit. The metasomatic uranium mineralization of the both deposits is represented mainly by
two generations of coffinite, with a small content of uraninite. The U/Pb age of primary coffinite
mineralization is 280 ± 10 Ma with partial rejuvenation around 165 ± 20 Ma [19] (Figure 2).
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3. Materials and Methods

Detailed mineralogical and geochemical investigations of uranium mineralization from the
Nahošín and Mečichov uranium deposits were carried out on a representative suite of the 31 rock
samples were taken from exploration boreholes performed by ČSUP during their exploration activity
in the area of the both uranium deposits. These samples represent unaltered host granitic rocks, as well
as their hydrothermally altered equivalents (Table S1).

The major elements were determined by X-ray fluorescence spectrometry using the Philips PW
1410 spectrometer at the Central Analytical Laboratory of the ČSUP. The FeO content was measured
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via titration, whereas the H2O content was determined gravimetrically. The selected trace elements
were determined by X-ray fluorescence spectrometry using the Philips PW 1410 spectrometer at the
chemical laboratory of the Unigeo Brno Ltd. (Brno, Czech Republic). The content of U and Th was
determined by gamma spectrometry using a multi-channel spectrometer NT-512 at Geophysics Brno
Ltd. (Brno, Czech Republic). In-lab standards or certified reference materials were used for quality
control. The elemental mobility during hydrothermal alteration was estimated using mass-balance
calculations of selected representative rock samples based on the isocon method [25].

Representative rock-forming and ore minerals were analyzed in polished thin sections,
and back-scattered electron (BSE) images were acquired to study the internal structure of individual
mineral aggregates and grains. The elemental abundances of Al, As, Ca, Ce, Cu, Cr, Dy, Er, F, Fe, Gd,
Hf, La, K, Mg, Mn, Na, Nb, Nd, P, Pb, Pr, Rb, S, Sc, Si, Sm, Sr, Ta, Th, Ti, U, V, Y, Yb, and Zr were
determined using a CAMECA SX 100 electron microprobe operated in wavelength-dispersive mode
at the Institute of Geological Sciences, Masaryk University in Brno. The accelerating voltage and
beam currents were 15 kV and 20 nA or 40 nA, respectively, and the beam diameter was 1 to 5 µm.
The peak count time was 20 s, and the background time was 10 s for major elements. For the trace
elements, the times were 40–60 s on the peaks, and 20–40 s on the background positions. The raw
data were corrected using the PAP matrix corrections [26]. The detections limits were approximately
400–500 ppm for Y, 600 ppm for Zr, 500–800 ppm for REE, and 600–700 ppm for U and Th.

4. Results

4.1. Petrography of the Blatná and Červená Granitoids

The Blatná hornblende-bearing biotite granodiorites are medium-grained, usually equigranular
rocks, containing 12–18 vol. % of biotite (phlogopite–eastonite, Fe/Fe + Mg 0.48–0.51, Al4+ 2.4–2.6 apfu,
Ti 0.20–0.43 apfu), 40–42 vol. % plagioclase (An23–31), 25–28 vol. % quartz, 10–17 vol. % K-feldspar,
and 0.2–0.7 vol. % amphibole (magnesiohornblende) (Figure 3a). In a relatively rarely occurring
porphyric variety of this rock type, the size of K-feldspar variety reaches 1–2 cm. Accessory minerals
are represented by apatite, zircon, titanite, magnetite, pyrite, and rare allanite. The highest content
of U occurred in zircon (0.08–0.34 wt % UO2) and the highest content of Th occurred in allanite
(0.08–6.37 wt % ThO2). The highest content of Y is in titanite (0.05–1.29 wt % Y2O3) and in allanite
(0.06–0.61 wt % Y2O3).
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Figure 3. Microphotographs of the Blatná (a) and the Červená granodiorites (b) (Bt—biotite,
Kfs—K-feldspar, Pl—plagioclase, and Qz—quartz). Crossed polarizers.

The Červená amphibole-biotite granodiorites are medium-grained, equigranular to slightly
porphyric rocks, containing 15–17 vol. % biotite (eastonite, Fe/Fe + Mg 0.44–0.47, Al4+ 2.5–2.6 apfu,
Ti 0.28–0.38 apfu), 28–41 vol. % plagioclase (An22–40), with usually more basic cores than their rims,
22–23 vol. % quartz, 9–19 vol. % K-feldspar, and 1–2 vol. % amphibole (magnesiumhornblende,
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actinolite) (Figure 3b). Accessory minerals are represented by apatite, zircon, titanite, magnetite,
allanite, and pyrite. These granitoids have in some cases a strong planar fabric.

4.2. Petrography of Altered Granitoids

The three major stages of alteration of the Blatná and Červená granodiorites can be distinguished,
namely pre-ore, ore and post-ore stages. The presented paragenetic sequence of the hydrothermal
mineralization is partly schematic. In altered granitoids chlorites, albites, hematites, and carbonates
(calcites) are dominant, whereas coffinite, uraninite, thorite, Ti-oxides and sulfides (pyrite and
chalcopyrite) are less abundant. The highly altered granodiorites could be classified as aceites
(Figure 4).
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During pre-ore alteration of biotite granodiorites, original biotite was chloritized and altered to
chlorite I (Fe/(Mg + Fe) = 0.46–0.51). Alteration of biotite is commonly accompanied by formation of
rutile, epidote, and titanite due to the liberation of Ti from original biotite laths. Original magmatic
plagioclases (An22–40) were transformed into albite (An0.1–0.6) (Figure 5). Albitization is sometimes
accompanied by K-feldspathization, coupled with formation of usually anhedral grains of K-feldspar
(Figure 6). This K-feldspathization is sometimes accompanied by sericitization. More intensive
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hydrothermal alteration of original granitoids is significant for the origin of fine-grained aggregates of
hematite that occur as very fine grains and/or grain aggregates in albites (Figure 7). These hydrothermal
alterations, documented by detailed microscopic study, predated the origin of uranium mineralization.
Hydrothermally altered granitoids have low to medium porosities due to hydrothermal leaching of
the original magmatic quartz (typically 0.5–5 vol. %) and partly lowered specific mass (approximately
0.10–0.20 g/cm2). The vugs formed initially through leaching of quartz were later infilled by a younger
K-feldspar, quartz, calcite, and chlorite II (Figures 5 and 6). Hydrothermal alteration of granitoids
is also accompanied by origin of younger apatite, often associated with coffinite. During post-ore
stage, the altered granitoids were filled by variable thick and irregular calcite veinlets (Figure 5a).
In altered granodiorites from these uranium deposits these veinlets are sometimes filled by fine-grained
aggregates of the REE-fluorcarbonate synchysite-(Ce), which usually contain inclusions of very small
thorite grains (Figure 8a,b). The origin of these veinlets is very probably also coupled with the post-ore
stage. However, partly unclear is timing of thorite. The individual thorite grains (Figure 8e) are very
probably part of the ore stage, but the small thorite grains in aggregates of the synchysite (Figure 8a)
could be partly younger. During post-ore stage originated clay minerals (illite, kaolinite, and smectite),
together with younger sericite.
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sometimes chlorite II. Crossed polarizers.
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Figure 8. Back-scattered electron (BSE) images of coffinite, synchysite, thorite, and uraninite occurring in
hydrothermally altered granodiorites (Ab—albite, Ap—apatite, Cfn—coffinite, Chl—chlorite, Ilt—illite,
Qz—quartz, Py—pyrite, Schz—synchysite, Thr—thorite, and Urn—uraninite), (a)—Nahošín uranium
deposit, sample R-710; (b)—Mečichov uranium deposit, sample R-784; (c)—Nahošín uranium deposit,
sample R-752; (d)—Nahošín uranium deposit, sample R-710; and (e)—Mečichov uranium deposit,
sample R-784.
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4.3. Chemical Composition of Unaltered Granitoids

The representative chemical analyses of the unaltered and altered granodiorites are displayed in
Table 1. The Blatná amphibole-bearing biotite granodiorites are high-K calc-alkaline to shoshonitic,
subaluminous to slightly peraluminous rocks (A/CNK = mol. Al2O3/(CaO + Na2O + K2O) = 1.1–1.2).
Compared to the common I-type granites [27,28], the Blatná granodiorites are enriched in Mg
(1.2–1.7 wt % MgO), K (3.7–4.2 wt % K2O), Ba (1044–1284 ppm), Sr (383–506 ppm), Zr (135–172 ppm),
Th (14–21 ppm), and U (7–14 ppm). The Červená amphibole-biotite granodiorites are also high-K
calc-alkaline I-type, metaluminous to subaluminous rocks (A/CNK = 1.0–1.1), enriched in Ca
(1.5–3.5 wt % CaO), Mg (2.1–3.4 wt % MgO), Ba (1119–2560 ppm), Sr (261–466 ppm), Zr (164–231 ppm),
Th (14–23 ppm), and U (8–14 ppm).

Table 1. Representative chemical analyses of rocks from the Nahošín and Mečichov uranium deposits.

Sample R-704 R-709 R-780 R-986 R-710 R-752 R-781 R-981

Nahošín Nahošín Mečichov Mečichov Nahošín Nahošín Mečichov Mečichov

Rock
wt %

amf-bt
gnt

amf-bt
gnt

amf-bt
gnt

amf-bt
nt

altered
gnt

altered
gnt

altered
gnt

altered
gnt

SiO2 69.52 68.87 63.38 62.11 59.28 43.65 53.52 58.97
TiO2 0.60 0.58 0.71 0.79 0.62 0.42 0.73 0.39

Al2O3 15.66 15.63 16.02 16.87 15.44 14.92 18.86 16.20
Fe2O3 0.01 0.44 0.80 0.74 1.30 1.53 2.22 1.00
FeO 2.08 1.80 3.55 4.08 1.80 1.42 2.48 1.94
MnO 0.04 0.05 0.07 0.08 0.10 0.12 0.09 0.05
MgO 1.27 1.19 2.65 3.00 1.74 2.26 3.20 1.88
CaO 1.98 2.36 3.25 3.68 5.25 14.40 3.85 4.23

Na2O 3.26 3.58 3.06 2.95 3.73 3.46 4.28 5.38
K2O 4.20 3.98 4.11 3.55 4.12 3.55 4.91 4.25
P2O5 0.30 0.36 0.26 0.25 0.42 0.20 0.28 0.17
H2O+ 0.83 0.81 0.86 1.00 1.29 1.33 1.82 1.42
H2O− 0.00 0.00 0.20 0.00 0.02 0.33 0.63 0.16
CO2 0.14 0.12 0.14 0.00 4.49 11.30 2.64 3.38
Total 99.89 99.77 99.06 99.10 99.60 98.89 99.51 99.42

A/CNK 1.26 1.08 1.04 1.10 0.77 0.42 0.97 0.77
ppm
Ba 1165 1144 1562 1400 1191 659 1368 1710
Rb 161 146 101 128 211 160 157 100
Sr 410 453 466 427 320 185 233 276
Nb 11 8 11 12 24 22 13 17
Zr 150 141 223 236 166 322 205 195
Y 23 23 29 20 45 33 29 11
Pb 51 55 48 27 68 39 34 35
U 9 8 8 3 366 378 11 391
Th 18 20 15 14 16 20 24 28

4.4. Chemical Composition of Altered Granitoid Rocks

Hydrothermal alteration of the Blatná and Červená granodiorites is accompanied by silica
removal from quartz and biotite. Concentrations of Al2O3 and Fe2O3 increased during the albitization,
chloritization, sericitization, and hematitization. In intensively hematitized granitoids from the
Mečichov uranium deposit the content of Fe2O3 reaches up to 3.3 wt %. The content of Ca distinctly
increases in altered granodiorites due to their, usually intensive carbonatization, reaching up to
14.4 wt % CaO in aceites from the Nahošín uranium deposit. The content of Na increases especially
in altered granodiorites from the Mečichov uranium deposit, affected by a strong albitization (up to
5.4 wt % Na2O). In altered granodiorites affected by K-feldspathization, there are distinctly increased
K concentrations (up to 6.2 wt % K2O). These granodiorites are also enriched on Rb. The highest
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concentrations of Rb were found in aceites from the Nahošín uranium deposit (up to 214 ppm). In the
same aceites depletions in Sr were found (79–383 ppm). In unaltered granodiorites from the Nahošín
uranium deposit the concentrations of Rb and Sr are 138–166 ppm and 383–506 ppm, respectively
(Figure 9). The altered granodiorites from the Nahošín uranium deposit are also concentrations of
Y enriched, reaching up to 45 ppm. Its concentrations in unaltered granodiorites from the Nahošín
uranium deposit are only 21–36 ppm.Minerals 2020, 10, x FOR PEER REVIEW 9 of 17 
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However, where significant mass or volume change occurred during hydrothermal alteration,
the chemical composition of the unaltered and altered rocks cannot be compared directly. Thus, for the
detailed investigation of losses and gains during alteration and the behavior of selected rock-forming
and trace elements, the isocon method developed by Grant [25] was applied. The resulting scattering
of elements in the isocon plots for the Blatná a Červená altered granodiorites from area of the Nahošín
and Mečichov uranium deposits suggest that the major and trace elements were mobilized to variable
extent. It appears that the sample of aceite from the Nahošín uranium deposit is a highly hematitized
and carbonatized (Figure 10a), whereas the aceite sample from the Mečichov uranium deposit is not as
altered (Figure 10b). In the both cases, Al2O3 could be considered as an immobile component. In a
well-studied sample from the Nahošín deposit, Zr and Y are distinctly enriched and accumulated in
uranium minerals (uraninite and coffinite). In sample from the Mečichov uranium deposit, Zr and
Y are depleted and Th is distinctly enriched. The differences between both isocon plots are coupled
with differences in composition of unaltered granitic rocks and by some differences in hydrothermal
alterations (distinctly higher hematitization and carbonatization in the case of sample R-752 from the
Nahošin ore deposit).
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4.5. Composition of Uranium and Thorium Minerals

The predominant uranium mineral occurring in altered granodiorites of the Nahošín and Mečichov
uranium deposits is coffinite. Uraninite occurs in both uranium deposits as a rare uranium mineral;
in altered granites from these both uranium deposits thorite occurs as very rare mineral.

The coffinite occurs in altered granodiorites of both the uranium deposits as distinctly
heterogeneous aggregates and/or as isolated grains of some micrometers to 0.6 mm big, usually
associated with chlorite flakes and/or associated with pyrite grains (Figure 8c). Some coffinite grains
occur as filling of micropores in highly altered granodiorites. For all analyzed coffinites there is a
strong correlation between SiO2 and UO2 with U/Si relations 0.63–0.80 (Figure 11). The majority of
analyzed coffinites are distinctly enriched in Y2O3 (up to 3.3 wt %) (Table 2). The microprobe data
revealed variable CaO (1.4–2.3 wt %), Al2O3 (1.5–2.0 wt %), TiO2 (0–1.3 wt %), P2O5 (0.1–0.3 wt %),
and FeO (0–0.3 wt %) concentrations in analyzed coffinites from the both uranium ore deposits.

In altered granodiorites uraninite occurs usually as isolated small grains of 5–20 µm diameter
(Figure 8d). The UO2 content in uraninite is relatively high, 80.4–81.9 wt %. Uraninite is partly enriched
in ThO2 (up to 9.8 wt %) and in Y2O3 (up to 2.8 wt %) (Table 2, Figures 11 and 12). Concentrations
variability of all other constituents is relatively small: the CaO content varies from 0.1 to 0.5 wt %,
the FeO from 0.2 to 0.3 wt % and the SiO2 from 0.0 to 0.2 wt %. Partly higher is variability of the PbO
concentrations, from 0.0 to 4.1 wt %.

Thorite occurs usually as isolated grains, in size from 50 to 100 µm (Figure 8e). For analyzed
thorite the variations of the UO2 content is significant (1.5–16.9 wt %) (Figure 11). The variability of the
all other components is partly lower: the CaO content varies from 0.9 to 4.1 wt %, the SiO2 from 17.2 to
19.5 wt %, the ZrO2 from 0 to 5.7 wt %, the FeO from 0.4 to 3.6 wt %, the P2O5 from 0.6 to 1.8 wt %,
and the TiO2 from 0 to 0.2 wt %.
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Table 2. Representative analyses of uranium and thorium minerals (wt %).

Sample R-752-17 R752-19 R-752-20 R-752-21 R-784-30 R-787-20 R-784-43

Locality Nahošín Nahošín Nahošín Nahošín Mečichov Mečichov Mečichov

Mineral coffinite coffinite coffinite coffinite thorite thorite uraninite

UO2 60.99 61.64 61.50 59.48 1.85 4.70 81.90
ThO2 b.d.l. b.d.l. 0.01 b.d.l. 54.94 51.71 9.78
TiO2 0.91 1.32 0.21 0.35 b.d.l. 0.17 b.d.l.
FeO 0.05 0.12 0.13 0.26 2.14 0.65 0.28
CaO 1.57 1.49 1.39 1.73 1.19 0.97 0.08
MnO b.d.l. 0.02 b.d.l. 0.04 n.d. n.d. n.d.
SiO2 21.08 21.07 20.95 20.82 17.78 19.46 b.d.l.
ZrO2 b.d.l. 0.15 0.97 0.19 0.16 1.31 b.d.l.

Nb2O5 0.01 0.03 0.05 0.05 0.04 b.d.l. b.d.l.
Al2O3 1.45 1.68 1.53 1.54 0.51 1.33 n.d.
PbO n.d. n.d. n.d. n.d. 0.55 0.54 4.07
P2O5 0.25 0.16 0.19 0.20 1.80 0.85 n.d.

La2O3 0.35 0.38 0.39 0.23 0.22 0.40 b.d.l.
Ce2O3 2.44 2.16 2.05 1.92 1.20 1.45 0.26
Pr2O3 0.57 0.41 0.42 0.35 n.d. n.d. b.d.l.
Nd2O3 2.54 1.96 1.50 2.22 n.d. n.d. 0.49
Sm2O3 0.60 0.58 0.61 1.01 n.d. n.d. 0.04
Gd2O3 0.49 0.56 0.64 0.80 n.d. n.d. 0.05
Dy2O3 0.30 0.26 0.47 0.65 0.69 0.63 0.21
Er2O3 0.07 0.16 0.23 0.37 0.33 0.05 0.08
Yb2O3 0.04 0.14 0.24 0.24 0.42 0.17 b.d.l.
Y2O3 2.27 2.03 2.86 3.06 4.35 3.12 1.01
Total 96.70 96.95 96.34 95.51 87.49 87.51 98.25

n.d.—no determined, b.d.l.—below detection limit.
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4.6. Composition of REE-Fluorcarbonates

Some cavities and cracks in the highly altered biotite granodiorites from the Nahošín and
Mečichov uranium deposits are filled by fine-grained aggregates of REE-fluorcarbonates (Figure 8a,b).
These interstitial fillings very probably formed during the post-ore stage, together with fillings of
calcite. The microprobe data of these REE-fluorcarbonates show that analyzed REE fluorcarbonates
correspond to synchysite-(Ce) (Table 3). All analyzed grains in bigger, fine-grained synchysite
aggregates are LREE-dominant with La/Ce ratio of 0.48–0.59. The LREE are presented in concentrations
of 45.4–50.7 wt %. The sum of analyzed HREE (Gd an Dy) is only 0.4–1.0 wt %. The concentrations
of Y are also low (0.3–0.5 wt % Y2O3). The analyzed synchysite grains display very low Th
concentrations (0.3–1.0 wt % ThO2). Concentrations of F are near of stoichiometric formulae of
synchysite (6 wt % F)—5.2–6.0 wt %. In synchysite microprobe analyses, the ratio of Ca versus the
other detected cations is near to 1:1 (0.88/1.06), as predicted from its ideal stoichiometry.

Table 3. Representative chemical analyses of synchysite (wt %).

Analyze R-784-27 R-784-33 R-784-34 R-784-36

Locality Mečichov Mečichov Mečichov Mečichov

SO3 0.10 b.d.l. 0.05 0.11
P2O5 0.46 0.00 0.03 0.93

As2O5 b.d.l. b.d.l. 0.11 0.22
CO2 * 24.98 28.18 27.59 25.87
SiO2 1.40 0.08 0.10 0.17
ThO2 0.95 0.28 0.39 0.70
UO2 0.03 b.d.l. b.d.l. 0.05
Y2O3 0.47 0.29 0.43 0.32
La2O3 10.38 14.61 12.76 12.10
Ce2O3 21.83 25.06 24.56 25.08
Pr2O3 2.48 2.36 2.44 2.46
Nd2O3 11.41 8.08 7.84 8.73
Sm2O3 1.91 0.58 0.86 0.68
Eu2O3 b.d.l. 0.02 0.04 b.d.l.
Gd2O3 0.82 0.26 0.33 0.30
Dy2O3 0.20 0.10 0.07 0.08

FeO 0.68 b.d.l. 0.33 1.20
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Table 3. Cont.

Analyze R-784-27 R-784-33 R-784-34 R-784-36

Locality Mečichov Mečichov Mečichov Mečichov

CaO 15.99 18.39 18.16 15.96
SrO b.d.l. b.d.l b.d.l. b.d.l.
BaO b.d.l. b.d.l. b.d.l. b.d.l.
PbO 0.04 0.03 b.d.l. 0.03

H2O * 0.03 0.04 0.01 0.11
F 5.62 6.02 5.97 5.54

O=F −2.36 −2.53 −2.51 −2.33
Total 97.22 101.85 99.56 98.31

Ca/cations 0.91 1.04 1.06 0.88
La/Ce 0.48 0.59 0.52 0.49
La/Nd 0.94 1.87 1.68 1.43

b.d.l.—below detection limit, CO2 *, H2O *—calculated according stoichiometry.

5. Discussion

5.1. Origin and Evolution of Aceites

The recent IUGS classification of metasomatic rocks distinctly delimited the low-temperature
albitization (aceitization) with significant removing of original magmatic quartz and high-temperature
fault-related alkaline metasomatism with typical occurrence of alkali amphiboles and pyroxenes [11].
The low-temperature hydrothermal alterations characteristics of disseminated uranium deposits of the
Massif Central and Armorican Massif, France were in the past described as episyenites (e.g., [8–10]).
However, according to the recent IUGS classification for metasomatic rocks [11], these low-temperature
metasomatic rocks could be named as aceites, and the term episyenite could be abandoned. The term
aceite was introduced to geosciences by Omel’yanenko [12].

Three and/or four stages of hydrothermal alteration can be distinguished in uranium deposits
bound by brittle shear zones developed in granitoids of the Bohemian Massif [2,3,5]. Usually,
the pre-ore, ore, and post-ore stages are distinguished. The pre-ore stage is represented mainly by
chlorite I and albite, which originated by chloritization of biotite and albitization of original plagioclases.
The albitization is sometimes accompanied by K-feldspathization and by formation of fine-grained
muscovite (sericite) aggregates. The strongest hydrothermal alteration of the original granitoids is
accompanied by the formation of fine-grained aggregates of hematite, usually occurring in albite.
The uranium minerals (uraninite and coffinite) are the main minerals of the ore-stage. The post-ore stage
is coupled with origin of carbonates (predominantly calcite), quartz, and clay minerals (illite, kaolinite,
and smectite). The post-ore stage is also significant for the origin of sulfides (pyrite, chalcopyrite,
and galena), rare REE-fluorcarbonates, and/or selenides.

The differences in mineralogical composition of original granitoids (S-type two-mica granites,
biotite granites, and I-type granodiorites) are expressed by the different mineralogical composition,
textural features, and geochemistry of aceites [3,8,10]. The most significant textural features of aceites
evolved in granitic rocks is origin of cavities originated by leaching of original magmatic quartz
coupled with origin of hematite framework. Hydrothermal altered granitoids have thus distinctly
higher porosity than original magmatic rocks.

5.2. Sources of Uranium and Thorium

Uranium and thorium in unaltered granodiorites of this area are essentially hosted in accessory
minerals, especially in zircon and allanite. Therefore, the distribution of both the radioactive elements
in the following ore minerals (uraninite, coffinite, and thorite) could be coupled with hydrothermal
alteration/decomposition of the above-mentioned accessory minerals. Similar sources of uranium were
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proposed for the unconformity-type uranium deposits in Canada [29] and also for the Nahošín uranium
deposit [19]. However, according Litochleb et al. [19], the significant source of uranium in uranium
mineralization could be also hydrothermal alteration of original magmatic biotite, which in some cases
contains higher concentrations of uranium (up to 15 ppm U), which is adsorbed on their flakes. During
alteration of biotite to chlorite this uranium was mobilized in the hydrothermal solutions.

5.3. Behavior of Yttrium and Zirconium

Yttrium and Zr are typical high field strength elements (HFSE), which are generally considered
immobile during hydrothermal processes [30]. Some experimental data, however, have demonstrated
that the both elements may be mobile in hydrothermal environments [31,32]. The mobility of yttrium in
aceites from the Nahošín and Mečichov uranium deposits is suggested from the occurrence of Y-enriched
coffinite, uraninite and thorite in the both uranium deposits. Similar Y-enriched coffinite with up to
3.4 wt % Y2O3 was found in the Okrouhlá Radouň uranium deposit, evolved in two-mica granites of
the Moldanubian batholith [2]. The Y-enriched coffinites and uraninites are worldwide relatively rare.
However, coffinite from the Olympic Dam uranium deposit, Australia, contains up to 15.6 wt % Y2O3 [33]
and coffinite from the albitized biotite granites, Ririway, Nigeria contains up to 15.9 wt % Y2O3 [34].
Coffinite enriched in Y and Zr, together with occurrence of the U-Zr-Si mixed phases has also
been found in the Mount Isa uranium deposit in Australia [35]. The Y-enriched uraninite was
described by Shahin [36] from Gabal Gattar uranium deposit in Egypt, containing up to 3.3 wt % Y2O3.
The Y-enriched uraninite occurring in the Olympic Dam uranium deposit, Australia contains up
to 3.6 wt % Y2O3 [33]. Recently the Y-bearing uraninite was described from the high-temperature
Na-metasomatic uranium deposit Jiling, NW-China, containing 1.0–2.5 wt % Y2O3 [37]. However,
all these Y-enriched uraninites and coffinites occur in a high-temperature albitites, which originated by
distinctly higher temperatures than the low-temperature aceites [11,33,35,37,38].

5.4. Occurrence of Th-Rich Uraninite and Thorite

Th-rich uraninites and thorites from hydrothermal uranium deposits are relatively rare minerals.
The Th-enriched uraninite, containing up to 7.3 wt % ThO2 was described from uranium deposit
Aricheng in Guyana, occurring in high-temperature albitites [38]. Similar, the Jiling uranium deposit in
the NW-China contains Th-enriched uraninite with 6.5–12.6 wt % ThO2 [37]. The Th-enriched uraninite
from the Olympic Dam uranium deposit in Australia contains up to 7.4 wt % ThO2 [33]. However,
the concentrations of Th in uraninite from uranium ore deposits of the Bohemían Massif are very low.
Uraninite from the Jáchymov uranium deposit contains only up to 0.08 wt % ThO2 and uraninite from
the Příbram uranium deposit contains up to 0.09 wt % ThO2 [6].

Occurrence of thorite from hydrothermal uranium deposits is mentioned by Freemantle [39]
from the U-deposits in the Central Damara Orogen, Namibia. Another occurrence mentioned from
this area is the presence of Th-rich uraninite and Y-bearing thorite. The Th-rich uraninite from the
prominent Husab uranium deposit contains 7.3–9.4 wt % ThO2. The Zr-enriched thorite containing
2.9–26.8 wt % ZrO2 is mentioned from the Um Ara uranium deposit in Egypt [40]. Thorite from the
Vale de Abrutiga (Central Portugal) uranium deposit in hydrothermally altered biotite granites contains
up to 5.9 wt % ZrO2 and up to 5.6 wt % Y2O3 [41].

5.5. Occurrence and Origin of REE-Fluorcarbonates

Synchysite-(Ce) is a relatively highly widespread RE-fluorcarbonate found within different
geological environments, especially in carbonatites [42–46], alkali pegmatites [47], altered granitic
rocks [48–52], and in ore deposits [53–55]. Synchysite-(Ce) with distinctly more widespread bastnäsite
occurs in a world-class breccia-hosted iron-oxide copper-gold-uranium deposit, i.e., Olympic Dam
in Australia [55]. As advocated by Fleischer [56], the La/Nd ratio in synchysite could be used
as useful indicator occurrence of synchysite in different geological environments. For its origin
from hydrothermal solutions it shows typical values of La/Nd = 1.16 and La/Ce = 0.47 [51,57,58].
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The synchysite from the Olympic Dam uranium deposit has La/Nd = 1.15 and La/Ce = 0.42. Both these
values for synchysite from the Mečichov uranium deposit are slightly higher (La/Nd = 0.94–1.68,
La/Ce = 0.48–0.59). However, values of both ratios for synchysite from pegmatites and carbonatites
are distinctly higher—pegmatites (La/Nd = 1.69, La/Ce = 0.52) and carbonatites (La/Nd = 2.07,
La/Ce = 0.62) [43,47,59].

6. Conclusions

1. The disseminated coffinite-uraninite-thorite mineralization occurs in highly hydrothermal altered
amphibole-bearing biotite granodiorites of the Blatná suite. In intensively hematitized granitoids
the content of Fe2O3 reaches up to 3.3 wt %. The content of Ca distinctly increases due to intensive
carbonatization, reaching up to 14.4 wt % CaO in aceites from the Nahošín deposit. The content of
Na increases especially in altered granodiorites from the Mečichov deposit (up to 5.4 wt % Na2O).
In granodiorites affected by K-feldspathization, there are distinctly increased K concentrations
(up to 6.2 wt % K2O). These granodiorites are also enriched on Rb (up to 214 ppm). In the same
aceites depletions in Sr were found (79–383 ppm). The altered granodiorites from the Nahošín
deposit occur high Y concentrations (up to 45 ppm).

2. Coffinite, uraninite, and thorite is distinctly enriched in Y (up to 4.3 wt % in thorite). Uraninite is
enriched in Th (up to 9.8 wt % ThO2) and thorite is enriched also in Zr (up to 5.7 wt % ZrO2).
The enrichment of the both elements in above mentioned uranium minerals very probably
correlated with their enrichment in original I-type granitic rocks.

3. In the highly carbonatized aceites from the Mečichov uranium deposit REE-fluorcarbonate
synchysite—(Ce) was found with La/Nd = 2.07 and La/Ce = 0.62. The REE-fluorcarbonates are
in uranium deposits very rare and their occurrence in researched uranium deposits is the first
occurrence in aceites.
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