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Abstract: Modeling of wet stirred media mill processes is challenging since it requires the simul-
taneous modeling of the complex multiphysics in the interactions between grinding media, the
moving internal agitator elements, and the grinding fluid. In the present study, a multiphysics model
of an HIG5 pilot vertical stirred media mill with a nominal power of 7.5 kW is developed. The
model is based on a particle-based coupled solver approach, where the grinding fluid is modeled
with the particle finite element method (PFEM), the grinding media are modeled with the discrete
element method (DEM), and the mill structure is modeled with the finite element method (FEM).
The interactions between the different constituents are treated by loose (or weak) two-way couplings
between the PFEM, DEM, and FEM models. Both water and a mineral slurry are used as grinding
fluids, and they are modeled as Newtonian and non-Newtonian fluids, respectively. In the present
work, a novel approach for transferring forces between grinding fluid and grinding media based on
the Reynolds number is implemented. This force transfer is realized by specifying the drag coefficient
as a function of the Reynolds number. The stirred media mill model is used to predict the mill power
consumption, dynamics of both grinding fluid and grinding media, interparticle contacts of the
grinding media, and the wear development on the mill structure. The numerical results obtained
within the present study show good agreement with experimental measurements.

Keywords: particle finite element method; discrete element method; finite element method; coupled
models; stirred media mills

1. Introduction

In the mineral processing industry, comminution is the single most energy-intensive
process and accounts for a large part of the capital and operating cost for mineral produc-
tion [1,2]. It has been estimated that approximately 4% of the electric energy produced
globally and around 50% of the energy at mine sites is consumed by comminution [3].
Tumbling mills are frequently used for comminution in the mineral processing industry.
In a tumbling mill, much of the energy is absorbed in low-impact contacts that do not result
in particle breakage [1]. The inefficient nature of the comminution process suggests that
the mineral processing industry depends on improvement of the efficiency of this process.
Compared to tumbling mills, stirred media mills are an attractive alternative since they
have a significantly higher energy efficiency [4,5]. In a stirred media mill, the reduction
of product particle size occurs inside a bed of grinding media. Comminution in a wet
stirred media mill is obtained by pumping a slurry of product mixed with water through
a grinding chamber. Inside the chamber, a shaft with attached agitator elements rotates,
bringing the grinding media and slurry into motion. This motion induces many grind-
ing media contacts, resulting in reduction of the product’s particle size. The interest in
stirred media mills is reflected in a growing body of research, with recent contributions
such as [6–10]. Despite the industrial importance, comminution in stirred media mills

Minerals 2021, 11, 55. https://doi.org/10.3390/min11010055 https://www.mdpi.com/journal/minerals

https://www.mdpi.com/journal/minerals
https://www.mdpi.com
https://orcid.org/0000-0001-5206-6894
https://orcid.org/0000-0003-0910-7990
https://doi.org/10.3390/min11010055
https://doi.org/10.3390/min11010055
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/min11010055
https://www.mdpi.com/journal/minerals
https://www.mdpi.com/2075-163X/11/1/55?type=check_update&version=2


Minerals 2021, 11, 55 2 of 19

is a technology that is still poorly understood. To advance the knowledge and under-
standing of the operation of stirred media mills, modeling and simulation are powerful
tools. A trustworthy computational model allows study of phenomena that are difficult or
impossible to investigate experimentally. However, modeling of the dynamics of grinding
media and slurry in a stirred media mill is a complex problem that requires robust and
efficient numerical models.

The discrete element method (DEM) has been widely employed to model various gran-
ular materials, including grinding media in comminution. Early applications of the DEM
to model dry stirred media mills, focusing on the dynamics of grinding media, are found
in [11–13]. More recent works include [14], in which DEM was used for simulation of a lab
scale dry ball mill, and [15], which combined DEM simulations and experiments to study
liner design and liner wear in a semiautogenous (SAG) mill. A DEM study of the grinding
media collision environment in a SAG mill under varying operating conditions is found
in [16]. In [17,18], DEM is used for representation of realistic grinding media particle shapes
in a SAG mill by using superquadratic discrete elements. Fukui et al. [19] presents models
of horizontally and vertically oriented stirred mill designs, investigating the influence of
agitator shaft direction on the grinding performance. Positron emission particle tracking
(PEPT) is a technique that has been used with some success to experimentally study the
dynamics of grinding media as an attempt to quantify the grinding performance [20,21].
In [22], a combination of PEPT and DEM was used to study the grinding media dynamics
in a vertical attritor mill. Particle breakage in a ball mill is modeled using DEM and a
bonded-cell method in [23]. In [24], a DEM model is used to study a batch vertical stirred
mill. In [25], the computational aspects of DEM modeling of crushing and comminution of
granular materials are addressed.

Modeling of wet comminution introduces the challenge of representing the slurry,
namely the mix of product and water. The product particle size is typically small, and thus
it is not feasible to model individual product particles with DEM. Instead, the slurry is
commonly represented as a continuous fluid. For wet comminution, the smoothed particle
hydrodynamics (SPH) method, developed by [26,27], is frequently used to model the slurry.
Coupling numerical methods, such as the finite element method (FEM), DEM, and SPH
are candidates for modeling of a wet comminution circuit. Jonsén et al. [28] employed
a coupled SPH–FEM model for a tumbling mill process, which was later extended to
include both slurry and grinding media using a coupled SPH–DEM–FEM approach [29,30].
In [31], a coupled DEM–SPH was applied on an industrial scale stirred media detritor.
Computational fluid dynamics (CFD) is an alternative to SPH and coupled CFD–DEM
models of stirred media mills can be found in [32–34]. Eulerian CFD simulations of solid–
liquid flow in a horizontal stirred media mill are presented in [35].

Early applications of the particle finite element method (PFEM) combined with DEM
for modeling particle-laden flows can be found in [36,37]. More recently, a PFEM–DEM
approach was used by [38] to model particle-laden flows with free surface. Coupled particle
finite element method (PFEM), FEM, and DEM models were used in a recent work by [39]
for a tumbling mill and in [40] for a wet stirred media mill.

The present work presents numerical simulations of the interactions between grinding
media, slurry, and mill structure in a pilot wet stirred media mill (Outotec HIG5) with
7.5 kW of installed power. The mill structure is modeled with FEM, grinding media
with DEM, and slurry with PFEM. The PFEM employed in this work is based on an
arbitrary Lagrangian–Eulerian (ALE) approach and a robust and automatic volume mesh
generation based on Delaunay triangulation, originally developed by [41]. The simulations
are realized with a two-way loosely (or weakly) coupled transient DEM–PFEM–FEM model.
A novel approach for transferring forces between grinding fluid and grinding media is
implemented. The force transfer is realized by specifying the drag coefficient as a function
of the Reynolds number. The aim of the present work is to establish a numerical tool able to
provide information on grinding media and slurry dynamics that are difficult or impossible
to obtain experimentally. Furthermore, the aim is also to investigate wear development on
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shaft and agitators in the HIG5 mill. The results of the motion of grinding media and slurry,
wear development, power draw, and grinding media contact energy spectra are presented.
The proposed numerical approach is validated against experimental measurements of
power draw during operation of the HIG5 mill.

2. Materials

In the present study, the grinding media are beads of a composite alumina and zirconia
ceramic material. The composition is 75% Al2O3 and 25% ZrO2 and SiO2. The bead shape
is spherical, and the particle size is in the range 2.0–4.0 mm. The solid and bulk densities
are 3.9 g/cm3 and 2.4 g/cm2, respectively, and the Vickers hardness is 1150 HV1. Two
different grinding fluids are investigated, water and a mineral slurry. The slurry has a
concentration of 46% solids by weight, a density of 1.48 g/cm3. P80 is 81 µm, and 46%
of the feed material has a particle size smaller than 20 µm. P80 is the screen size through
which 80% of the particles will pass.

3. Modeling and Simulation

In this section, the modeling approach of the present study is briefly reviewed. A more
detailed presentation can be found in [40]. The grinding media is modeled with DEM,
the grinding fluid is modeled with PFEM, and the mill structure is modeled with FEM.
The grinding media is modeled without considering breakage or attrition, which is justified
by the short duration of the simulations. The grinding fluid is represented as a continuous
fluid governed by the Navier–Stokes equations. For the interaction between grinding
media, fluid, and mill structure, a coupled DEM–PFEM–FEM model is used. The coupled
model is implemented and solved in the nonlinear multiphysics code LS-DYNA, version
R11.1 [42], using 32–64 cores with 2.6 GHz CPUs with 2× 128 GB local memory. The com-
putational time was between 35 and 42 h, depending on the choice of fluid and agitator
rotational speed.

3.1. Discrete Element Method

Originally formulated by [43], the DEM is based on a representation of the motion of
individual granular particles using Newton’s second law of motion. The translation and
rotation of a particle i with mass mi and inertia Ii is modeled by

mi
dvi
dt

= ∑
j

Fc
ij + ∑

k
Fnc

ik + Fg
i (1)

and
Ii

dωi
dt

= ∑
j

Mij, (2)

where vi and ωi are the translational and angular velocities of the particle. Contact forces
and torque acting on particle i by particle j are given by Fc

ij and Mij. Noncontact forces (e.g.,
capillary forces) acting on particle i by particle k are given by Fnc

ik and the gravitational
force is given by Fg

i . The evolution of particle velocities, locations, and contact forces is
obtained by explicit time integration of Equations (1) and (2). Interparticle contact forces
are modeled using a linear spring and damper approach. The contact force is given by
f c = δk, where δ is the overlap and k is a linear spring stiffness. Contact energy dissipation
is governed by a damping model where the damping force is given by f d = vc, v is the
relative velocity of the contacting particles, and c is a damping coefficient. Furthermore,
the interparticle friction is governed by a sliding friction parameter µ. In the DEM, stability
of the explicit time integration scheme is met by selecting the time step size as a fraction of
the critical time step. In the present study, the critical time step is given by ∆tc = ct

√
m/k,

where ct is a user-defined constant. If differently size DEM particles are used, the critical
time step is the minimum value calculated over all i particles.
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3.2. Particle Finite Element Method

The particle finite element method (PFEM) was originally developed for free-surface
fluid flow problems [44] and fluid–structure interaction [45]. Since its original development,
the PFEM has been applied to a wide range of physical problems where large deformations
are present. The main idea of the PFEM is a combination of a Lagrangian FEM with a pow-
erful remeshing strategy. The computational domain is defined via a set of points/particles
coinciding with the mesh nodes. The motion of the particles is treated in a Lagrangian
manner. The particles contain both nodal variables, such as displacements or velocity, and
physical properties, such as density and viscosity. The interactions between the particles
are calculated using a finite element mesh.

3.2.1. Balance Equations in an ALE Framework

The continuity equation is given by

∂ρ

∂t
+

∂

∂xi
(ρui) = 0, (3)

where ρ is the fluid density, t is time, ui are the velocity components, and the index i refer
to the space coordinates xi. The flow is approximated as incompressible where ρ is not
a function of time or space. Thus, ∂ρ/∂t ∼= 0 and Equation (3) is reduced to a volume
continuity equation

∂ui
∂xi

= 0. (4)

The Navier–Stokes equations can be written as

ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
=

∂σij

∂xj
+ ρ fi, (5)

where σij is the total stress tensor and fi are the components of external volume forces
(including the external forces exerted by DEM particles on the fluid). The total stress tensor
is given by

σij = −pδij + µ

(
∂ui
∂xj

+
∂uj

∂xi
− 2

3
∂ul
∂xl

δij

)
, (6)

where p is the hydrostatic pressure, µ is the fluid dynamic viscosity, and δij is the Kronecker
delta. In a nearly incompressible flow, the last term inside the parenthesis in Equation (6)
can be neglected and Equation (6) can be written as

σij ≈ −pδij + µ

(
∂ui
∂xj

+
∂uj

∂xi

)
. (7)

Thus, the viscous term in Equation (5) can be simplified, resulting in the following
Eulerian form of the governing system of equations

ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
= − ∂p

∂xi
+ µ

∂2ui
∂xj∂xj

+ ρ fi, (8)

∂ui
∂xi

= 0. (9)
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In the present study, an arbitrary Lagrangian–Eulerian (ALE) formulation is used
for the fluid domain. The ALE description of motion requires some reformulation of
Equation (8), resulting in

ρ

(
∂ui
∂t

+ (uj − vj)
∂ui
∂xj

)
= − ∂p

∂xi
+ µ

∂2ui
∂xj∂xj

+ ρ fi, (10)

where vj is the velocity of the moving frame of reference [46]. The objective of using an
ALE formulation is that the PFEM particles/nodes can move to a different position to
maximize the mesh quality.

3.2.2. Meshing Procedure in the Particle Finite Element Method

The essence of the PFEM is the powerful mesh regeneration algorithm. The motion of
the particles will eventually cause the mesh to distort and degenerate; this mesh is deleted,
and a new mesh is constructed using the same set of nodes. For the mesh regeneration,
a Delaunay triangulation algorithm is applied, and an alpha shape method is used to
identify the internal and external boundaries. The general solution scheme of the PFEM is
summarized below.

1. The computational domain is filled with a set of points/particles.
2. The particles are used as nodes to generate a finite element mesh using Delaunay

triangulation [47,48].
3. Internal and external boundaries are identified using an alpha shape scheme [49].
4. The FEM is used to solve the governing equations on the mesh.
5. Nodal positions are updated.
6. Return to step 4. If a remesh is required, return to step 2.

The mesh regeneration is a key ingredient in the PFEM and requires a fast and robust
algorithm. The PFEM uses a Delaunay triangulation approach for the mesh regeneration,
and it is important to note that in this step, it is only the nodal connectivities that are
updated; the nodes from the previous mesh are kept at the same location. For an extended
overview of the theory and applications of the PFEM, the reader is referred to [50].

3.2.3. Time Integration

In the present study, the time integration of the Navier–Stokes equations is performed
using the fractional step method, originally outlined independently by [51,52]. In the frac-
tional step method, pressure and velocity are uncoupled, resulting in four linear systems
of equations, three for the momentum equations (Equation (10)), and one for the continuity
equation (Equation (9)). The fractional step method computes the velocity in three main
steps. In the first step, a predictor velocity that does not satisfy the incompressibility
condition is computed. In the second step, the predictor velocity is projected onto a space
of divergence free vector fields, resulting in a Poisson equation of pressure. The computed
pressure is then used to correct the velocity, resulting in a divergence free velocity. In the
third step, the corrected velocity is used to move the particles to a new position. Con-
vergence is obtained when the final position of the particles is stationary, within some
error margin. More details of the fractional step method applied to incompressible flow
problems can be found in [53–55].

3.2.4. Spatial Discretization by the Finite Element Method

A simple four-noded linear tetrahedral finite element is used to discretize the velocity
and the pressure fields. The Navier–Stokes equations in an ALE framework can suffer from
two numerical instabilities. The first is associated with the incompressibility (the tetrahedral
does not fulfill the inf-suf condition) and the second one with the dominant convection
(usually at high Reynolds numbers). The inf-suf condition is stabilized using the finite
calculus presented in [46,56,57] and the convection terms are stabilized using orthogonal
subscale stabilization [46,58]. The mesh distortion is minimized through a nonphysical
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motion of the mesh nodes using the Laplacian operation [46,59], and in the case that large
boundary deformation takes place, the alpha shape and Delaunay triangulation are used
as was explained in Section 3.2.2.

3.3. Grinding Media, Slurry, and Mill Interaction

A partitioned (or staggered) approach is used for fluid structure interaction (FSI),
in which the fluid and solid equations are uncoupled. The uncoupling allows using
specifically written codes on the different domains, which is beneficial in terms of efficiency.
FSI is realized by a loosely (or weakly) coupled scheme, in which only one solution of
either field is required each time step. This is advantageous in terms of computational
efficiency since it avoids the iterative step required for convergence. For additional details
on the FSI formulation and its implementation in LS-DYNA, the reader is referred to [46].

The fluid and grinding media interaction is modeled by a two-way coupling between
PFEM and DEM models. The grinding media affects the fluid by adding mass and velocity
of the particles to the volume forces in Navier–Stokes equations. The fluid flow over the
particles result in a drag force computed by a potential flow around a sphere

fd =
v2

f Aρ f Cd

2
, (11)

where v f is the fluid velocity, A = πr2 is the projected area of a sphere with radius r, ρ f is
the fluid density, and Cd is a drag coefficient. The drag coefficient is a dimensionless quan-
tity that depends on the shape of the object and the flow conditions around it. The drag
coefficient is typically dependent on the Reynolds number. In the present work, a relation-
ship between the drag coefficient and the Reynolds number based on the work by [60] is
used. The drag coefficient is related to the Reynolds number by the following expression

Cd =
24
Re

+
2.6
(

Re
5.0

)
1 +

(
Re
5.0

)1.52 +
0.411

(
Re

2.63×105

)−7.94

1 +
(

Re
2.63×105

)−8.00 +
0.25

(
Re
106

)
1 +

(
Re
106

) (12)

where Re is the Reynolds number. A plot of the drag coefficient as a function of Reynolds
number is shown in Figure 1.

Figure 1. Drag coefficient Cd as a function of the Reynolds number (Re).
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The mineral slurry is modeled as a shear-thinning (pseudoplastic) fluid. A viscosity
model originally proposed by [61] is used for the relationship between dynamic viscosity µ
and shear rate γ̇

µ = µ∞ +
µ0 − µ∞

1 + (λγ̇)n (13)

where µ0 is the zero shear-rate viscosity, µ∞ is the infinite shear-rate viscosity, n is a dimen-
sionless constant governing the deviation from a Newtonian fluid, and λ is a time constant.

The parameters for the viscosity model are obtained from a measured viscosity and
shear-rate relationship (Figure 2). The viscosity and shear-rate relationship is measured
at room temperature with an Anton Paar Rheolab QC rotational rheometer using a CC27
bob cup setup. A linear least squares method is used to fit the viscosity model to the
experimental points, as shown in Figure 2. The model parameters obtained from the fit are
given in Table 1.

Figure 2. Viscosity µ versus shear-rate γ̇ measured with a rotational rheometer and fitted non-
Newtonian viscosity model [61].

Table 1. Fluid model parameters used for water and dolomite slurry.

Fluid Viscosity Model ρ (g/cm3) µ (Pa·s) µ0 (Pa·s) µ∞ (Pa·s) λ (s) n (-)

Water Newtonian 1.00 1.052× 10−3 - - - -
Slurry Non-Newtonian * 1.48 - 1.498 0.006 0.579 1.331

* The non-Newtonian viscosity model is a model for shear-thinning fluids formulated by [61].

3.4. Simulation Procedures

In the present study, the stirred media mill is a 7.5 kW Outotec HIG5. The simulations
are performed on a geometrically simplified version of the mill (see the CAD model in
Figure 3). The specifications of the HIG5 mill are presented in Table 2. The volume enclosed
by the mill outer structure is 6.2 × 10−3 m3. The centrally located shaft is fitted with
eight identical agitator discs and one bottom disc with the same diameter but of slightly
different design. The shaft is connected to an electric motor. The simulations are run for
a total of 5.0 s and the rotational speed is ramped up from 0 to the final rotational speed
during the first 0.5 s. In the present study, the final rotational speed is varied between
300–600 rpm. The mill structure is discretized using triangular FE shell elements and the
casing and agitator materials are modeled with a rigid material description.



Minerals 2021, 11, 55 8 of 19

Figure 3. CAD model of the geometrically simplified Outotec HIG5 stirred media mill. The mill
casing is made transparent to show the shaft and agitator discs.

Table 2. Outotec HIG5 mill specifications.

Property Value

Mill volume (10−3 m3) 6.2
No. of discs 9

Installed power (kW) 7.5

The amount of grinding media 8.93 and 7.66 kg for the water and mineral slurry
simulations, respectively, correspond to fill levels of approximately 60% and 50% of the
grinding chamber volume. The mill is filled with approximately 270,000 discrete elements
for a grinding media mass of 8.93 kg and 120,000 discrete elements for a grinding media
mass of 7.66 kg. The diameter of the discrete elements is between 2.0–3.0 mm, following a
Gaussian distribution for the water simulations. For the mineral slurry simulation, 50%
of the grinding media has a diameter between 2.0–3.0 mm and 50% between 3.0–4.0 mm.
The sliding friction coefficients are obtained experimentally, and since the grinding media is
spherical, a low value of the rolling friction coefficient is assumed (see Table 3). The sliding
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friction coefficient for DE–DE contact is determined using a CSM Instruments micro scratch
tester in combination with a CSM Instruments micro indenter. The DE–FE sliding fiction
coefficient is determined with a UMT-2 tribometer using a ball on disc configuration.
Young’s modulus of grinding media is approximately 300 GPa. Since the DEM in the
present study uses explicit time integration, the critical time step size is proportional to the
Young’s modulus of the grinding media. In DEM simulations, an increase of the critical time
step size is usually realized by decreasing the contact stiffness between particles, which
is proportional to the Young’s modulus. To increase the critical time step size, a value
of Young’s modulus three orders of magnitude smaller than the real value is used in the
present study. It has been shown that values of Young’s modulus in the range 107–1011 Pa
has a negligible effect on the granular material bulk flow properties [62,63].

Table 3. Physical properties for the discrete element method (DEM) model of the grinding media
common for all simulations.

Property Value

Particle density (g/cm3) 3.9
Young’s modulus (MPa) 300

Poisson’s ratio 0.21
DE–DE frict. coeff., sliding 0.11
DE–DE frict. coeff., rolling 0.01
DE–FE frict. coeff., sliding 0.5
DE–FE frict. coeff., rolling 0.01

Damping coefficient 0.5

PFEM in the ICFD module in LS-DYNA is used to model the grinding fluids. When
the grinding fluid is water, it is modeled as a Newtonian fluid with a constant dynamic
viscosity of 1.052 × 10−3 Pa·s and density of 1.0 g/cm3. The mineral slurry density is
1.48 g/cm3. The slurry is modeled as a non-Newtonian fluid with a dynamic viscosity
dependent on the shear rate. Fluid boundary conditions are applied according to the
settings used in the HIG5 mill. The inlet flow rate is 0.24 m3/h for both water and mineral
slurry. A prescribed pressure equal to zero is used for the outlet. Both inlet and outlet are
circular. A no-slip condition is applied between mill structure and fluid.

4. Results and Discussion

A number of simulations were set up to investigate the ability of the coupled PFEM–
DEM–FEM model to reproduce the operation of the HIG5 stirred media mill. In the
subsequent simulations, the dynamics of the fluid and grinding media and the performance
of the stirred media mill were investigated for different operational conditions.

4.1. Steady Flow Past a Static Sphere

To validate the implementation of Equation (12), the flow over a stationary sphere
located within a rectangular channel was simulated. The Cd values from the simulations
were obtained from Equation (11). As shown in Figure 4, the simulated results agree well
with results predicted by Equation (12).
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Figure 4. Comparison of drag coefficient Cd as a function of the Reynolds number (Re), simulation
vs. result from Equation (12).

4.2. Power Consumption

During the operation of the mill, a driving torque is required to maintain the rotational
velocity of the shaft. To keep the rotational velocity constant, the torque will vary due to
the loads on the shaft and agitator from the interactions between grinding media, fluid,
and the agitator elements. The grinding mill power output can be calculated as the product
of the driving torque and the rotational velocity of the shaft. The power consumption
can be studied to give an estimate on the performance of the grinding mill under varying
operational conditions as well as for different fluids and grinding media. It is important to
note that the power draw obtained from the numerical simulations of the present study
is a theoretical (pure) power draw for just rotating the agitator. Thus, no mechanical or
electrical losses are accounted for, nor any product breakage.

In Figure 5, the simulated theoretical (pure) power draw is presented for three ro-
tational velocities with water as grinding fluid. Experimentally measured power draw
for the 600 rpm case is shown in the same figure. A clear correlation between rotational
velocity and power draw is observed; increasing rotational velocity results in a significantly
increased power draw. Simulated and experimentally measured power draw agrees well
for the 600 rpm case. The pure power draw for the mineral slurry was simulated using
the non-Newtonian fluid model; the result for a rotational speed of 550 rpm is shown
in Figure 6 together with the experimentally measured power draw. Simulated and ex-
perimental power draw shows excellent agreement. When comparing Figures 5 and 6,
it is observed that a the power draw is slightly underpredicted for the water case and
somewhat overpredicted for the mineral slurry case. This might be partly explained by the
fact that the rheology of the slurry was determined experimentally at room temperature.
The temperature of the grinding fluid will likely increase during the operation of the
mill. However, this was not investigated experimentally, and in the present study, no
temperature dependency was included in the rheology model.

The power draw is an important aspect in wet comminution, and the proposed
modeling approach provides opportunity to determine the power draw for different
grinding fluids and operational conditions. Thus, it constitutes a valuable tool for stirred
media mill operators. It is important to note that the simulated power draw in the present
study is a relative calculation that only considers the resistance of the grinding media and
the fluid.
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Figure 5. Calculated (pure) power draw from the HIG5 mill model for a coupled model where the
grinding fluid is water and the grinding media mass is 8.93 kg. The power draw is shown for three
different rotational velocities. Experimentally measured power draw for 600 rpm is also shown.

Figure 6. Calculated (pure) power draw at 550 rpm from the HIG5 mill model for a coupled model
where the grinding fluid is a mineral slurry modeled as a non-Newtonian fluid and the grinding
media mass is 7.66 kg. Experimentally measured power draw is also included for comparison.

4.3. Grinding Media and Fluid Dynamics and Wear Prediction

With the coupled model developed in the present study, detailed information on the
fluid and grinding media dynamics can be obtained for varying mill operating conditions.
In Figure 7, the grinding media distribution and velocity are shown for the case where
water is used as grinding fluid and the rotational speed is 300 rpm. The results are shown
at steady state. From Figure 7, it is observed that the highest grinding media velocities are
located close to the perimeter of the agitator discs and that the velocity decreases rapidly
with increasing radial distance from the agitator discs. This result indicates that most of the
feed material particle breakage occurs between the discs. In Figure 8, the fluid velocity is
illustrated for a case where the fluid is water and the rotational speed is 300 rpm. The result
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is presented as multiple semitransparent isosurfaces of fluid flow velocity. The fluid has
its highest velocity close to the agitator discs and the velocity decreases with the radial
distance from the discs, similar to the result for the grinding media. To further visualize the
grinding fluid motion, a line integral convolution (LIC) was generated for the case where
the fluid is water and the rotational speed is 300 rpm (see Figure 9). The LIC technique
convolves noise with a vector field, producing streaking patterns that follow vector field
tangents. Thus, in a LIC visualization, the flow of the velocity vector field is visualized
showing the direction of the velocity field vectors. In Figure 9, the strength of the field
(velocity magnitude) is shown by color where blue represents stationary fluid and red
represents fast-moving fluid. From the LIC, some recurring patterns are observed, such as
the formation of vortices above and below the agitator elements and irregular turbulent
flow close to the agitators.

For the case where water is used as fluid, the abrasive wear distribution was calculated
on the mill casing, agitator discs, and shaft. The results are shown in Figure 10. The wear
was predicted by an implementation of Archard’s wear model [64], in which the wear is
proportional to the normal contact pressure and sliding velocity. In Figure 10, it is observed
that the wear increases close to the bottom of the HIG5 mill. This effect is due to gravity
since the highest contact pressures occur at the bottom of the mill. Furthermore, it is
observed that the outer perimeter of the agitator discs is heavily worn. This wear pattern is
in line with observations from industrial use of the HIG5 mill.

Using the proposed coupled model, it is thus possible to predict the complex multi-
physics of the stirred media mill in terms of grinding media and fluid dynamics for a wide
range of operating conditions and materials. The inclusion of an efficient wear prediction
model makes the model an efficient tool useful for design and optimization of stirred
media mills.

(a)
(b)

Figure 7. Grinding media distribution and velocity in the HIG5 mill at steady state (t = 5 s) shown in clipped sections.
Isometric view in (a) and view from the side in (b). The results are shown for the case where the grinding fluid is water and
the rotational speed is 300 rpm. For clarity, the grinding fluid is hidden from view and only the grinding media is shown.
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Figure 8. Close-up view on the lower part of the HIG5 mill, showing the steady-state fluid flow
velocity isosurfaces colored by the magnitude. Blue represents stationary or slow-moving fluid and
red represents fast-moving fluid. The result is shown at a time t = 5 s, for the case where the fluid is
water. For clarity, the grinding media is hidden from view.

4.4. Contact Energy Spectra

The contact energy dissipation associated with the collisions between grinding media
was calculated for the HIG5 stirred media mill model. Interparticle collisions are associated
with energy dissipation, and to quantify these collisions during operation of the HIG5 mill,
a contact energy spectrum was calculated. The spectrum gives the frequency distribution
of the normal component of the contact energies (see Figure 11). To obtain this contact
energy spectrum, a methodology outlined by [34] was used. The normal contact energy
distribution in Figure 11 is shown for all cases simulated in the present study. From this, it is
observed that increasing the rotational speed results in more energy intensive interparticle
collisions. The model with the mineral slurry as grinding fluid gives a completely different
contact energy spectrum, with a significant shift to more energy-intensive contacts. It
should be noted that the rotational speed for the mineral slurry case was 550 rpm and the
grinding media size distribution is different from that of when water was used as grinding
fluid. In Figure 11, a lower limit of contact energy of 10−15 J was used, as suggested by [34].
Since feed material particle breakage occurs mainly due to grinding media interparticle
collisions, the contact energy distribution is an interesting parameter to study, and the
efficiency of a stirred media mill can be improved by shifting the contact energy spectra
to more useful contact events. Modeling of breakage of feed material particles was not
included in the present study.
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Figure 9. Line integral convolution (LIC) visualization of grinding fluid motion. Result for a case
with water as grinding fluid and a rotational velocity of 300 rpm. The LIC is calculated based on the
velocity field vectors and is shown at time 5 s. Color indicates the velocity magnitude where red
corresponds to high velocity and blue to low velocity.
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(a) (b)

(c)
Figure 10. Abrasive wear distribution on the HIG5 mill for a case where the fluid is water and the mass of grinding media
is 8.93 kg. The wear distribution is obtained by Archard’s wear law and it is shown for different parts of the mill: in (a) for
the mill casing, in (b,c) for the agitator. The results are shown at time 5 s. Red represents areas of increased wear.
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(a) (b)

Figure 11. Contact energy spectra displaying the frequency of the normal component of interparticle collision energies.
In (a), water is used as grinding fluid, and the result is shown for three rotational speeds. In (b), the grinding fluid is the
mineral slurry.

5. Conclusions

In the present study, a particle-based modeling approach based on fundamental,
measurable physical relations is used to model the interactions between fluid, grinding
media and mill structure in a HIG5 pilot stirred media mill. The modeling and simulations
are based on a loose (or weak) two-way coupling PFEM–DEM–FEM approach where PFEM
is used for the grinding fluid, DEM for the grinding media, and FEM for the mill structure.
Furthermore, a novel coupling between the grinding media and fluid models based on
the Reynolds number was utilized. With the proposed modeling strategy, the dynamics of
fluid and grinding media, power draw, wear distribution, and interparticle collisions were
investigated. Two grinding fluids were considered, water and a mineral slurry. Water was
modeled as a Newtonian fluid and the mineral slurry was modeled as a non-Newtonian
fluid with properties obtained from rheology measurements. With the proposed modeling
approach, the complex multiphysics of the HIG5 mill could be accurately predicted and the
model was validated against experimentally measured power consumption for both water
and mineral slurry. The model predicts high velocity of the grinding media and fluid close
to the agitator discs as is expected from experimental observations. Furthermore, the wear
prediction agrees with experimental observations of wear patterns after prolonged use of
the HIG5 mill. The model developed in the present study is a powerful tool for increasing
the knowledge and understanding of the operation of stirred media mills. Thus, it should
be valuable for industrial users of stirred media mills, allowing inexpensive study of how
different materials and process parameters affect the grinding efficiency.
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