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Abstract: Data in the literature on the influence of water temperature on the terminal velocity of a
single rising bubble are highly contradictory. Different variations in bubble velocity with temperature
are reported even for potentially pure systems. This paper presents a systematic study on the
influence of temperature between 5 ◦C and 45 ◦C on the motion of a single bubble of practically
constant size (equivalent radius 0.74 ± 0.01 mm) rising in a clean water and n-pentanol solution
of different concentrations. The bubble velocity was measured by a camera, an ultrasonic sensor
reproduced in numerical simulations. Results obtained by image analysis (camera) were compared
to the data measured by an ultrasonic sensor to reveal the similar scientific potential of the latter. It is
shown that temperature has a significant effect on the velocity of the rising bubble. In pure liquid,
this effect is caused only by modifying the physicochemical properties of the water phase, not by
changing the hydrodynamic boundary conditions at the bubble surface. In the case of the solutions
with surface-active substances, the temperature-change kinetics of the dynamic adsorption layer
formation facilitate the immobilization of the liquid/gas interface.

Keywords: temperature; bubble; drag coefficient; terminal velocity; dynamic adsorption layer

1. Introduction

The hydrodynamics of a single bubble are a crucial matter for such engineering
and environmental applications as froth flotation, foam fractionation, waste treatment,
oil recovery, pulp and paper, distillation, the aeration of water reservoirs and pipe flow
(cavitation) [1–4]. Moreover, bubble motion is important for the design of bubble columns
and reactors, where the motion is strictly correlated to mass transfer rates [5]. Furthermore,
the description of bubble motion in solutions of surface-active substances (SAS) is used to
determine the evolution and development of the dynamic adsorption layer (DAL) [6], the
properties of which are essential for predicting real foam stability [7].

The current state of the subject in the literature consists of a vast number of reports
showing the impact of bubble size and shape [8,9], surface tension [10], density, viscosity in
both phases [11–13] and the type of surfactant [14–17] on single-bubble motion characteris-
tics. Surprisingly, reports on the influence of temperature on the velocity of rising bubbles,
even in pure liquids, are quite scarce, despite the fact that this effect has significance for
engineering and industrial applications. Moreover, they show considerable contradictory
data and trends. Leifer [18] showed that for clean bubbles in water at different temperatures
an increase from 0 to 40 ◦C caused a decrease in the rising velocity, the magnitude of which
was influenced by the bubble diameter. Okawa et al. [19] considered the temperature effect
on single bubble rise characteristic in distilled water, but this work was focused mostly on
a comparison between the influence of the temperature on bubble path oscillations and the
method of bubble formation. Only two temperature values, low (15 ◦C) and high (90 ◦C)
were studied, and in the majority of cases the terminal velocities differed significantly
from the theoretical predictions, assuming slip boundary conditions at the liquid/gas
interface. Zhang et al. [20] determined the bubble rise velocity profiles in tap water and
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solutions of Triton X-100 surfactants in the temperature range 6–40 ◦C and found that,
with an increasing temperature, the bubble maximum and terminal velocity also increased.
Moreover, they showed that the bubble terminal velocity was reached faster when the
temperature was higher. The bubble characteristics in a bubble column between 30 and
60 ◦C was studied by Issaoui and Ben Mansour [21]. They found that an increase in liquid
temperature caused only a slight increase in the bubble rise velocity. Liu et al. [22] reported
no temperature influence on the terminal velocity in distilled water for 0–100 ◦C for bubble
of 3.3–6.1 mm.

As can be seen, the literature is full of conflicting information. The most probable
reason is a surface purity issue and the rising bubble’s great sensitivity to presence of
even traces of surface-active contaminants, which was recently analyzed in a high-quality
study by Pawliszak et al. [23]. It seems that, except for the work by Zhang et al. [20],
who were perfectly aware of the properties of the system they studied, the experiments
were conducted in undefined systems (i.e., contaminated liquids), where velocity was
randomly influenced by uncontrolled concentrations of surface-active impurities. In this
paper, special care was taken to reduce the number of parameters influencing bubble
hydrodynamics (i.e., a constant bubble radius was used). In addition, we were sure that,
according to the conclusions given in Pawliszak et al. [23], we were working in a bubble
size range where the liquid/gas interface was fully mobile in distilled water. In addition, to
check the temperature influence on the kinetics of the dynamic adsorption layer formation
at the rising bubble surface, the experiments were also carried out in several chosen
concentrations of n-pentanol. The research was conducted using two techniques (visual
observations and ultrasonic sensor readings) to increase the certainty of the results and to
check the reliability and usefulness of the ultrasonic sensor for determining bubble velocity
profiles. The ultrasonic technique, based on the well-known Doppler effect, is not new in
fluid dynamics [24]; however, the literature is limited to reports on the determination of
bubble velocities in columns [25,26] or tubes (Taylor bubbles) [27,28]. To the best of our
knowledge, the use of ultrasound has never been reported for the monitoring of a single
bubble rise velocity to determine the kinetics of the formation of the dynamic adsorption
layer at the liquid/gas interface.

2. Materials and Methods
2.1. Materials

Commercially available n-pentanol (>99%), a non-ionic surfactant, was purchased
from Merck. All solutions in experiments were prepared in ultrapure water (Direct-Q3 UV
Water Purification System by Millipore, Burlington, MA, USA, conductivity <0.7 µS/cm).
The values of surface tension, density and dynamic viscosity at studied temperatures were
taken from the engineering tables [29]. Details on the temperature-dependent physical
properties of the water were taken from [29] and are given in Table 1.

Table 1. Physical properties of water under various temperatures, studied in the paper.

No. Temperature
(◦C)

Density
(kg/m3)

Viscosity
((Pa·s × 10−3)

Surface Tension
(mN/m)

1 5 999.9 1.52 74.9
2 15 999.1 1.14 73.5

3 1 20 998.2 1.00 72.8
4 25 997.0 0.89 72.0
5 35 994.1 0.72 70.4
6 45 990.2 0.60 68.8

1 experimental data on bubble velocity and deformation from [30].

2.2. Methods

Variations in the local velocities of a single bubble rising in an aqueous phase of
different physicochemical properties (tuned by a temperature modification), according to
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the values given in Table 1) were determined using digital camera observations coupled
with image analysis and ultrasonic sensor data. The set-ups used for both experimental
approaches are schematically illustrated in Figure 1, and, in both cases, the main parts
were identical: a square glass column (40 mm × 40 mm × 400 mm) with a thick-walled
glass capillary (inner diameter dc = 0.0753 mm) sealed at the bottom and an automatic
bubble generator (Bubble-on-Demand [28]) to form a single bubble with control over its
detachment frequency (adjusted to 60 s). Moreover, in both experimental approaches, the
column with the tested liquid was placed and sealed inside the larger, outer square glass
column (60 mm × 60 mm × 400 mm) to maintain the liquid’s temperature in the inner
column at the desired level. Before each experimental series, the temperature was adjusted
using a circulating water bath (Thermo Scientific SC100-A10, Waltham, MA, USA), and this
process was controlled by an electronic thermometer immersed in the inner column liquid.
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Figure 1. Schematic illustration of the experimental set-up used to determine bubble rising velocity
in the aqueous phase of various temperatures using camera and an ultrasonic sensor.

It has to be added here that, for experiments in pure water, only the period of rectilinear
bubble motion was analyzed. It was observed during the experiments that, after a given
distance, the bubble path deviated from a straight line. Moreover, the distance at which this
deviation was noticed was generally shorter for higher water temperature. This distance,
however, was much larger than needed for the bubble to reach terminal velocity, but an
analysis of a temperature-dependent bubble path was beyond the of scope of this paper.
For n-pentanol, establishment of terminal velocity strictly depended on the kinetics of the
dynamic adsorption layer (DAL) formation. For this particular reason, longer distances
covered by the bubble were analyzed, and for a particular pentanol solution concentration,
the terminal velocity was calculated from the period where the bubble’s oscillatory motion
was observed.

2.2.1. Velocity Determination by Camera and Image Analysis

Details on the experimental protocol and image analysis algorithms used for bubble
velocities determination by visual observations can be found elsewhere [10,30,31]. Briefly,
in this method, the local bubble velocity could be calculated from analyzing the bubble
photos recorded by a CCD camera at equal time intervals. In our case, bubble motion was
recorded by the SpeedCam MacroVis (Ettlingen, Germany) at 100 fps. The frame-by-frame
analysis of the collected movies was automatized by an in-house-written Python script
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(using OpenCV 3.4.13 and PIL 7.2.0 modules). The values of a local rising bubble velocity
were calculated as:

u =
∆L
∆t

(1)

where ∆L = (xi+1 − xi−1)
2 + (yi+1 − yi−1)

2, while (xi+1 − xi−1) and (yi+1 − yi−1) are the
vertical and horizontal coordinates of a subsequent position of the rising bubble geometrical
center within a time interval that matched the camera frequency. For experiments in pure
water, the significance of the vertical coordinates’ constituents was negligible. Furthermore,
with pictures of the rising bubble, the so-called equivalent bubble diameter (deq) and ratio
of the bubble deformation (χ) were calculated as:

deq = 3
√

dvdh
2 (2)

χ =
dh
dv

(3)

where dv and dh are the bubble’s vertical and horizontal diameters, respectively. These
parameters were used further to analyze the hydrodynamics of the rising bubble under
different temperature conditions.

2.2.2. Velocity Determination by Ultrasound

In this approach the ultrasonic sensor mounted on the bottom of the liquid column,
transmitted and received at 5 MHz. The bubble rising velocity was determined analyzing
the variations in the temporal evolution of a position of the registered signal formed as
a result of ultrasonic waves reflected from the rising bubble surface. An example of the
signal as a function of distance of the bubble from the capillary is presented in Figure 2.
The parameters of the sensor and the time dependent signal position were controlled and
recorded by the driver (OPBOX 2.0 mini ultrasonic box), and the software was elaborated
by PBP OPTEL (Wrocław, Poland) [32]. The bubble position of the maximum signal value
was acquired in constant time intervals of 87.8 ms. The values of the local bubble velocities
were calculated by differentiating the temporal evolution of the signal position. For each of
the selected temperatures (see Table 1), the velocity as a function of time was measured
independently for 10 subsequent single bubbles. It is worth highlighting that, for an
accurate determination of the signal temporal evolution, the information about the speed of
sound in the liquid phase was necessary. Its values, presented in Table 2, were temperature
d-pendent and taken directly from the engineering tables [29].
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Table 2. Speed of sound used to determine the rising bubble using an ultrasonic sensor (taken from
Eng. Toolbox [29]).

No. Temperature
(◦C)

Sound Velocity in Pure Water
(m/s)

1 5 1427
2 15 1465
3 25 1495
4 35 1518
5 45 1534

2.2.3. Numerical Calculations

Modelling of rectilinear bubble motion in liquid of properties of water under different
temperature conditions (according to Table 1) was performed using spatial discretization
and numerical scheme implemented in a Gerris Flow Solver (release on 6 December 2013),
which is described in detail elsewhere [33–35].

The numerical algorithms of Gerris were used to solve the governing equations de-
scribing the conservation of momentum and mass of an incompressible liquid in the form:

ρ

(
∂u
∂t

+ u · ∇u
)
= −∇p +∇ · (2µQ) + σκδsn (4)

∇ · u = 0 (5)

Q =
1
2

(
∇u + (∇u)T

)
(6)

where Q is a strain rate tensor; u is the fluid velocity vector; ρ is the fluid density and µ is
its viscosity; p is pressure; t is time; σ is surface tension; δs is a Dirac distribution function
(expressing the fact that the surface tension term was concentrated at the interface); κ
and n are the curvature and normal unit vector to the interface, respectively [33]. The
liquid column of height H = 150 mm and radius L, containing a gas bubble of radius
Rb = 0.745 mm, was described by an axisymmetrical cylindrical coordinate system. The
chosen value of L was directly related to the numerical (adaptive) grid size, as discussed
by Popinet [33] and Zawala [36], and was adjusted for results convergence. It was found
that, to obtain the converged data, the L had to be at least 10 mm, which corresponded to
the minimum size of the numerical grid cell equal to 4.9 µm. This was consistent with the
results of similar calculations presented by Zawala [36]. Initially, at t = 0, the center of the
motionless spherical bubble was set 3 mm above the bottom of the liquid column at the
symmetry axis (x = 0). After acceleration, constant speed (terminal velocity) of the bubble
was established after t = 0.10 s. The bubble motion parameters were calculated for the time
period t = 0.14–0.16 s. The liquid density, viscosity and surface tension were taken from
Table 1 to mimic the bubble rise in the aqueous phase of different temperatures.

A comparison between experimentally obtained photos of the rising bubble under
steady-state conditions and the corresponding numerically reproduced bubble outlines is
presented in Figure 3. A very good qualitative agreement between these sets of data was
found. The quantitative analysis of the data is presented further in the paper.
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3. Results
3.1. Bubble Rising in Pure Water

Values of the bubble radius (Rb = deq/2), calculated from the camera registered rising
bubble photos are presented in Figure 4 (dc = 0.0753 mm). In addition, the values reported
by Zawala and Niecikowska [30] acquired for bubbles formed at capillaries of various
dc but a constant temperature T = 21 ± 1 ◦C were given for comparison. The solid line
represents the theoretical size of the bubble detaching from the capillary, which can be
calculated by balancing the buoyant (detaching) force:

Fb = Vb∆ρg (7)

and capillary (attachment) force:
Fc = πdcσcosθ (8)

where Vb is the bubble volume; ∆ρ is the density difference between the liquid (ρl) and
gas (ρg) phases; σ is the surface tension; θ is the contact angle (equal to 0 for a clean glass
capillary surface); g is the gravitational constant. At the moment of bubble detachment,
Fb equaled Fc, and this relation could be rearranged to give an equation known as Tate’s
law [20,37]:

Rb =

(
3
4

dcσ

∆ρg

)1/3
(9)
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temperature changes.

As seen in Figure 4A, a very good agreement between the experimental data and
theoretical predictions of Equation (9) for water at T = 21 ± 1 ◦C was obtained [30]. The Rb
values measured in water of different T were also consistent with the predictions; never-
theless, slight deviations from the theoretical line could be observed, caused by variations
in the water physicochemical parameters, especially surface tension values. Figure 4B
presents a comparison of the Rb as a function of water surface tension (Table 1), and a quite
good match between experimental and theoretical values was found. This proved that
the bubble was generated (by the elaborated BoD generator [30]) under conditions that
allowed the establishment of an equilibrium between Fb and Fc, so the bubble Rb could
also be considered at equilibrium. It was seen that a decrease in the σ value caused by the
water temperature increased from 5 ◦C to 45 ◦C, resulting in only a slight variation in the
Rb (from 0.757 ± 0.005 to 0.734 ± 0.005).

A comparison of the terminal bubble velocities (ut) is presented in Figure 5. The
terminal velocity was shown as a function of the temperature. For T = 20 ◦C, the value
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from Zawala and Niecikowska’s [30] paper was used. The dashed lines in Figure 5 are
second-order polynomials fitted separately to each of the datasets. The solid line is the
average polynomial fit. It was evident that the bubble velocity measured by the ultrasonic
sensor (us) was higher than for the image analysis (uc). However, the fitted dashed lines
indicated that the relative difference between the camera and ultrasonic datasets was
similar, so it was caused by a systematic rather than a random factor. It can be presumed
that this difference was probably caused by assumptions made on the sound wave speed
in the water phase and the different temperature values for which were taken directly from
the engineering tables (see Table 2). The difference could have been caused, for example,
by wave interference with the column walls. As seen in the inset in Figure 5, the difference
between data obtained by both techniques, quantified by the us/uc ratio, was of order of
2–5%. The average second-order polynomial fit, which accurately described the trend of
terminal velocity variations (in cm/s) with temperature (expressed in ◦C) within the range
(solid line in Figure 5) was given as:

ut(T) = −0.003 · T2 + 0.3195 · T + 29.827 (10)

For CFD data, an agreement with the experimental results decreased with an increas-
ing temperature. This effect was a consequence of an increasing bubble deformation (see
Figure 3), i.e., the increase in the bubble dh caused an increase in the drag force resulting
from column wall proximity, which could be associated with the so-called wall effect).
As seen, both for the ultrasonic and camera methods, the standard deviation values for
average terminal velocity were quite small, indicating a good reproducibility. It should
be highlighted, however, that, for the camera method, the terminal velocity was calcu-
lated from only one experimental run. The ultrasonic sensor, because of its simplicity and
swiftness of measurement, allowed for multiple measurements of a bubble velocity profile,
which increased the statistical soundness of the terminal velocity values.
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Figure 5. Terminal velocity of the rising bubble formed at orifice of dc = 0.0753 mm in water of
temperature ranging from 5 ◦C to 45 ◦C (see Table 1 for details), determined using ultrasonic and
camera techniques.

Usually, to characterize the bubble dynamics in liquids, various dimensionless num-
bers are used to allow correlation and comparison between variations in the bubble motion
parameters and shape pulsations under different physicochemical conditions. This helps
to determine the useful general expressions and dependencies, which could be extended
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for other systems with comparable bubble shape changes and flow regimes. In our case,
for a description of bubble dynamics, the deformation ratio χ (determined on the basis of
image analysis) and the rising velocities measured by the two different techniques under
different physical conditions (see Table 1), were described using Reynolds (Re) and Weber’s
(We) numbers, which allowed a direct comparison with the relations in the models in the
literature. In addition, this comparison was used to assess the reliability of the ultrasonic
method for determining the bubble dynamics in the aqueous phase. The Re and We were
calculated as:

Re =
deqρlut

µ
(11)

We =
deqρlut

2

σ
(12)

Figure 6A presents experimentally determined χ values as a function of the Weber
number calculated for experimental data by Zawala and Niecikowska [30] and for the
data obtained in our studies under various temperatures. Moreover, the data from the
numerical calculations were given for comparison. In addition, the empirical relation by
Legendre et al. [38] in the form:

χ =
1

1− 9
64 We

(13)

was plotted in Figure 6A as a solid line. Quite a good agreement between the data and
the relation given by Equation (9) was found. Again, the most significant difference was
registered for the ultrasonic method. This was a consequence of the above-mentioned
difference in the ut values. Nevertheless, it can be assumed that, in the Rb range, the
variations in the bubble χ vs. We were reasonably described by the Legendre relation [38].
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Figure 6. Dependence between (A) rising bubble deformation ratio and Weber number, and
(B) Reynolds number and Weber number determined on the basis of various techniques.

The dependence of Re on We is given in Figure 6B. Here, it was possible to compare
the data with the literature results by Pawliszak et al. [23] (experiments at room tempera-
ture) and the theoretical predictions reported by Manica et al. [13,39], which allowed the
calculation of terminal velocities for rising bubbles of different shapes, assuming a slip
hydrodynamic boundary condition at the liquid/gas interface (i.e., when there was no
adsorption layer at the bubble surface). As was seen, the agreement of the different sets of
literature data, i.e., the bubble velocities determined at the room temperature (21 ± 1 ◦C),
was almost perfect. This was, however, not the case for the ut determined for various T,
where a completely different trend was revealed. Intuitively, it could have been expected
that this new trend would have been caused not by a modification of the bubble hydrody-
namic boundary conditions, but by the liquid physicochemical parameters only. To show
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the correctness of this claim, the results presented in Figure 6B were analyzed according to
the model by Moore, allowing a direct calculation of the bubble drag coefficient (CD). For
this purpose, a common relation between We and Re (necessary for further calculations)
was quantified. For experiments at room temperature (literature data) the relation between
Re and We was almost linear and was approximated (in the considered Rb range) by:

Re = 185.90We + 66.88 (14)

while for various temperature conditions by the Equation (see solid green line in Figure 6B):

Re(T) = 251.29 · e0.0449·We(T)3
(15)

To calculate the theoretical drag coefficient associated with the rise of the deformed
bubbles in water (clean liquid/gas interface) at various temperatures, the relation elabo-
rated by Moore [38], which is confined to a thin viscous sublayer according to his theory of
viscous flow around the bubble, was used:

CD(M) =
48
Re

G(χ) ·
[

1− 2.21 · H(χ)

Re1/2

]
(16)

where G(χ) and H(χ) are geometrical factors calculated by Moore [40], which were accu-
rately approximated by the equations given by Loth [41] and Rastello et al. [42]:

G(χ) = 0.1287 + 0.4256 · χ + 0.4466 · χ2 (17)

H(χ) = 0.8886 + 0.5693 · χ− 0.4563 · χ2 (18)

To calculate the values as a function of Re, the empirical relations between χ and We
(Equation (13)) as well as Re and We (Equations (14) and (15)) were used. The drag coeffi-
cient of the experimentally observed bubbles was calculated from the general expression
for the drag force (Fd) acting on the object moving in a liquid phase:

Fd = 0.5ACDρlut
2 (19)

where A is the object projected area (for the spherical bubble equal to πRb
2). Under steady-

state conditions, when the rising velocity was constant (terminal), the Fd = Fb. After
rearrangement, assuming that for the rising bubble the ∆ρ ' ρl , the CD was calculated
using experimentally determined Rb and ut values, as

CD =
8Rbg
3ut2 (20)

Figure 7 presents the determined CD as a function of Re, calculated using Equa-
tions (11)–(20). In addition, the values of the drag coefficient of a particle with no-slip
hydrodynamic boundary conditions [43] in the form:

CD(C) =
24
Re
·
(

1 + 0.15Re0.687
)
+

0.42
1 + 42500Re−1/16 (21)

were also plotted. As could be expected, the Moore model very accurately described
the literature data, obtained at room temperature in pure water. It was seen, moreover,
that, after considering the temperature effect by means of Equations (14) and (15), the
experimental data (determined both by ultrasonic and camera techniques) were also very
well described. It showed evidence that, under various temperatures of pure water, the
hydrodynamic boundary conditions of bubbles of various sizes remained unchanged and
could be assumed as fully slip.
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Moreover, the above analysis showed that the ultrasonic method of bubble velocity
determination was reliable but not as accurate as visual observations because it depended
on an arbitrarily chosen speed of the sound value, which had to be used during the velocity
analysis. Moreover, it did not allow for the determination of the bubble deformation ratio.
Nevertheless, the ultrasonic method was significantly faster and gave a much better level
of statistical confidence in a remarkably reduced time. In our opinion, it can be successfully
used as a reliable tool for single bubble velocity measurements, especially in opaque or
turbid solutions where camera observations were difficult or impossible.

In addition, experiments on the bubble motion in water of different temperatures
allowed for the determination of the useful relations between the dimensionless numbers
and the T values. These relations, which are presented in Figure 8, could be expressed as:

We(T) = −3.18 · 10−4 · T2 + 0.043 · T + 1.775 (22)

Re(T) = 15.45 · T + 222.49 (23)
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All the empirically determined relations between the various parameters during the
period of rectilinear bubble rising under a steady-state condition in water of different
temperatures are shown in Table 3. We believe that these relations could also be used for
different bubble shapes and sizes under rectilinear motion.

Table 3. Empirical relations between various parameters useful for the description of bubble dynamics in water of different
temperature (for 200 < Re < 1000).

No. Dependence Empirical Relation (Valid for Bubble in Water
Tat emperature = 5–45 ◦C)

1 Terminal velocity vs. Temperature ut(T) = −0.003 · T2 + 0.3195 · T + 29.827 (Equation (10))
2 Reynolds vs. Weber number Re(T) = 251.29 · e0.0449·We(T)3

(Equation (15))
3 Weber number vs. Temperature We(T) = −3.18 · 10−4 · T2 + 0.043 · T + 1.775 (Equation (22))
4 Reynolds number vs. Temperature Re(T) = 15.45 · T + 222.49 (Equation (23))

3.2. Bubble Velocity Variations in n-pentanol Solutions of Various Concentrations
and Temperature
3.2.1. Analysis of the Local Velocity Profiles in Different Temperatures

Profiles of the local bubble velocity (i.e., velocity variations as a function of the distance
covered by the bubble in various concentrations of n-pentanol solutions) are presented in
Figure 9. The data redrawn from Zawala et al. [44] were compared with corresponding
profiles taken by the ultrasonic sensor. The literature data were obtained using the classical
camera technique and manual frame-by-frame image analysis [44].
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Figure 9. Comparison of the bubble local velocity profiles obtained on the basis of camera and image
analysis approach (data redrawn from [44]) and using ultrasonic technique.

Despite the slightly different temperatures of the solutions (our measurements were
performed in 25 ◦C, while the literature results were reported at 21 ◦C), quite a good agree-
ment between the two sets of data was seen. All characteristic bubble velocity changes,
including the maximum deceleration and the moment of the terminal velocity establish-
ment, were accurately captured. It is well established that these characteristic velocity
variations can serve as fingerprints for the dynamic behavior of the adsorption/desorption
processes at the solution/air interface [31]; in other words, they can be used to track the
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development and stages of the formation of the so-called dynamic adsorption layer (DAL).
For example, the maximum bubble velocity was an indication that the DAL did not yet
form but just started [45]. The terminal velocity establishment meant that the DAL was
fully formed; that is, there was an uneven distribution of surfactant molecules, with a
depletion zone at the bubble top pole [6,44,45]. As seen in Figure 9, the ultrasonic method
can be used as a complementary tool for these purposes. As already mentioned, a main
advantage was its speed—there was no need for a time-consuming image analysis step. On
the other hand, ultrasonic measurements did not provide any information about bubble
size and deformation or the evolution of bubble shape with time or distance. As was shown
by Krzan et al. [45], this is an additional important parameter that can be used to analyze
the DAL formation at moving liquid/gas interfaces.

To elucidate the influence of the temperature on kinetics of the DAL formation, each
bubble velocity profile, taken in the n-pentanol solution of considered temperature (Table 1)
was normalized according to the maximum velocity value (umax). The umax values for cho-
sen n-pentanol concentration are presented in Table 4. As seen, the bubble maximum
velocity increased with the temperature—this result was consistent with the reports by
Zhang et al. [20], who observed a similar trend in Triton X-100 solution of concentration
1.25 × 10−4 mol/m3. Figure 10 presents a comparison of normalized velocity for three cho-
sen n-pentanol concentrations. The concentration 1 × 10−4 and 5 × 10−3 M corresponded
to the concentrations where the DAL was established just after the bubble acceleration
period, while the concentration 1.5 × 10−3 M was intermediate, where the DAL formation
was associated with a maximum velocity existence.

Table 4. Temperature dependence of the bubble maximum velocity in n-pentanol solution of concen-
tration 1.5 × 10−3 M.

c
(mol/dm3)

Temperature
(◦C)

umax
(cm/s)

1.5 × 10−3

5 24.6
15 29.9
25 30.3
35 33.0
45 34.6
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As seen for 1 × 10−4 M and 1.5 × 10−3 M, the effect of increasing the solution
temperature was similar to that of increasing the solution concentration (compare with the
data in Figure 9). It was especially pronounced for 1.5× 10−3 M, where the terminal velocity
decreased as the temperature increased and, in addition, the moment of its establishment
shifted slightly towards shorter distances (i.e., the DAL was established a little bit faster).
The explanation of this effect was rather obvious: a higher temperature meant a higher
bubble velocity and a simultaneous increase in the rate of convective diffusion transport of
the n-pentanol molecules to the rising bubble surface. Similar trends were shown in the
solution of Triton X-100 by Zhang et al. [20]

3.2.2. Analysis of Terminal Velocity (at a Distance of 200 mm)

The effect of temperature on the terminal velocities was further analyzed according to
the empirical equation developed by Kowalczuk et al. [17]:

ut = umin + (uw − umin) · e−3( c
CMV )2

(24)

where uw is the bubble velocity in water (maximum possible); umin is the minimum velocity
of the bubble (with fully immobilized interface); c is the surface-active substance bulk
concentration; CMV is the so-called concentration at minimum velocity. As was discussed
elsewhere [14–16], the CMV can be used as a very useful tool for characterizing the kinetics
of surfactant adsorption at the rising bubble interface (the kinetics of bubble surface
immobilization), solution foaming properties and a comparison of these factors for different
types of surface-active substances.

Figure 11A presents the ut values for bubble velocity at 200 mm. In the great majority
of experiments, this distance was enough to establish terminal velocity in all n-pentanol
concentrations, except for 1×10−3 M (see Figure 9). For this specific case, especially for
lower temperatures, the calculated ut values were slightly higher than those corresponding
to the fully developed DAL. The points presented in Figure 11 were experimental data,
while the lines were predictions of Equation (24), which described the ut vs. c dependence
very accurately for all temperature ranges. As expected, the CMV values, calculated as a
fitting parameter of Equation (24) and presented in Table 5, were practically identical for all
temperature values. That meant that, despite the difference in absolute bubble velocity val-
ues, the concentration that caused the complete immobilization of the rising bubble surface
(above which no further velocity decrease was noticed) was temperature-independent.
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Table 5. Values of the concentration at minimum velocity (CMV) for n-pentanol solutions of
different temperatures.

No. Temperature
(◦C)

CMV
(mol/dm3)

1 5 2.9 × 10−3

2 15 3.0 × 10−3

3 20 3.0 × 10−3

4 25 3.2 × 10−3

5 35 3.0 × 10−3

By plotting the normalized bubble velocity (ut − umin)/(uw − umin) vs. c/CMV val-
ues, all experimental data taken for different temperatures were seen to converge in one
universal curve, which indicated that the n-pentanol influenced the bubble rising velocity
in a similar manner. It was the final evidence that the temperature, in this case, influenced
only the kinetics of adsorption of the n-pentanol at the liquid/gas interface.

4. Conclusions

Experiments performed using two independent experimental methods, supported by
numerical calculations and an analysis of the results, showed that, for a clean system, the
temperature did not change the hydrodynamic boundary conditions at the rising bubble
surface. Under various temperatures of pure water, the hydrodynamic boundary con-
ditions of the bubbles of a given size remained unchanged and could be assumed to be
fully slip. An increase in the rising velocity was caused only by modifying the physic-
ochemical parameters of the water (density, viscosity and surface tension). Concerning
the bubble’s diameter, an increase in the temperature from 5 to 45 ◦C caused only a slight
size modification. In turn, the bubble deformation varied significantly: the deformation
ratio increased with the water temperature and its value was accurately quantified using
Legendre’s equation.

It was shown, moreover, that the concentration values at minimum bubble velocity
(CMV), calculated from experiments of a bubble rising in n-pentanol solutions of different
concentrations, were practically identical for all temperatures. It meant that, despite
the difference in the absolute bubble velocity, the concentration, causing the complete
immobilization of the rising bubble surface (above which no further velocity decrease
could be noticed) was temperature-independent. The temperature only influenced the
timescale of the bubble surface immobilization. This observation confirmed the results
presented by Zhang et al. [20], which associated this effect with an increase in diffusion
kinetics of the surfactant molecules.

The results and analysis showed that the ultrasonic method of determining the rising
velocity of a single bubble was reliable, yet not as accurate as a visual observation because
the ultrasonic sensor depended on an arbitrarily chosen speed of sound in a liquid phase,
which had to be used during calculations. Moreover, it did not allow for the determina-
tion of the bubble deformation ratio, which (according to the literature) is an important
parameter for helping to quantify the dynamic adsorption layer formation stages. On the
other hand, the ultrasonic method was significantly faster and gave a much better level of
statistical confidence in a remarkably reduced time. In our opinion, it can be successfully
used as a reliable tool for single bubble velocity measurements, especially in opaque or
turbid solutions, where camera observations are difficult or impossible.
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Nomenclature

dc diameter of the capillary orifice
deq bubble equivalent diameter
dh horizontal (major) bubble axis
dv vertical (minor) bubble axis
Rb bubble equivalent radius (deq/2)
ρl liquid phase density
ρg gas phase density
g gravitational constant
σ surface tension
Fb buoyant (attachment) force
Fc capillary (detachment) force
Fd drag force
θ contact angle between air and water phases
Vb bubble volume
ut bubble terminal velocity
us bubble terminal velocity by ultrasonic method
uc bubble terminal velocity by image analysis
We Weber number
Re Reynolds number
CD drag coefficient
A bubble’s projected area
χ bubble deformation ratio
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