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Abstract: The sheltered environment of the Algares +30 level adit (underground mine gallery)
contributes to the preservation of secondary water-soluble minerals formed on the tunnel walls. The
massive sulphide and related stockwork zone are hosted by the Mine Tuff volcanic unit and are
exposed in the walls of the gallery, showing intense oxidation and hydrothermal alteration. Minerals
from the halotrichite group were identified on the efflorescent salts, typically white fine-acicular
crystals but also on aggregates with dark orange/brownish colour. Mineral characterization was
performed using several methods and analytical techniques (XRD, XRF-WDS, SEM-EDS, DTA-TG),
and the chemical formulas were calculated maintaining the ratio A:B ∼= 1:2 in accordance with
the general formula of the halotrichite group, AB2(SO4)4·22H2O. This methodology allowed the
assignment of the orange colour to the presence of trivalent iron on iron-rich pickeringite in partial
substitution of aluminium.

Keywords: orange pickeringite; halotrichite; efflorescent minerals; underground mining; Algares
mine; Iberian Pyrite Belt sulphide ores

1. Introduction

The Aljustrel Mine is located in the Portuguese sector of the Iberian Pyrite Belt (IPB),
one of the most important European metallogenic provinces, with more than 90 deposits
of polymetallic massive sulphide ores [1,2]. The mine site contains six ore lenses, namely,
Estação, Feitais, Algares, Moinho, São João and Gavião. Feitais and Moinho are being
exploited by the Almina Company. The mining area also includes the old Pedras Brancas
Metallurgical Complex (approximately 10 km ESE of Aljustrel) [3–6]. At Algares and São
João, deposit mining activity occurred prior to and during the Roman Empire’s occupation
of the Iberian Peninsula. As the Algares orebody is vertical and relatively thin, mining was
never developed in a large open pit setting [7]; the exploitation was mainly for copper, lead
and zinc, with gold and silver as by-products. The sulphide mineral assemblages of the
orebody consist mostly of pyrite (FeS2) and minor amounts of sphalerite (ZnS), chalcopy-
rite (CuFeS2), galena (PbS), arsenopyrite (FeAsS), tetrahedrite [(Cu,Ag)10(Fe,Zn)2Sb4S13],
tennantite [(Cu,Ag)10(Fe,Zn)2As4S13], stannite (Cu2FeSnS4), pyrrhotite (Fe1−xS) and some
native bismuth [8]. The outcropping Algares deposit forms a NW-SE orientated narrow
gossan, mapped along 900 m [9–11].

Minerals 2021, 11, 1115. https://doi.org/10.3390/min11101115 https://www.mdpi.com/journal/minerals

https://www.mdpi.com/journal/minerals
https://www.mdpi.com
https://orcid.org/0000-0002-0306-1015
https://orcid.org/0000-0002-3627-5060
https://orcid.org/0000-0001-5324-1586
https://doi.org/10.3390/min11101115
https://doi.org/10.3390/min11101115
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/min11101115
https://www.mdpi.com/journal/minerals
https://www.mdpi.com/article/10.3390/min11101115?type=check_update&version=2


Minerals 2021, 11, 1115 2 of 14

In the 19th century, modern exploration began mainly through wells or adits (galleries),
reaching a depth of about 360 m [12–15]. Presently, the deposit is considered exhausted
and the area is being rehabilitated for mining and geological tourism. To promote new
educational visits, the Company Empresa de Desenvolvimento Mineiro (EDM) and the
Aljustrel Municipality carried out rehabilitation works inside the Algares +30 level adit
(approximately 500 m long). During the mine rehabilitation project, the Algares mine
gallery was cleaned and enlarged for public visits. Protection structures were constructed
including wood pillars, concrete walls and metallic networks. Thematic underground
visits will be promoted by the Aljustrel Municipality, including in the future Aljustrel
Mining Park.

The Algares +30 level adit intersects two distinct volcanic units of the IPB Volcano-
Sedimentary Complex (Tournaisian–Late Visean age at the Aljustrel Antiform) [16]. The
massive sulphide and related stockwork zone are hosted by the Mine Tuff volcanic unit
and are exposed in the walls of the gallery, showing intense hydrothermal alteration. The
primary mineralization is strongly affected by supergene oxidation alteration due to the
near surface location of the studied mine gallery. The two gossans Algares Oeste and
Algares Este are present in the gallery. The oxides and sulphides in the moist air resulted
in the formation of simple and complex multi-coloured sulphates (secondary minerals),
making the adit a natural “mineralogical museum”. These particular conditions include
direct access to the Vipasca mine shaft (and connection with deeper flooded mine levels)
and old Roman mine galleries (with 2000 years of mineral exposure to the open air). In
summary, the minerals present in the mine gallery are: primary mineralization (sulphides
+ sulphosalts + hydrothermal assemblage, e.g., chlorite and sericite), supergene–oxidation-
stage mineralization (e.g., hematite, goethite, limonite) and neoformation minerals/crystals
(e.g., oxides, hydroxides, sulphates). The sheltered environment of this underground mine
gallery contributes to the preservation of water-soluble minerals. The most common min-
erals found were melanterite (FeSO4·7H2O) and chalcanthite (CuSO4·5H2O), resulting
from the weathering brought about by the percolation of acidic fluids and forming es-
sentially massive or crystalline aggregates, ranging from greenish to bluish colours [16].
Other minerals identified in the walls of the adit, including those prevailing in stalac-
tites/stalagmites, were: alunite [(K,Na)Al3(SO4)2(OH)6], alunogen [Al2(SO4)3·17H2O],
antlerite [Cu3(SO4)(OH)4], atacamite [Cu2Cl(OH)3], copiapite [Fe5(SO4)6(OH)2·20H2O],
fibroferrite [Fe3+(OH)SO4·5H2O], gypsum (CaSO4·2H2O), jarosite [KFe3(SO4)2(OH)6] and
kaolinite [Al2Si2O5(OH)4] [16].

Aqueous solutions of Fe2+/Mg2+ combined with Al3+ from the weathering of sil-
icates gave rise to further mixed divalent–trivalent sulphate salts such as halotrichite
[FeAl2(SO4)4·22H2O]/pickeringite [MgAl2(SO4)4·22H2O]. Indeed, these minerals are fre-
quently found in acid mine drainage (AMD) environments (e.g., [17–22]), but their presence
as a coating of the gallery walls has preserved them from dissolution.

Minerals from the halotrichite group are usually colourless or white [23,24]. Colours
like pale pink or yellow appear when Mn2+ or Fe3+ are present, respectively [25]. The possi-
bility of a Fe3+ substitution for Al is also foreseen [19,25–27]. Furthermore, Parafiniuk [25]
points out that Fe3+ rich pickeringite may be distinguished macroscopically by its colour
(creamy, yellow, light brown of various tints), while pure pickeringite is white. He also
mentions that Fe3+-rich pickeringite is much darker than in its dry state, and could even
have a chocolate colour, which gradually changes to pale-brown and yellow upon drying.

In fact, it was the dark orange/brownish colour of some aggregates, in contrast to
the typically white fine-acicular crystals, that caught our attention. It was specifically this
aspect that gave rise to this thorough mineralogical (XRD) study on minerals from the
halotrichite group, particularly concerning white halotrichite, as well as white and orange
pickeringite, from the Algares adit. Chemical analysis (XRF-WDS), scanning electron
microscopy (SEM-EDS) and thermo-analytical techniques (DTA-TG) were also used to
characterize the efflorescent samples, aiming to contribute to the knowledge of the unusual
orange pickeringite.
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2. The Halotrichite Group

Sulphates of the halotrichite group (monoclinic, S.G. P21/c) have the general formula
AB2(SO4)4·22H2O, where A = Fe2+, Mg2+, Mn2+, Ni2+, Zn2+ and B = Al3+, Cr3+, Fe3+ [26,28].
There is complete miscibility between Mg2+ and Fe2+ in the pickeringite (A = Mg2+)-
halotrichite (A = Fe2+) series, the substitution of aluminium (B = Al3+) by Fe3+ being
restricted [24,29]. Bilinite [Fe2+Fe3+

2(SO4)4·22H2O] is a ferric iron analogue of halotrichite
[Fe2+Al3+

2(SO4)4·22H2O], which is isostructural. There is also ternary solid solution Mg2+-
Fe2+ with apjohnite (A = Mn2+) and similarly with dietrichite (A = Zn2+) [26,30]. The
other species of the halotrichite group are uncommon [28]. Due to the occurrence of
solid solutions and to the similar powder diffraction patterns, the identification of these
minerals is difficult [25,27,31,32]. Moreover, the accurate crystal-chemical characterisation
has been problematic because of the impossibility of obtaining pure samples due to the
small dimension of the crystals and by the occurrence in nature of very complex mixtures
with other sulphates [30,33].

The structure of these minerals (an example of pickeringite in Figure 1) is based on
finite clusters of (SO4) tetrahedra (four per asymmetric unit), one AØ6 octahedra (Ø = five
water oxygens plus one sulphate oxygen) and two independent BØ6 octahedra (Ø = six
water oxygens). There are seventeen ligand water molecules and five isolated water
molecules [29,33,34].
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Figure 1. Sketch of the pickeringite structure: MgAl2(SO4)4·22H2O, obtained with PowderCell
program [35]. The water molecules are not represented for simplification: left side-unit cell, right
side-asymmetric unit.

3. Materials and Methods

More than 100 efflorescent samples were collected in September 2018 from the walls
of the Algares +30 level adit along its entire length, considering both colour and crystal
morphology [16]. From those, 19 are the focus of the present study. Several fragments
for X-ray diffraction (XRD) were selected (25) using the stereomicroscope (Stemi SV-11,
Zeiss, Jena, Germany), with images collected using a digital Zeiss camera (Axio-Cam Mrc,
Jena, Germany). Several images were mustered from the same fragment with the focus set
at different levels, all of which were compiled together in Adobe PhotoshopTM using the
focus stacking method.

For X-ray diffraction (XRD), a Philips PW 1500 powder diffractometer (Philips, Aachen,
Germany) with Bragg–Brentano geometry was used, equipped with a large-anode copper
tube operating at 50 kV–40 mA and a curved graphite crystal monochromator. A semi-
quantitative chemical analysis was also performed through X-ray fluorescence spectrometry
with a wavelength dispersive system (XRF-WDS), using a PANalytical 4.0 AXIOS sequential
spectrometer (Rh X-ray tube) (Malvern PANalytical, Malvern, UK) under He flow.
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SEM-EDS was performed using a tabletop scanning electron microscope (Hitachi
TM3030Plus) (Hitachi High-Technologies Corporation, Tokyo, Japan), coupled with a
Quantax70 Energy Dispersive X-Ray Spectrometer, operated at an acceleration voltage of
15 kV at ambient temperature and under low vacuum.

Samples were mounted with no preparation (non-destructive characterization) using
a double-sided carbon tape.

Thermo-analytical techniques—simultaneous differential thermal analysis (DTA) and
thermogravimetry (TG)—were also used, using a SETARAM 92-16.18 apparatus (KEP Tech-
nologies Group, Sophia Antipolis, France), incorporating a microbalance with a controlled
argon gas flow (inert atmosphere). About 60 mg of milled sample were deposited in an
alumina (α-Al2O3) crucible. The reference material was alumina powder. Therefore, the
DTA-TG assays were performed in a heating temperature range from ambient to 1000 ◦C,
at a heating rate of 10 ◦C min−1.

4. Results and Discussion

Minerals from the halotrichite group were identified in 25 fragments, the majority as
whitish pickeringite, two iron-rich pickeringite (orange) and one white halotrichite. They
were mainly in mixtures with melanterite, but also with alunogen or chalcanthite, over
quartz + pyrite, quartz + hematite, jarosite + quartz or quartz + chlorite/clinochlore +
mica. The stability of halotrichite group minerals with alunogen or melanterite in saturated
solutions has already been mentioned [26]. These sulphates occurred mainly as white
fine-acicular crystals (Figures 2 and 3) but also as orange/brownish aggregates of crystals
in two samples (Figure 4). Indeed, the orange samples collected in September 2018 [16] and
kept in the laboratory in sealed containers are now brown/yellowish with a dry appearance
in some zones. The halotrichite group minerals were formed over felsic volcanic rocks with
stockwork and disseminated mineralization. Generally, these rocks are well-cleaved and
present hydrothermal alteration (chlorite ± sericite).
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Figure 5 displays an example of very similar XRD patterns, obtained for four samples
(white and orange) chosen for the presence of only one phase, halotrichite/pickeringite
(see Table 1).
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Table 1. JCPDF cards for minerals (obtained with radiation Cu Kα) from the halotrichite group (the
three more intense lines are assigned in bold): halotrichite, FeAl2(SO4)4·22H2O (number 39-1387);
pickeringite, MgAl2(SO4)4·22H2O (46-1454); apjohnite, MnAl2(SO4)4·22H2O (29-0886); dietrichite,
ZnAl2(SO4)4·22H2O (25-1173); bilinite, Fe2+Fe3+

2(SO4)4·22H2O (25-1153).

Halotrichite Pickeringite Apjohnite Dietrichite Bilinite
2θ◦ Int. 2θ◦ Int. 2θ◦ Int. 2θ◦ Int. 2θ◦ Int.

5.6 20 - - - - 5.3 5 - -
7.3 8 - - - - - - - -
8.4 15 8.5 4 8.3 10 8.2 5 - -
9.2 18 9.2 13 9.2 10 9.0 5 - -

11.2 15 11.1 9 11.1 10 11.0 5 - -
- - - - - - - - 12.1 10

14.7 35 14.6 22 14.6 20 14.5 15 14.6 10
15.2 9 15.1 7 15.1 5 - - - -

- - 15.7 20 - - - - - -
- - 16.5 27 16.1 5 - - 16.2 25

16.8 7 16.7 13 16.8 8 - - - -
- - - - 17.8 18 17.8 30 17.9 30

18.0 21 18.0 49 - - - - 18.1 5
18.2 11 - - 18.2 5 18.3 40 18.3 50
18.6 100 18.5 100 18.4 90 - - - -
19.0 10 19.0 4 18.9 5 18.9 10 18.9 10
19.4 12 19.3 13 19.2 6 19.1 15 19.1 10

- - - - 20.1 6 - - - -
20.3 10 20.4 22 20.3 6 - - - -

- - - - 20.5 30 20.5 100 - -
20.7 31 20.6 58 20.6 30 - - 20.6 100

- - - - 21.2 12 21.1 20 - -
21.4 14 21.4 35 - - 21.4 30 21.3 20
21.7 20 21.6 47 21.5 20 - - 21.6 40
22.3 12 - - 22.2 10 22.1 10 - -
22.5 21 22.4 18 22.4 25 22.4 10 22.5 10
22.9 5 - - 22.8 6 - - - -
23.7 27 23.5 42 23.5 35 - - 23.5 5
24.3 7 24.3 7 24.2 4 24.1 5 - -
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Table 1. Cont.

Halotrichite Pickeringite Apjohnite Dietrichite Bilinite
2θ◦ Int. 2θ◦ Int. 2θ◦ Int. 2θ◦ Int. 2θ◦ Int.

24.7 6 24.7 7 24.5 6 24.5 5 - -
25.6 75 25.4 100 25.3 100 25.3 100 25.3 100
25.9 10 25.8 18 25.8 11 26.0 15 25.8 25

- - - - 26.5 8 26.5 5 - -
26.7 5 26.8 13 26.6 8 - - - -

- - - - 26.9 4 - - - -
27.1 7 27.1 9 27.1 4 27.2 5 27.1 30
27.4 6 - - 27.3 3 - - - -
27.9 2 27.9 4 27.8 3 - - - -

- - 28.1 11 28.1 10 28.0 10 - -
28.7 5 - - 28.6 2 28.9 5 - -
29.2 8 - - 29.2 9 - - - -
29.4 5 29.4 7 29.5 5 - - - -
30.1 10 30.1 13 30.0 15 29.9 10 30.0 15
30.9 11 31.0 22 30.8 11 30.7 15 30.9 30

As already mentioned, the mineralogical identification was very difficult due to the
possibility of solid solution between the halotrichite group members. The free program Pow-
derCell [35] was used to simulate the XRD pattern of pickeringite [MgAl2(SO4)4·22H2O]
based on data published for the crystal structure, where the proportion of Mg:Mn oc-
cupancy is 0.93:0.07 and the positions Al1 plus Al2 are completely occupied only by
aluminium [31]. The substitution of part of the Mg by Zn or Fe2+ changed the intensity
of some XRD lines: for example, the lines corresponding to hkl (011), (002) and (023)
increased in opposition to the lines (012) and (041) that decreased (Figure 6). By other
means, the substitution of part of the Al by Fe3+ revealed differences in the intensity of
those lines depending on if it occurred on Al1, Al2 or both sites (Figure 7). Nevertheless,
the observation of these differences in the experimental patterns was not clear; the intensity
of lines (011) and (023) was very low in all XRD patterns, and lines (002), (012) plus (041)
were less intense in all samples compared to sample 22-white.
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Halotrichite, pickeringite and even apjohnite have similar XRD patterns, the distinc-
tion between them shown only through chemical analysis [25]. Thus, chemical analyses
were obtained for the two white and two orange samples (Table 2), and the number of
atoms on the basis of four sulphur atoms was then calculated. The possibility of the pres-
ence of phases in vestigial content not detected by XRD (Figure 5), due to the low content
or overlap with other lines, cannot be ruled out. In this way, the approximate chemical
formula, AB2(SO4)4·22H2O, can be calculated (Table 3). Samples 20 and 22 are both white,
and chemically they are halotrichite and pickeringite, respectively (Table 3, Figure 8). Since
samples 19 and 25 were both orange, to maintain the theoretical ratio A:B = 1:2, all the
iron was assumed to be Fe3+, in substitution of aluminium in the case of fragment 19, and
1
4 Fe2+ plus 3

4 Fe3+ in fragment 25. The ternary diagram plotted in Figure 8 shows that they
are both pickeringite.
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Table 2. Chemical characterisation obtained through XRF of efflorescence salts.

20-White 22-White 19-Orange 25-Orange

% Nr. Atoms % Nr. Atoms % Nr. Atoms % Nr. Atoms

O 53.1 - - 53.8 - - 50.2 - - 51.0 - -
Na - - - 1.3 0.056 0.28 - - - - - -
Mg 0.2 0.008 0.04 2.8 0.115 0.57 1.8 0.074 0.40 1.3 0.053 0.27
Al 8.6 0.319 1.56 9.2 0.341 1.70 7.2 0.267 1.44 6.5 0.241 1.24
Si 0.9 0.032 0.16 2.2 0.078 0.39 0.6 0.021 0.11 0.4 0.014 0.07
P 0.6 0.019 0.09 0.8 0.026 0.13 0.8 0.026 0.140 0.6 0.019 0.10
S 26.2 0.817 4 25.8 0.804 4 23.8 0.742 4 24.9 0.776 4
K 0.2 0.005 0.02 0.2 0.005 0.02 0.2 0.005 0.03 0.06 0.002 0.01
Ca 0.3 0.007 0.03 0.6 0.015 0.07 0.4 0.010 0.05 0.4 0.010 0.05
Mn 0.06 0.001 0.00 0.2 0.004 0.02 2.1 0.038 0.20 0.2 0.004 0.02
Fe 8.8 0.158 0.77 0.4 0.007 0.03 7.3 0.131 0.71 10.6 0.190 0.98
Co - - - 0.03 0.0003 0.00 0.04 0.0007 0.00 - - -
Ni - - - 0.02 0.0003 0.00 0.03 0.0005 0.00 0.04 0.0007 0.00
Cu 0.8 0.012 0.06 0.6 0.009 0.04 1.5 0.024 0.13 1.0 0.016 0.08
Zn 0.02 0.0003 0.00 1.8 0.028 0.14 3.8 0.058 0.31 2.9 0.044 0.23

Total 99.78 - - 99.7 - - 99.77 - - 99.90 - -

Table 3. Calculated chemical formula (based on XRF data) for the Algares samples from the halotrichite group, AB2(SO4)4·22H2O;
x—number of water molecules, not calculated, as loss on ignition was not obtained; principal cations on A site are assigned in bold.
H—halotrichite; P—pickeringite.

Sample Chemical Formula A:B Mineral

20-white (Fe0.77Cu0.06Mg0.04Ca0.03)Al1.56(SO4)4·xH2O 0.90:1.56 ∼= 1:2 H
22-white (Mg0.57Zn0.14Ca0.07Cu0.04Fe0.03Mn0.02)Al1.70(SO4)4·xH2O 0.87:1.70 ∼= 1:2 P

19-orange (Fe0.71Mg0.40Zn0.31Mn0.20Cu0.13Ca0.05)Al1.44(SO4)4·xH2O 1.8:1.44 ∼= 1:1
(Mg0.40Zn0.31Mn0.20Cu0.13Ca0.05)(Al1.44Fe0.71)(SO4)4·xH2O 1.09:2.15 ∼= 1:2 P

25-orange (Fe0.98Mg0.27Zn0.23Cu0.08Ca0.05Mn0.02)Al1.24(SO4)4·xH2O 1.63:1.24 ∼= 1:1
(Mg0.27Fe0.24Zn0.23Cu0.08Ca0.05Mn0.02)(Al1.24Fe0.72)(SO4)4·xH2O 0.89:1.96 ∼= 1:2 P
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showing the typical morphology of these minerals in accordance with published papers 
(e.g., [22,26,36–38]). The approximate chemical formula was also calculated through EDS-
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Figure 8. Ternary diagram [36] Fe2+/Mg/Zn (in terms of mole percent) for the Algares samples from
the halotrichite group (based on XRF data); orange diamonds—orange samples; black diamonds—
white samples.

Collected SEM images illustrate the aggregates of fine-acicular crystals (Figure 9),
showing the typical morphology of these minerals in accordance with published papers
(e.g., [22,26,36–38]). The approximate chemical formula was also calculated through EDS-
quantification (Tables 4 and 5), following the same methodology used before, based on four
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sulphur atoms, maintaining the ratio A:B ∼= 1:2. The respective ternary diagram (Figure 10)
corroborates the results achieved previously.
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Figure 9. SEM images showing acicular crystals morphology and chemical composition (EDS):
(a) halotrichite (sample 20-white); (b) pickeringite (sample 22-white); (c) orange pickeringite (sample
19-orange); (d) orange pickeringite (sample 25-orange). The yellow circle shows the area used
for quantification.
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Table 4. Chemical characterisation of the Algares samples obtained through SEM-EDS analyses.

20-White 22-White 19-Orange 25-Orange
% Nr. Atoms % Nr. Atoms % Nr. Atoms % Nr. Atoms

O 85.70 - - 83.47 - - 84.44 - - 85.15 - -
Mg 0.17 0.007 0.12 1.37 0.056 0.74 1.16 0.048 0.78 1.37 0.056 0.99
Al 3.58 0.133 2.26 4.48 0.166 2.18 3.94 0.146 2.38 4.07 0.151 2.66
Si 0.30 0.011 0.19 - - - - - - - - -
S 7.53 0.235 4 9.76 0.304 4 7.85 0.245 4 7.27 0.227 4

Ca 0.02 0.0005 0.01 0.01 0.0002 0.00 0.02 0.0005 0.00 0.01 0.0002 0.00
Mn - - - 0.06 0.001 0.01 0.36 0.007 0.11 0.03 0.0005 0.01
Fe 2.42 0.043 0.73 0.03 0.005 0.01 1.40 0.025 0.41 1.56 0.028 0.49
Cu 0.28 0.004 0.07 0.18 0.003 0.04 0.19 0.003 0.05 0.07 0.001 0.02
Zn - - - 0.62 0.009 0.12 0.64 0.010 0.16 0.47 0.007 0.12

Total 100.00 - - 99.98 - - 100.00 - - 100.00 - -

Table 5. Calculated chemical formula (based on SEM-EDS data) for the Algares samples from the halotrichite group, AB2(SO4)4·22H2O;
x—number of water molecules; principal cations on A site are assigned in bold. H—halotrichite; P—pickeringite.

Sample Chemical Formula A:B Mineral

20-white (Fe0.73Mg0.12Cu0.07Ca0.01)Al2.26(SO4)4·xH2O 0.93:2.26 ∼= 1:2 H
22-white (Mg0.74Zn0.12Ca0.04Cu0.04Fe0.01Mn0.01)Al2.18(SO4)4·xH2O 0.92:2.18 ∼= 1:2 P

19-orange (Mg0.78Fe0.41Zn0.16Mn0.11Cu0.05)Al2.38(SO4)4·xH2O 1.51:2.38
(Mg0.78Fe0.20Zn0.16Mn0.11Cu0.05)(Al2.38Fe0.21)(SO4)4·xH2O 1.30:2.59 ∼= 1:2 P

25-orange (Mg0.99Fe0.49Zn0.12Cu0.02Mn0.01)Al2.66(SO4)4·xH2O 1.63:2.66
(Mg0.99Fe0.24Zn0.12Cu0.02Mn0.01)(Al2.66Fe0.25)(SO4)4·xH2O 1.38:2.91 ∼= 1:2 P
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DTA-TG assays were also performed (Figure 11). The intense endothermic peaks at 
approximately 150 °C and those at 310–340 °C correspond to dehydration [27]. The peak 
at 405–420 °C is attributed to the liberation of the most strongly bound water molecules 
or to the decomposition of intermediate products containing hydroxyl groups. The large 
endothermic peak at about 800 °C corresponds to the dissociation of aluminium and iron 
sulphates. The increase of total iron in the pickeringite structure caused a decrease in the 
temperature of this peak [25]; indeed, for pickeringite samples, the observed temperature 
was 808 °C for fragment 22-white, plus 778 and 772 °C for 19-orange and 25-orange, 

Figure 10. Ternary diagram [36] Fe2+/Mg/Zn (in terms of mole percent) for the Algares samples
from the halotrichite group (based on SEM-EDS data); orange diamonds—orange samples; black
diamonds—white samples.

DTA-TG assays were also performed (Figure 11). The intense endothermic peaks at
approximately 150 ◦C and those at 310–340 ◦C correspond to dehydration [27]. The peak
at 405–420 ◦C is attributed to the liberation of the most strongly bound water molecules
or to the decomposition of intermediate products containing hydroxyl groups. The large
endothermic peak at about 800 ◦C corresponds to the dissociation of aluminium and iron
sulphates. The increase of total iron in the pickeringite structure caused a decrease in the
temperature of this peak [25]; indeed, for pickeringite samples, the observed temperature
was 808 ◦C for fragment 22-white, plus 778 and 772 ◦C for 19-orange and 25-orange,
respectively; the iron content was 0.03%, 1.40% and 1.56%, respectively (Table 4). The
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temperature observed for sample 20-white (halotrichite) was 762 ◦C, with an iron content
of 2.42%.
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5. Conclusions

Several methods and analytical techniques (XRD, XRF-WDS, SEM-EDS, DTA-TG)
were used in this study to characterise crystal aggregate samples belonging to the halo-
trichite group, collected from the walls of the Algares 30-level adit in the Aljustrel mine
(Algares deposit, IPB massive sulphides) during a rehabilitation intervention for its val-
orisation as a mining and geological heritage site. Indeed, the existence of solid solution
between members of this group makes their identification only through XRD difficult. Of
the 25 fragments selected from the 19 samples, the majority were identified as whitish pick-
eringite, along with two iron-rich pickeringite (the orange ones) and one white halotrichite.
In fact, pickeringite was the only magnesium mineral found coating the adit walls [16],
resulting from the oxidation of sulphides and from the percolation of aqueous solution of
Mg2+/Fe2+/Fe3+ combined with Al3+ from silicates weathering. Hydrothermal Mg-rich
chlorite (present in the host felsic volcanic rocks) can also be considered as a source of
the magnesium.

Quantitative analyses obtained through SEM-EDS were used to determine the approx-
imate chemical formula of the halotrichite s.s. fragment, corresponding to the formula
(Fe0.73Mg0.12Cu0.07Ca0.01)Al2.26(SO4)4·22H2O, whereas the formula for pickeringite was
found to be (Mg0.74Zn0.12Ca0.04Cu0.04Fe0.01Mn0.01)Al2.18(SO4)4·22H2O.

The chemical formulas of the iron-rich pickeringite were calculated to maintain
the ratio A:B ∼= 1:2 in accordance with the general formula of the halotrichite group,
AB2(SO4)4·22H2O: (Mg0.78Fe0.20Zn0.16Mn0.11Cu0.05)(Al2.38Fe0.21)(SO4)4·22H2O and
(Mg0.99Fe0.24Zn0.12Cu0.02Mn0.01)(Al2.66Fe0.25)(SO4)4·22H2O.

If it is not the high iron content that is responsible for the orange colour, as is the case of
the white halotrichite, surely the trivalent state of iron in partial substitution of aluminium
is responsible for the samples’ colour, even when the mixed divalent–trivalent state is
present (iron-rich pickeringite). Future spectroscopic studies concerning the presence of
Fe2+ and/or Fe3+ are foreseen using synchrotron radiation. The adsorbed water of the
samples, due to the constant humidity of the adit walls, intensifies their colour, giving
them the peculiar orange/brownish hue.
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