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Abstract: Promoting the ability of anti-bursting of the confining rock of a coal roadway is of significant
importance to the safe production of a coal mine. In particular, in deep-buried coal mines, highly
frequent rock burst occurs due to large earth pressure and complex geological conditions, which
needs serious improvement. This paper investigated a type of confining rock modified method, which
can modify the physical properties of the surrounding rock and form a crack region and a reinforced
region by blasting and grouting reinforcement. Based on a set of physical model experiments and
numerical modeling, the results of a comparative analysis between a normal roadway and the
modified roadway in the static stress redistribution, dynamic stress, damage evolution, and energy
dissipation suggest that the modified confining rock is capable of protecting the coal roadway against
rock burst from roof stratum, obviously reducing and transferring the concentered static–dynamic
stress out of the cracked region, dissipating the dynamic energy by plastic damage in the cracked
region, and keeping the integrity of the reinforced region. In addition, the velocity of the dynamic
stress vibration wave at the surface of the modified coal roadway is obviously reduced, which is
beneficial for decreasing the movement of cracked rock blocks and protecting the lives and goods in
the coal roadway.

Keywords: rock burst; confining rock modification; energy dissipation; coal roadway; stress transfer

1. Introduction

Rock burst during coal mining is a typical dynamic disaster that threatens the safety
production seriously in coal mining country [1–4]. Despite a serious of engineering tech-
niques that have been announced to be successful in preventing rock burst during coal
mining, rock burst occurs occasionally and induces serious damage in coal roadways or
even death; in addition, coal mines in China with high potential rock burst are increasingly
emerging due to the increasing mining depth [5]. Therefore, capable approaches that
protect the coal roadway against rock burst are urgently desired for coal mining in China.

Roadway support, including wood, arch, metal, bolting, and hydraulic supports, are
commonly and widely used to control the deformation and stabilize the confining rock of
roadways. With the growth of mining depth, bolt–anchor systems associated with grids
by steel belts, arched sheds or hydraulic support are primary applied against the large
displacement or broken zone induced by large in situ stress, while such traditional roadway
supports were normally designed in the view of static pressure [6–9]. In recent years, the
increasing number of accidents in coal roadways induced by rock burst brought awareness
to researchers that the ability of coal roadways in impact resistance is of serious importance
to the safety of deep coal mining. Thus, various techniques were developed to dissipate
the dynamic energy of rock burst. These techniques can be mainly categorized into three
types [10]: namely, energy dissipation by damping rock bolts [11–14], energy absorption
by high-power hydraulic devices [15–17], and retractable steel sheds [18–20]. The damping
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rock bolts release a certain degree of strain energy by sliding friction or damper [21–23],
the hydraulic devices act as dampers that release dynamic stress from confining rocks,
thereby stabilizing the coal roadway [24], and the retractable steel sheds bear the load
from confining rocks and dissipate the dynamic stress by its retractable structure [25,26].
Sometimes, these techniques were combined to improve the resisting ability of the coal
roadway for rock burst [27,28].

Although the effectiveness of the above techniques for protecting the coal roadway
against rock burst has been proofed in many engineering cases, several serious accidents
occurred in recent years, such as the rock burst in Qianqiu coal mine [29], Yuejin coal
mine [30], Sunjiawan coal mine [31], Longyun coal mine [32], etc., which indicate that the
current ability of coal roadways in coal mines is still not enough to protect against the strong
rock burst, exhibiting large and sudden deformation of coal roadways or even crushed
rock pieces rushed into the coal roadway, consequently causing damage to equipment or
even death [29]. In addition, mining the deep coal resource in China is inevitable due to
the characters of coal resource distribution and the large amount of coal assumption in
China. The high stress concertation, strong disturbance, and complex lithological structure
would increase the intensity of rock burst [32]. Therefore, a new approach to promoting the
resistant ability of a coal roadway against rock burst is becoming an increasingly important
issue for coal mines.

Kaiser and Cai [33] outlined the design principal of a rock burst supporting system,
including rock-burst prevention, yielding support, addressing the weakest link, using an
integrated system that is simple and cost effective, and being adaptable, and the basic func-
tions of an effective supporting system, namely, reinforcing the rock mass, retaining broken
rock, and holding fractured blocks. In the light of these design principals and functions,
this paper studied a new type of coal roadway, an in situ confining rock-modified coal
roadway, which strengthens the surrounding rock, releases the nearby concentered stress,
and dissipates the kinetic energy by the cracked rock zone. Detailed information on this
type of modified coal roadway is introduced in the next section. Similar roadway structures
were investigated by Wang et al. [17] and Gao et al. [18,34], in terms of the mechanism from
the view of theoretical analysis and laboratory experiments. The difference between the
studied roadway in this paper and these similar roadways is the structural formation of
a reinforced region or cracked region. Specifically, the previously studied roadways still
require an inner supporting system to stabilize the broken rocks or an artificial seismic
isolated structure to protect the roadway against rock burst; in our case, the roadway is
designed as a formation with in situ modification of confining rock, which is desired to
reduce the cost of construction of a coal roadway. Anyway, previous studies on similar
roadways illustrate that it is feasible to protect the roadway against rock burst with a
reinforced and a weakened zone, while the capability of the confining rock modified coal
roadway in this paper needs a primary study and discussion.

Motivated by the above purpose, this paper launched a physical experiment based on
the geological conditions of a real coal mine, and a corresponding full-scaled numerical
model was computed as well, targeting the capability of the purposed in situ modified
coal roadway associated with analysis of the stress redistribution, dynamic response, and
energy dissipation. Additional discussion on the feasibility of engineering implementation
of the studied coal roadway and its economic benefits is carried out as well in this paper,
and conclusions are summarized in the end.

2. Conception of Modification in the Confining Rock of a Coal Roadway

As illustrated in Figure 1, the modification of a coal roadway contains a cracked region
and a reinforced region. The cracked region can be formatted by multi-times blasting with
a small quantity of charge, hydrofracturing technology or supercritical carbon dioxide
blasting, depending on the geological and engineering conditions. The reinforced region
is designed to be strengthened by grouting. These two regions were concept formation,
which is still in further study, in terms of cracking methods, cracking and reinforcement
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ranges, cracking degrees, construction sequences, etc. The feasibility of modifying a coal
roadway as shown in Figure 1 is discussed in detail in Section 6. The modification of the
confining rock in a coal roadway is designed with three targets: namely, transferring the
concentrated stress far away from the tunnel side to a relative further distance, dissipating
the kinetic energy out of the coal roadway, and stabilizing the coal roadway.

Minerals 2021, 11, x  3 of 19 
 

 

with a small quantity of charge,hydrofracturing technology or supercritical carbon diox-
ide blasting, depending on the geological and engineering conditions. The reinforced re-
gion is designed to be strengthened by grouting. These two regions were concept for-
mation, which is still in further study, in terms of cracking methods, cracking and rein-
forcement ranges, cracking degrees, construction sequences, etc. The feasibility of modi-
fying a coal roadway as shown in Figure 1 is discussed in detail in Section 6. The modifi-
cation of the confining rock in a coal roadway is designed with three targets: namely, 
transferring the concentrated stress far away from the tunnel side to a relative further 
distance, dissipating the kinetic energy out of the coal roadway, and stabilizing the coal 
roadway. 

 
Figure 1. Generalized model of a modified coal roadway. 

Specifically, a stress concentrated area exists near the tunnel side (the junction of 
plastic and elastic areas) [35,36], as the curves plotted in Figure 1 show; if the stress con-
centrated area was cracked, as denoted by Zhang et al. [37], the primary stress would be 
transferred to the outer boundary of the cracked region. For the purpose of kinetic energy 
dissipation, as suggested by Yan et al. [38], Cho et al. [39], and Tang et al. [40], damaged 
rock is able to increase its energy dissipation density. In the case of a modified coal road-
way, as illustrated by the schematic diagram in Figure 1, most of the kinetic energy from 
the rock burst source can be adsorbed by the cracked region, thereby protecting the coal 
roadway. Additionally, grouting is a common method to enhance the strength and integ-
rity of rocks around coal roadway [41]; therefore, a grout-reinforced region in the modi-
fied coal roadway as displayed in Figure 1 is able to promote the supporting ability of the 
coal roadway. 

In order to investigate the feasibility of the above targets achieved by a modified coal 
roadway, physical experiments and numerical modeling were conducted based on the 
real geological conditions of a real coal mine, the Kuangou coal mine. A detailed engineer-
ing background of the studied engineering case is introduced in the following section. 

3. Engineering Background 
The geological conditions of the Kuangou coal mine were taken as an engineering 

example. The Kuangou coal mine is located at Queergou of Hutubi County in Urumuqi 
City of Xinjiang Province. The area of the coal seam in Kuangou coal mine is about 21 km2, 
and its designed annual production is about 1.2 million tones. The B2 coal seam is the 

Figure 1. Generalized model of a modified coal roadway.

Specifically, a stress concentrated area exists near the tunnel side (the junction of plastic
and elastic areas) [35,36], as the curves plotted in Figure 1 show; if the stress concentrated
area was cracked, as denoted by Zhang et al. [37], the primary stress would be transferred
to the outer boundary of the cracked region. For the purpose of kinetic energy dissipation,
as suggested by Yan et al. [38], Cho et al. [39], and Tang et al. [40], damaged rock is able to
increase its energy dissipation density. In the case of a modified coal roadway, as illustrated
by the schematic diagram in Figure 1, most of the kinetic energy from the rock burst source
can be adsorbed by the cracked region, thereby protecting the coal roadway. Additionally,
grouting is a common method to enhance the strength and integrity of rocks around
coal roadway [41]; therefore, a grout-reinforced region in the modified coal roadway as
displayed in Figure 1 is able to promote the supporting ability of the coal roadway.

In order to investigate the feasibility of the above targets achieved by a modified coal
roadway, physical experiments and numerical modeling were conducted based on the real
geological conditions of a real coal mine, the Kuangou coal mine. A detailed engineering
background of the studied engineering case is introduced in the following section.

3. Engineering Background

The geological conditions of the Kuangou coal mine were taken as an engineering
example. The Kuangou coal mine is located at Queergou of Hutubi County in Urumuqi
City of Xinjiang Province. The area of the coal seam in Kuangou coal mine is about 21 km2,
and its designed annual production is about 1.2 million tones. The B2 coal seam is the
primary excavating source, whose average thickness and dip angle are 5.6 m and 14◦,
respectively. Geological investigation by borehole suggests that (please see Table 1) the
average depth of the B2 coal is about 480 m, and three potential hard and thick seams,
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namely the coarse sandstone (8 m and 7.6 m in average thickness) at 33.9 m and 65.6 m
above the B2 coal seam are the high potential sources of roof bursting to the B2 coal seam.

Table 1. Lithological characteristics of the Kuangou coal mine investigated by borehole.

No. Hatch
Pattern Lithology Average

Depth/m
Average

Thickness/m

Cumulated
Distance

from B2 Coal
Seam/m

1
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4. Methodology 
A physical model experiment and numerical modeling were involved in studying 

the energy dissipation of in situ modification of a coal roadway under the roof bursting. 
Taking the real engineering conditions of the Kuangou coal mine in Xinjiang Province as 
an example, the numerical model and physical model were constructed based on the real 
lithological structure. Detailed information on the numerical model setup and physical 
model experiment are introduced in the following subsections. 

4.1. Physical Model Experiment 
4.1.1. Similarity Relationship 

The physical quantities of the physical model were determined according to the the-
ory of similarity in geometry, mechanics, and dynamics. The geometric length, density, 
and elastic modulus were selected as the fundamental dimensions and defined with the 
ratios of the prototype to model as 100:1, 1.5:1, and 150:1, respectively. As both the proto-
type and scaled model were in the same acceleration field, the ratio of acceleration is 1:1. 
In the light of a dimensional similitude principle, alternative physical quantities were cal-
culated as listed in Table 2, in which the symbol c represents the similarity ratio, and the 
subscripts p and m denotes the prototype and physical model, respectively. l, ρ, E, δ, σ, c, 
φ, ε, v, V, α and F represent the length, density, elastic modulus, displacement, stress, 
cohesion, friction angle, strain, Poisson’s ratio, velocity, acceleration, and force, respec-
tively. The physical and mechanical parameters of rocks are listed in Table 3, which were 
provided by the Kuangou coal mine and determined by laboratory tests. 

Table 2. Similarity proportions of the physical quantities for physical model. 

Quantities Similitude Relations Ratios Quantities Similitude Relations Ratios 
Length Cl = lp/lm 100 Strain Cε = εp/εm = 1 1 
Density Cρ = ρp/ρm 1.5 Poisson’s ratio Cv = vp/vm = 1 1 
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sandstone 468.2 19.3 19.3
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4. Methodology 
A physical model experiment and numerical modeling were involved in studying 

the energy dissipation of in situ modification of a coal roadway under the roof bursting. 
Taking the real engineering conditions of the Kuangou coal mine in Xinjiang Province as 
an example, the numerical model and physical model were constructed based on the real 
lithological structure. Detailed information on the numerical model setup and physical 
model experiment are introduced in the following subsections. 

4.1. Physical Model Experiment 
4.1.1. Similarity Relationship 

The physical quantities of the physical model were determined according to the the-
ory of similarity in geometry, mechanics, and dynamics. The geometric length, density, 
and elastic modulus were selected as the fundamental dimensions and defined with the 
ratios of the prototype to model as 100:1, 1.5:1, and 150:1, respectively. As both the proto-
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subscripts p and m denotes the prototype and physical model, respectively. l, ρ, E, δ, σ, c, 
φ, ε, v, V, α and F represent the length, density, elastic modulus, displacement, stress, 
cohesion, friction angle, strain, Poisson’s ratio, velocity, acceleration, and force, respec-
tively. The physical and mechanical parameters of rocks are listed in Table 3, which were 
provided by the Kuangou coal mine and determined by laboratory tests. 

Table 2. Similarity proportions of the physical quantities for physical model. 

Quantities Similitude Relations Ratios Quantities Similitude Relations Ratios 
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4. Methodology 
A physical model experiment and numerical modeling were involved in studying 

the energy dissipation of in situ modification of a coal roadway under the roof bursting. 
Taking the real engineering conditions of the Kuangou coal mine in Xinjiang Province as 
an example, the numerical model and physical model were constructed based on the real 
lithological structure. Detailed information on the numerical model setup and physical 
model experiment are introduced in the following subsections. 

4.1. Physical Model Experiment 
4.1.1. Similarity Relationship 

The physical quantities of the physical model were determined according to the the-
ory of similarity in geometry, mechanics, and dynamics. The geometric length, density, 
and elastic modulus were selected as the fundamental dimensions and defined with the 
ratios of the prototype to model as 100:1, 1.5:1, and 150:1, respectively. As both the proto-
type and scaled model were in the same acceleration field, the ratio of acceleration is 1:1. 
In the light of a dimensional similitude principle, alternative physical quantities were cal-
culated as listed in Table 2, in which the symbol c represents the similarity ratio, and the 
subscripts p and m denotes the prototype and physical model, respectively. l, ρ, E, δ, σ, c, 
φ, ε, v, V, α and F represent the length, density, elastic modulus, displacement, stress, 
cohesion, friction angle, strain, Poisson’s ratio, velocity, acceleration, and force, respec-
tively. The physical and mechanical parameters of rocks are listed in Table 3, which were 
provided by the Kuangou coal mine and determined by laboratory tests. 

Table 2. Similarity proportions of the physical quantities for physical model. 

Quantities Similitude Relations Ratios Quantities Similitude Relations Ratios 
Length Cl = lp/lm 100 Strain Cε = εp/εm = 1 1 
Density Cρ = ρp/ρm 1.5 Poisson’s ratio Cv = vp/vm = 1 1 
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4. Methodology 
A physical model experiment and numerical modeling were involved in studying 

the energy dissipation of in situ modification of a coal roadway under the roof bursting. 
Taking the real engineering conditions of the Kuangou coal mine in Xinjiang Province as 
an example, the numerical model and physical model were constructed based on the real 
lithological structure. Detailed information on the numerical model setup and physical 
model experiment are introduced in the following subsections. 

4.1. Physical Model Experiment 
4.1.1. Similarity Relationship 

The physical quantities of the physical model were determined according to the the-
ory of similarity in geometry, mechanics, and dynamics. The geometric length, density, 
and elastic modulus were selected as the fundamental dimensions and defined with the 
ratios of the prototype to model as 100:1, 1.5:1, and 150:1, respectively. As both the proto-
type and scaled model were in the same acceleration field, the ratio of acceleration is 1:1. 
In the light of a dimensional similitude principle, alternative physical quantities were cal-
culated as listed in Table 2, in which the symbol c represents the similarity ratio, and the 
subscripts p and m denotes the prototype and physical model, respectively. l, ρ, E, δ, σ, c, 
φ, ε, v, V, α and F represent the length, density, elastic modulus, displacement, stress, 
cohesion, friction angle, strain, Poisson’s ratio, velocity, acceleration, and force, respec-
tively. The physical and mechanical parameters of rocks are listed in Table 3, which were 
provided by the Kuangou coal mine and determined by laboratory tests. 

Table 2. Similarity proportions of the physical quantities for physical model. 

Quantities Similitude Relations Ratios Quantities Similitude Relations Ratios 
Length Cl = lp/lm 100 Strain Cε = εp/εm = 1 1 
Density Cρ = ρp/ρm 1.5 Poisson’s ratio Cv = vp/vm = 1 1 

Coarse
sandstone 531.5 5.9 −57.4

The B2 coal and floor have a weak burst tendency, while the roof has a strong burst
tendency, which are the inner factors for rock burst. Actually, one of the most serious
bursting events (about 9.7 × 106 J) recorded in 2018 occurred in the coarse sandstone that
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is 33.9 m above B2 coal seam, which caused a 20 cm hump at the tunnel floor and 30 cm
subsidence at the tunnel roof.

4. Methodology

A physical model experiment and numerical modeling were involved in studying
the energy dissipation of in situ modification of a coal roadway under the roof bursting.
Taking the real engineering conditions of the Kuangou coal mine in Xinjiang Province as
an example, the numerical model and physical model were constructed based on the real
lithological structure. Detailed information on the numerical model setup and physical
model experiment are introduced in the following subsections.

4.1. Physical Model Experiment
4.1.1. Similarity Relationship

The physical quantities of the physical model were determined according to the theory
of similarity in geometry, mechanics, and dynamics. The geometric length, density, and
elastic modulus were selected as the fundamental dimensions and defined with the ratios
of the prototype to model as 100:1, 1.5:1, and 150:1, respectively. As both the prototype and
scaled model were in the same acceleration field, the ratio of acceleration is 1:1. In the light
of a dimensional similitude principle, alternative physical quantities were calculated as
listed in Table 2, in which the symbol c represents the similarity ratio, and the subscripts
p and m denotes the prototype and physical model, respectively. l, ρ, E, δ, σ, c, ϕ, ε, v,
V, α and F represent the length, density, elastic modulus, displacement, stress, cohesion,
friction angle, strain, Poisson’s ratio, velocity, acceleration, and force, respectively. The
physical and mechanical parameters of rocks are listed in Table 3, which were provided by
the Kuangou coal mine and determined by laboratory tests.

Table 2. Similarity proportions of the physical quantities for physical model.

Quantities Similitude Relations Ratios Quantities Similitude Relations Ratios

Length Cl = lp/lm 100 Strain Cε = εp/εm = 1 1
Density Cρ = ρp/ρm 1.5 Poisson’s ratio Cv = vp/vm = 1 1

Elastic modulus CE = Ep/Em = CρCgCl 150 Velocity CV = Vp/Vm = CE
0.5Cρ

−0.5 10
Displacement Cδ = δp/δm = Cl 100 Time CT = Tp/Tm = CLCV

−1 10
Stress Cσ = σp/σm = CE 150 Acceleration Cα = αp/αm = Cg 1

Cohesion Cc = cp/cm = CE 150 Force CF = Fp/Fm = CρCgCl
3 1.5 × 106

Friction angle Cϕ = ϕp/ϕm = 1 1 Energy Ce = Fe/Fe = CFCl 1.5 × 108

Table 3. The physical and mechanical parameters of rocks.

Rock Type Density
(kg·m−3)

Young’s
Modulus

(MPa)

Poisson’s
Ratio (-)

Cohesion
(MPa)

Friction
Angle (o)

Tensile
Strength (MPa)

Coarse sandstone 2530 5990 0.18 6.57 39.2 5.21
Fine sandstone 2580 4090 0.2 5.42 37 4.2

Siltstone 2570 2250 0.2 4.43 37.4 3.28
Sandy mudstone 2510 3425 0.21 3.16 36 2.75

Coal 1335 1530 0.25 2.21 30.3 1.64
Reinforce region 1335 1193 0.22 2.84 34.3 2.46
Cracked region 1600 918 0.28 1.32 20 0.6

4.1.2. Physical Model Setup

Prior to the construction of the physical model, a series of orthogonal tests and
consolidation tests were carried out to determine the similar materials of rock layers and
modified regions of the coal roadway. Corresponding to the similarity relations of density
and Young’s modulus of the rock materials (see Table 3) and designed rock regions, as
shown in Table 4, the rock layers were simulated by mixtures of river sand, slacked lime,
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plaster, and water. The reinforced region was modeled by the same similar materials of
the coal seam with a higher proportion of 3 wt % plaster and less river sand to increase
its elastic modulus (about 30% increasement related to cracked region), and that of the
cracked region contains 14 wt % plastic particles to modeled cracks and decreases its elastic
modulus (approximately 60% degradation related to intact coal).

Table 4. Similar materials of rock layers and modified regions of a coal roadway.

Modeled
Rock

Consolidated
Thickness (cm)

Weight (g)

River Sand Slacked
Lime Plaster Water Kieselguhr Plastic

Particle

Siltstone 11 51.98 0 5.78 2.89 0 0
Fine sandstone 24 112 4.67 14 6.3 0 0

Coal 12 56.7 1.09 6.3 3.15 0 0
Sandy mudstone 4 18.9 2.68 2.1 1.05 0 0
Coarse sandstone 29 133.22 12.72 19 7.61 0 0
Reinforced region - 42.5 2.64 32.6 28 3 0

Cracked region - 56.7 1.09 8.3 6.15 0 14

The model was compacted layer-by-layer (see Figure 2a). When it came to the model
of the roadway, for the regular one, a polyvinyl chloride (PVC) tube with an outer diameter
of about 40 mm was inserted into the model layers, which was pulled out to simulate the
regular roadway. For the modified roadway, as shown in Figure 2b, the model of reinforced
and cracked regions was pre-formed in a cylinder made by a piece of aluminum sheet; after
the model of the modified region was installed in the corresponding layer (see Figure 2c)
and the next upper layer was compacted, the cylinder was taken out. After all the model
layers were finished, the overburden wight of ground layers (about 300 m) was modeled by
iron blocks (about 0.28 m in height and 21.5 kPa; see Figure 2d). During the construction
of the physical model, four small dimensional pressure sensors were placed in the model
at the points (N1, N2, M1, M2) shown in Figure 2e, which were arranged along the radial
direction of the cylinder. M1 and M2 were located at the outer surface of the reinforced and
cracked regions, while N1 and N2 were the same height as that of M1 and M2. The applied
sensors are self-developed by the Institute of Engineering Mechanics, CEA, the minimum
diameter of the sensor is 10.5 mm, the thickness is 5 mm, the natural response frequency is
100–300 kHz, the range of stress measurement is 0–1.0 MPa, and the applicable temperature
is −40 to + 125 ◦C. It can resist strong and weak electromagnetic, high centrifugal force,
strong impact, and interference.

Finally, the physical model was constructed in a two-dimensional format with a height
of 1.15 m, a width of 2 m, and a thickness of 0.2 m. As plotted in Figure 2f, the coal roadways
were built in the scaled B2 coal seam, which is 0.5 m away from the model bottom and
sides, and 0.65 m away from the model top. According to the lithological structure in
Table 1, based on the B2 coal seam, the upward layers to the coarse sandstone (65.6 m from
the B2 coal seam) and the downward layers to another coarse sandstone (−57.4 m from
the B2 coal seam) were contained in the physical model. As a whole, corresponding to the
thickness of each rock layer and the similarity ratios in Tables 1 and 2, the scaled model
contains 15 layers and two scaled coal roadways. The inner diameters of the coal roadways
in Figure 2f are about 40 mm, and the left scaled roadway is a regular one, while the right
roadway is a modified one with a reinforced region (80 mm in diameter) and a cracked
region (160 mm in diameter). The center of the roadway is 0.65 m from the top of the model
and 0.5 m from the bottom and side of the model. The distance between the centers of the
two roadways is 1 m.
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4.1.3. Impact Loading

Two types of load methods were applied to the physical model, as displayed in
Figure 2g,h: namely, Schmidt hammer and falling weight impact. The Schmidt hammer
has a standard impact energy output of about 2.207 J (about 3.3 × 108 J in the prototype),
the falling weight is about 55 N, and the falling height is around 0.2 m; thus, the energy of
the falling weight impact is about 11 J (about 16.5 × 108 J).

4.2. Numerical Model Setup
4.2.1. Software Introduction

Abaqus is a finite element software for engineering simulation, which can be applied
for linear and nonlinear analysis. Especially, the explicit analysis module in abaqus is
suitable for analyzing transient dynamic events such as impact and explosion. This paper
mainly investigates the wave dissipation effect and the law of energy dissipation at the
modified roadway under impact dynamic load, so abaqus can be used to simulate this
process well.

4.2.2. Model Characters

Corresponding to the lithological structure of the Kuangou coal mine as listed in
Table 1 and the physical model, a numerical model was built as displayed in Figure 3,
which is a full-scale model with a length of 200 m, a width of 2 m, and a height of 130 m. In
light of the simulated relations of length of the prototype to the model, the inner diameter
of the coal roadway is 4 m, the outer diameter of the reinforced region is 8 m, and that
of the cracked region is 16 m. The rock layers and locations of the coal roadways are the
same as that of the physical model. Structured grid division is adopted globally, with a
total of 200,000 units. The unit type is hexahedron. The grid in some areas of the roadway
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and surrounding rock is relatively dense. By adjusting the parameters of the reinforcement
zone and crushing zone, the effect of reinforcement and crushing can be achieved. The
Mohr–Coulomb model was used for calculation.
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4.2.3. Parameters Assignment

The parameters in Table 3 were utilized in the numerical modeling. The global
damping was applied in the numerical model. According to the method of determining the
parameters of Rayleigh damping coefficients by frequency analysis, the Rayleigh damping
coefficients of the studied model were calculated as α = 1.41912, β = 0.0017.

4.2.4. Boundary Conditions

In the numerical modeling of a dynamic model, the methods of using infinite boundary
elements and artificial boundaries are commonly applied to solve the issues of bound-
ary dynamic refection [42,43]. In our case, the method of artificial boundary proposed
by Su et al. [44] was applied to avoid the scattering waves reflected from the truncated
geological bodies. Specifically, in the static computation, the left and right boundaries
of the numerical model were fixed in the displacement along the X-direction, the front
and back boundaries were fixed in the displacement of the Y-direction, and the bottom
boundary was fixed in the Z-direction. The top surface applied an additional pressure
of 6.9 MPa (corresponding to the 46.2 kPa in the physical model). Alternatively, elastic–
viscosity elements were set at the nodes of all the outer surfaces with the coefficients [45] of
spring modulus kb = G/2rb and viscous damper cb = ρcs, in which G and ρ are the shear
modulus and mass density of the modeled rock layers, respectively, rb is the radius of the
truncated formation away from the impact source, and cs is the propagation velocity of the
impact wave.

4.2.5. Simulated Impact Loads

In order to verify the physical model, the impact loads in the physical model were
simulated in the numerical model. According to the parameters of a standard N-type
Schmidt hammer, the peak velocity of the piston rode is about 3.366 m/s, and the contact
velocity is about 1.98 m/s in the case of weight falling load. Corresponding to the similitude
relation of velocity, the amplitude of the Schmidt hammer wave velocities and weight
falling load in the prototype are 33.66 m/s and 19.8 m/s, respectively. In the numerical
modeling, the simulated impact loads of the Schmidt hammer and weight falling were
added at a mesh node and a surface (equivalent area of the iron block).
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According to the statistic results of micro seismic signals by He et al. [24], the majority
of frequency induced by a large energy event of rock burst is around 5 Hz.

5. Results and Analysis
5.1. Comparison of the Results of Numerical Model and Physical Model

The results of numerical modeling (pink curves) and amplified data (green scatters)
of the physical experiment under the impact load of a Schmidt hammer are plotted in
Figure 4. The data of the physical experiment were enlarged by 150 times according to
the similarity ratio of stress as listed in Table 2. When the impact load came from the top
surface above the normal coal roadway, please see Figure 4a, the point N2 had the largest
vertical dynamic stress, the second one the that of point N1, and the peak values of M1
and M2 were close to each other. When the impact load was added to the top surface of
the modified roadway, as displayed in Figure 4b, the maximum vertical dynamic stress
occurred at M2, while that of point M1 placed second.

As a whole, the numerical modeling results fit well with the physical experiment in
terms of the peak value of the first dynamic stress and the range of the progressive stress
value, which verified that the numerical modeling reproduced well the dynamic response
of the confining rock of both the normal and modified roadway.

5.2. Static Stress Redistribution

Stress is one of the key factors that induces rock burst, large deformation, or even
broken rock in the confining rock of a coal roadway. As displayed in Figure 5a, the majority
of the concentrated stress near the roadway is significantly transferred out of the cracked
region in the modified coal roadway, and the peak value of stress of a modified roadway is
about 1 MPa smaller than that of a normal roadway. For a normal roadway, the maximum
principal stress is concentrated in the rock nearby tunnel side at about 1 m in depth (see
Figure 5b), while for a modified coal roadway, the areas of stress concentration appeared
out of the cracked region (see Figure 5c), which is larger than that of a normal roadway.
This means the degree of elastic energy concentration is reduced by the modification of
confining rock of a roadway; as a result, the potential of rock burst can be eliminated to
some extent by the decreased peak stress value and enlarged bearing areas of elastic energy.

In addition, Figure 5b,c suggest that the tensile stress (positive value) in the vault and
inverted arch of a modified coal roadway are far smaller than that of a normal roadway,
and the maximum tensile stress around the modified roadway is located near the bottom
of the cracked region. This means the potential of bending or breaks in the vault and the
inverted arch of a modified roadway would be eliminated significantly, thereby protecting
the integrity of the confining rock.

5.3. Dynamic Response

In order to analyze the effects of a modified coal roadway on dissipating the dynamic
energy from the impact load to a coal roadway and stabilizing the confining rock of a coal
roadway, comparative analysis on a normal coal roadway and a modified coal roadway, in
terms of the dynamic stress, damage evolution, and energy dissipation were conducted as
the following subjections.

5.3.1. Dynamic Stress

The curves of calculated and measured dynamic stress versus time around a normal
coal roadway and a modified coal road are plotted in Figure 6a,b, respectively. In addition,
the contour pictures of dynamic stress and total stress at various times (corresponding to
time points A and B in the curves) are also displayed in Figure 6 as well. The calculated
curves of dynamic stress at point N1 and M1 fit well the data (which were amplified by
150 times according to the similarity ratio) of physical experiment, which suggest that the
numerical modeling is capable of reproducing the real impacting process.
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Figure 6. Dynamic stress and contour of stress distribution of (a) a normal coal roadway and (b) a
modified coal roadway under the impact load of a Schmidt hammer.

Obviously, when dynamic waves propagated to the normal coal roadway, the point
of N3 (side wall) had the largest compressive dynamic stress, about −2.2 MPa at around
0.18 s. While in the case of a modified roadway, the largest compressive stress aroused
at the side wall (point M3) was approximately −1.4 MPa, which was close to the data of
point M1. Correspondingly, as the contour pictures of dynamic stress in Figure 6 show, the
side walls of a normal coal roadway were subjected to the largest compressive principal
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stress at about 0.18 s, while for the confining rock of a modified rock, small areas of the
side walls had the compressive principal stress, while the majority of the compressive
principal dynamic stress occurred at the intact rock out of the cracked region and small
areas at the vault and invert arch in the cracked region. As a whole, comparing the total
stress distribution around a normal roadway and a modified coal roadway (see the contour
pictures in Figure 6) shows that the impact load from the roof layers induces a large area
of the side wall of a normal coal roadway, which would damage the integrity of the
roadway, while cracked and reinforced regions in the modified coal road help transfer
the static-dynamic stress out of the cracked region, thereby protecting the integrity of the
coal roadway.

5.3.2. Damage Evolution

The evolution of plastic damage that occurred around the normal and modified coal
roadway is displayed in Figures 7 and 8, respectively.
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Figure 7. Evolution of plastic damage of the normal coal roadway under the impact load of (a,b)
the Schmidt hammer at 0 s and 2 s and the impact load of (c,d) the weight fall at 0.13 s and
2 s, respectively.

For a normal coal roadway, as shown in Figure 7a,b, a smaller impact load (Schmidt
hammer) enlarged the plastic damage area slightly at the side wall, while the larger impact
load (weight fall) led to cracking through the roof and floor (see Figure 7c,d); serious cracks
through the whole coal layer formed a high potential caving zone tendency.

For the modified coal roadway, when a smaller impact load was loaded (please see
Figure 8a,b), small areas above the roadway in the cracked region were damaged. However,
as shown in Figure 8c,d, the majority of the crack region, some area of the intact rock above
the roadway, and a small part of the reinforced region at the side wall experienced plastic
damage. A comparison between Figures 7b and 8b and between Figures 7d and 8d indicate
that the cracked region in the modified coal roadway has the ability of dissipating dynamic
energy by releasing the elastic energy in the cracked region or even in the outer intact rock.

It is notable that the reinforced region (see Figure 8b,d) was protected well despite
the small damage that occurred at the side wall during the large impact loading process,
which means that the modification method in this paper is able to keep the integrity of the
nearby confining rock of the coal roadway, thereby protecting the safety of lives and goods
in the roadway.
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5.3.3. Energy Dissipation

The velocity curves of the points at the outer surfaces of the reinforced and cracked
regions (M1 and M2, respectively) and those of the points at N1 and N2 (the same height as
that of M1 and M2) above the normal coal roadway are illustrated in Figure 9. In order to
investigate the kinetic energy dissipation along the impact source to the coal roadway, here,
we analyze the negative peak values of the curves in Figure 9; the negative value means
the direction of the velocity is along the propagation direction of the dynamic stress.
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Figure 9. Calculated velocity curves above the coal roadway under (a) Schmidt hammer loading and (b) weight fall loading.

In the case of Schmidt hammer loading, as shown in Figure 9a and Table 5, the
maximum velocity at point N2 above the normal coal roadway is about 1.5 m/s, while
when the dynamic wave arrived at point N1, the velocity was reduced to about 1.2 m/s.
This was caused by the dynamic scattering near a hole. Interestingly, the peak values of the
velocities at the points of M1 and M2 were close to each other; such a phenomenon was
mainly caused by the cracked regions which led to dynamic scattering before point M2 on
one hand, and the reinforced region let the confining rock of the roadway move unitedly.
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As a whole, the maximum velocity of the rock above the modified coal roadway was
approximately 50% to 62.5% smaller than that above the normal coal roadway. The velocity
of the above points of observation under weight fall loading, as plotted in Figure 9b,
showed the similar tendency to that under Schmidt hammer loading. The difference is the
velocity of point N1, which was close to that of point N2; this phenomenon is caused by
the large cracking damage as plotted in Figure 7d, which led to the united movement in
the rock area that contained points N1 and N2. Despite this difference, Figure 9b tells us
that the modified coal roadway is still capable of reducing the velocity of rocks nearby the
roadway, exhibiting the maximum velocity at points M1 and M2, which is about 64% of
that at points N1 and N2.

Table 5. The velocity above the coal roadway under Schmidt hammer loading and weight fall loading.

Velocity (m/s) N1 N2 M1 M2

Schmidt hammer loading 1.2 1.5 0.75 0.76
Weight fall loading 5 5.4 3.44 3.45

The output of elastic strain energy density along the propagation of dynamic load
from the top surface to the normal and modified roadway are plotted in Figure 10a,b,
respectively.
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Figure 10 and Table 6 suggest that the kinetic energy density decreased along the
propagation path of the impact load, especially through the interface of the sandstone and
coal layers due to wave scattering. Obviously, in the case of modified coal roadway, the
decrease in energy density was more dramatic than that above a normal coal roadway.
Specifically, under the impact load of a Schmidt hammer, please see Figure 10a, the energy
density was about 4.2 kJ/m3 in the sandstone, which was reduced to about 3.1 kJ/m3 at
the inner top surface of the normal coal roadway. For a modified coal roadway, the energy
density was decreased to about 2 kJ/m3 in the cracked region initially and increased slightly
to about 2.3 kJ/m3 in the reinforced region. Despite this increase, the energy density at the
vault of a modified coal roadway was about 74% that of a normal coal roadway. As shown
in Figure 10b, the evolution of energy density under the impact load of a falling weight
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was similar to that in Figure 10a, and the percentage of the energy density at the vault of a
modified coal roadway compared to that of a normal coal roadway is about 71%.

Table 6. Energy density along the propagation path of impact load by a Schmidt hammer and a
falling weight above the normal roadway and modified roadway.

Energy Density
(KJ/m3)

Normal Roadway Modified Roadway

Sandstone Top Surface Crack Region Reinforced
Region

Schmidt hammer
loading 4.2 3.1 2 2.3

Weight fall loading 40 28.8 17.5 20

As a whole, Figures 9 and 10 convince us that the modified coal roadway reduces the
dynamic energy of the impact load propagated in the confining rock significantly.

6. Discussion

The above analysis on the stress redistribution, dynamic response of confining rock,
and energy dissipation suggest that the modification of a coal roadway by cracked and
reinforced regions is beneficial for eliminating stress concentration nearby the roadway,
dissipating kinetic energy and improving the integrity of the confining rock. Actually, this
kind of structure for the kinetic energy dissipation has been applied in subway tunnels, as
announced by the literature of [46–48], where buffer layers and concrete linings were set as
the damping and reinforcement components, respectively.

Both the study of this paper and a previous investigation on subway tunnels indicate
that the modification of the confining rock of a coal roadway is feasible to protect the
roadway against the impact load from rock roofs. However, this paper only proposed
a primary idea, and the numerical simulation and similarity model experiment mainly
illustrated this effect of the modified roadway from a qualitative analysis angle, the specific
parameters about the crack region and reinforced region, grouting materials, etc., and the
economic costs of such a modification whether it is cheaper than a common supporting
roadway or not, which need to be studied further.

7. Conclusions

The present paper carried out a set of physical model experiments and numerical mod-
eling to investigate the capability of the confining rock modification, namely constructing a
cracked region and a reinforced one, for a coal roadway to protect itself against rock burst
from roof stratum. The results of numerical modeling match well the measured data in the
physical modeling, which suggest that the numerical model is able to reproduce the real
condition of the impacting processes of the coal roadway. Through comparative analysis
between a normal and a modified coal roadway, in terms of the static stress redistribution
after roadway construction and the dynamic response of the confining rock under two
types of impact loads, the following conclusions can be drawn:

1. After the implementation of the confining rock modification of a coal roadway, the
stress concentration at the side wall of the roadway will be transferred out of the
cracked region and the peak rock pressure will be reduced, thereby eliminating
rock burst at the side wall of the coal roadway and protecting the integrality of the
confining rock of the coal roadway as well.

2. Under the impact load from the roof stratum, the maximum dynamic stress occurred
mainly in the intact rock out of the cracked region, and the maximum static–dynamic
stress is still distributed out of the cracked region. In addition, the plastic damage in
the cracked region under impact load helps absorb the dynamic energy and protect
the integrality of the confining rock of a coal roadway.



Minerals 2021, 11, 1331 16 of 18

3. The modification of a coal roadway in confining rock decreases the velocity and
dynamic energy density significantly at the vault of a coal roadway; therefore, it is
capable of reducing the movement of the cracked blocks from the surface of a coal
roadway and protecting the staffs or goods in the coal roadway.
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