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Abstract: This review presents studies on iron meteorites (Campo del Cielo fall and an unregistered
iron meteorite), an unregistered stony meteorite from Northwest Africa, and 13 tektites from the
American, European, and Australasian strewn fields. The main experimental technique used in the
studies was Mössbauer spectroscopy, both in transmission and backscattering geometries. For the
latter, a MIMOS II spectrometer was used. Additionally, optical and scanning electron microscopies
and X-ray diffraction were used. In the studied iron meteorites, kamacite is found as the main
mineral. Campo del Cielo meteorite exhibits Widmanstätten patterns and schreibersite inclusions.
The unregistered iron meteorite has Neumann lines and schreibersite inclusions. We have assigned
Campo del Cielo as an octahedrite and the unregistered iron meteorite as a hexahedrite. The
unregistered stony meteorite is composed mainly of iron-free silicates; at 4.2 K, the spectrum indicates
maghemite and 1% troilite. The Cambodian tektite appeared individualized from other australasites,
unlike the moldavite, which tends to cluster with them. Our analyses do not allow dismissing doubts
on the provenance of tibetanites. The Fe3+/Fe2+ ratio was found to be higher for Muong Nong-type
tektites than for splash-form tektites, as expected from their morphology and solidification from melt
at lower temperature.

Keywords: meteorites; tektites; Mössbauer spectroscopy

1. Introduction

Meteorites are bodies originating from outer space that survive their passage through
the atmosphere. Their study is important: some of them, namely undifferentiated ones,
contain more primitive materials for study of the Solar System and, being on Earth, they
can be studied with a variety of techniques, from simple ones to more sophisticated ones.
Roughly, meteorites can be divided into three large categories in terms of their structure
and composition. Stony meteorites are rocks mainly composed of silicates. Stony-iron
meteorites contain approximately equal amounts of metallic and stony materials. Iron
meteorites are composed mainly of iron–nickel alloys. Structurally, iron meteorites can
be divided in three groups: octahedrites, hexahedrites, and ataxites. Octahedrites are the
only ones displaying Widmanstätten patterns [1]. They have between 6 and 16 wt.% Ni.
Ataxites are a very rare class of iron meteorites. They do not exhibit a Widmanstätten
structure and have 16 wt.% Ni or more. Hexahedrites have a Ni content below 6 wt.%.

Stony meteorites are the most common type of collected meteorites. Their name
recalls the fact that they are mainly composed of silicate minerals (pyroxenes, olivines, and
plagioclases) but often contain minor amounts of minerals, such as kamacite, α-Fe(Ni,Co),
taenite, γ-Fe(Ni,Co), and other minor metallic minerals, such as Fe and/or Ni sulfides,
oxides, and hydroxides. Stony meteorites can be subdivided in two sub-classes: chondrites,
the most frequent, which contain millimeter-sized silicate (mainly olivine and pyroxene)
spherules called chondrules, and achondrites, which lack chondrules. Being visually
similar to basic igneous rocks, achondrites may often not be identified as meteorites; this
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makes it difficult to evaluate their true proportion in the stony meteorites class, especially
on collection sites with outcropping basic igneous rocks; conversely, meteorites collected
on Antarctic ice can generally be well identified [2].

On the other hand, there are interesting natural glasses all related to meteorites
and their impacts. Glasses are sometimes found in rocky meteorites as inclusions in
minerals, mesostasis, pockets, or veins. These glasses have been identified either as
residual liquids from which the associated minerals crystallized, as in terrestrial volcanism
or, more recently, as an independent “primordial” phase [3]. At the site of a meteorite
impact the so-called impactites may form. Impactites show characteristic breccia textures
and very specific structures, such as shatter cones, and mineralogies, namely high-pressure
and/or temperature silica polymorphs (tridimite, cristobalite, coesite, stishovite), and also
glass. The volume and composition of impact glasses is dependent on the compositions
of the impacted ground and the impactor meteorite, and on the dynamic characteristics
of the impact. Impactites have been tentatively identified on Mars [4]. The volume
of the produced impact melt can be orders of magnitude larger than the volume of the
impactor meteorite itself [5]; part of this melt quenches in situ forming the above-mentioned
impact glass and the remaining is ejected away, sometimes to large distances (thousands of
kilometers), rapidly cooling while in flight.

Tektites are the natural glasses originated from fused material spilt during a meteorite
impact [6]. Tektites are spread over several vast strewn fields on the Earth’s surface. Four
strewn fields have been well-established: moldavites in Europe, in the Czech Republic
(the only ones that are light-green and translucent); bediasites and georgiaites in North
America (Texas and Georgia, respectively); ivorites in Ivory Coast; indochinites, rizalites
(from the Philippines), and australites, in the largest strewn field, which ranges from South
Asia to the Antarctic Ocean [7]. Enclosed in the Australasian tektites strewn field lies a field
of impact glasses, about 400 km2 in area, on the Tasmanian West Coast, where the so-called
Darwin glasses are found [8]. Thought to have been originated at the impact that produced
Darwin crater, about 26 km south of Queenstown, Darwin glasses are macroscopically
similar to moldavites—many samples are even translucent light-green, though not the
one in this study, which is black—and were considered chemically indistinguishable from
them [9].

Increasing interest on tektites has prompted more findings that are not easily attributed
to the “classic” four strewn fields. Dunlap [10] published the first Mössbauer analyses of a
Tibetan tektite, which are consistent with those of indochinites from Cambodia. Devouard
et al. [11] identify a potentially new tektite (atacamaite) strewn field around the Atacama
Desert, Chile, although later work [12] indicates this may be an impact-glass strewn field.
Povenmire and Cornec [13] postulate another new strewn field in and around Belize.

Apart from the microtektites found in deep-sea sediments, tektites on land can be
subdivided into three groups according to their geometry: splash-form tektites, aerodynam-
ically ablated tektites, and Muong Nong-type tektites (with irregular shapes and a layered
structure). Some authors suggested that Muong Nong-type tektites probably have not
travelled far from their location of origin and may, therefore, be the closest to the original
impact crater [14,15].

Mössbauer spectroscopy has its importance in the study of meteorites as it makes it
possible to obtain information about iron-containing minerals. In the case of tektites, the
knowledge of Fe3+/ Fe2+ ratios can provide information about their formation. The melting
of crystalline rocks by a meteorite impact leads to a very unbalanced melting of silicates.
The redox reactions that lead to equilibrium are mainly a function of temperature and
fugacity of oxygen imposed on the melt but are also a function of the chemical composition
of the melt itself. Mössbauer spectroscopy is one of the most powerful methods for
determination of the iron atoms valence/spin state and coordination [16,17]. Amongst
the advantages of Mössbauer spectroscopy when compared to other techniques are: (a)
the small amount of sample required, (b) both ferric and ferrous ions are determined
simultaneously, with no need for a separate analysis of the total iron, and (c) the Fe3+/Fe2+
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ratio of a glass phase is determined independently of crystals that may also be present in
the sample.

Tektites have a low Fe3+/Fe2+ ratio [18] when compared with values of other silicate
glasses, suggesting that they solidify in a low-oxygen environment. Muong Nong tektites
have a higher Fe3+/Fe2+ ratio than splash-form tektites, this being consistent with their
morphology and the common idea that they solidify from melt at lower temperatures [19].

The oxygen partial pressure is an important factor in determining the Fe3+/Fe2+ ratio,
but chemical composition, maximum reached temperature, and heating/cooling histories
are also contributing factors.

In this review we present studies on iron and stony meteorites as well as on tektites.
We report studies on two iron meteorites, one of them belonging to the shower find of

Campo del Cielo, and the other from an unknown find; this latter unregistered meteorite
was named by us as “Find 1”. In the Campo del Cielo find, a region belonging to the
province of Chaco and Santiago del Estero, Argentina, there are samples characterized as
octahedrites and others as hexahedrites [20]. This heterogeneity in the shower find was
first proposed by Villar [21], and is the reason of our study on that specific meteorite. The
unregistered stony meteorite, which we named “NWA 1990 stony”(1990 being a tentative
lowest possible find date), was collected in Northwest Africa in the 1990s in the form of
many small (centimetric) pieces, but it is not yet classified. We previously analyzed NWA
1990 stony in [22].

In earlier studies, we presented results on tektites from different strewn fields [23,24].
In the present study we refer to more tektites, as well as to the use of other experimental
analytical methods in their study.

2. Materials and Methods
2.1. Samples

The studied iron meteorites are shown in Figure 1. They presented a black and
irregular shape with regmaglypts. Not much oxidation was visible in the case of the
unknown meteorite, so accordingly to chemical weathering classification [25], a W0 or W1
grade could be assigned. Their masses were about 26 g and 42 g, and their lengths were
about 3.8 cm and 5.5 cm long, for the unknown iron meteorite and for the Campo del Cielo
meteorite, respectively.

Figure 1. The studied iron meteorites: (a) Find 1 and (b) Campo del Cielo.

The NWA 1990 stony meteorite fragments have a dark crust but, after crushing,
the powders reveal a brown-reddish color. Figure 2 shows typical images. After micro-
scopic investigations, chondrules appear to be absent, so it was grouped in achondrites
stony meteorites.
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Figure 2. Typical NWA 1990 stony pieces: (a) a collected fragment, (b) crushed fragment.

Several tektites from different strewn fields were studied: moldavites, indochinites
(including Muong Nong type), bediasites, chinites (including Guangdong tektites), rizalites,
australites and other Australasian tektites from different locals. A Darwin glass from
Tasmania was also studied. The indochinites studied were from Khon Kaen (10 samples)
and Norm, Khorat Plateau (Thailand, 3 samples), the bediasites from Texas (4 samples),
chinites from Leigong Mo (5 samples), rizalites from the Philippines (2 samples), an
australite from Lake Yindalgooda, Australia, a moldavite from Chum Sud, Bohemia, and
other Australasian samples from Laos, Vietnam, Tibet and Cambodia. Among the tektites
studied there were three Muong Nong-type, two from Laos and one from China.

Figures 3–5 show examples of the samples.

Figure 3. Examples of studied tektites.
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Figure 4. A Muong Nong tektite from Laos.

Figure 5. The studied Darwin glass sample from Tasmania.

Provenance of the samples:

• Campo del Cielo and Find 1 unregistered iron meteorites: acquired in a mineral show.
• NWA 1990 stony meteorite: kindly provided by Mr. Miguel Gonçalves, NEO Skytale,

Castelo Branco, Portugal.
• Bediasites, rizalites, australite, and moldavite: kindly provided by Mr. Aubrey Why-

mark, Senior Wellsite Geologist and Geosteering Specialist, Qatar Petroleum.
• Thailandites: collected by one of us (EIA) in the field in NE Thailand, Khon Kaen

district and Khorat Plateau.
• Muong Nong (Laos): acquired from Mr. Sivadol Rodrubboon, in NE Thailand, Khon

Kaen district, near the Laotian border.
• Muong Nong (China): acquired from Mr. Gao Fu, in Hong Kong.
• Tibetanite: acquired from Mr. Mike Petrov, Canada, who claims he got it from the

original collector.
• Vietnamite: acquired from Mr. Long Nguyen, Yen Bai, Vietnam.
• Cambodiaite: acquired from Mr. James Fowler, Siem Reap, Cambodia.
• The analyses performed on the samples were:
• Iron meteorites: optical, microprobe and scanning electron microscopies, X-ray diffrac-

tion and Mössbauer spectroscopy in the two geometries described in Section 2.4.
• Stony meteorite: optical, microprobe and scanning electron microscopies, X-ray diffrac-

tion and Mössbauer spectroscopy in transmission geometry.
• Tektites: optical microscopy, X-ray fluorescence, X-ray diffraction and Mössbauer

spectroscopy in both the geometries described in Section 2.4.
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2.2. Optical and Microprobe/Scanning Electron Microscopies

Optical microscopy was performed with reflected visible light using a Nikon Optiphot,
Tokyo, Japan, and photos were taken varying the light source, position of the sample, and
magnification. Microprobe analysis was performed in a JEOL JXA8200 microprobe, Tokyo,
Japan, with an electron acceleration voltage of 15 kV. Scanning electron microscope was
used to obtain images with different amplifications in a TESCAN VEGA3, Brno, Czech
Republic with an electron acceleration voltage of 20 kV and using backscattered electrons
and EDX detectors.

Prior to the observations the samples were cut into slices and polished.

2.3. X-ray Diffraction

X-ray diffraction (XRD) was performed at room temperature (RT) using a Bruker D8
Advance (Karlsruhe, Germany) powder diffractometer with Cu Kα radiation (λ = 0.154184 nm),
in θ–2θ Bragg-Brentano geometry. The acquisition was usually in the 2θ range of 10–90◦

with a step of 0.03◦ and an acquisition time of 10 s per step. The diffractogram was
empirically least-squares fitted using a reference data base.

2.4. X-ray Fluorescence

X-ray fluorescence (XRF) was used in two methods. One of them was done in pressed
pellets (approx. 20 mg sample diluted in 2 g boronic acid) analyzed in a PANalytical
aXios 4 kW instrument (Almelo, The Netherlands) applying standardless methods as
implemented in the Super Q/OMNIAN V 5.0D program package (PANalytical B.V.). The
second method was applied in a flat surface of the glasses using a Hitachi SEA6000VX
(Tokyo, Japan) benchtop high-sensitivity analyzer equipped with a tungsten target. Four
conditions were used in order to be able to detect the different elements. The X-ray tube
operated at potentials of 15 and 50 kV, currents of 500 and 1000 mA and a 3 mm wide
primary-beam collimator. The acquisition time was 180 s and different filters were used.
The SEA6000 VX measurement geometry was fixed, with its energy-dispersive Vortex Si
semiconductor detector positioned at a scattering angle of 135◦ and a distance of 19 mm
from the specimen.

2.5. 57Fe Mössbauer Spectroscopy
57Fe Mössbauer spectra were recorded at RT in two ways: backscattering geometry

using a MIMOS II spectrometer (Mainz, Germany) [26] (Figure 6) and transmission geome-
try using a WISSEL spectrometer (Stanberg, Germany). A 57Co(Rh) source was used with
an activity of about 80 mCi and 5 mCi, respectively. No sample preparation was needed in
the case of backscattering geometry. The raw samples were measured, except the interior
of meteorites, which were cut and then the cut face measured. Radiation penetration is
about 400–500 µm, so that the surface of the samples, that oxidizes quickly, is the minor
fraction to be probed. The surface volume/total volume ratio probed is about 2 × 10−4%
in our experimental conditions [23,24]. The problem still exists in non-flat surfaces. Nat-
ural surfaces, tektites, in particular, have plenty of holes that may contain soil materials,
adding Fe3+ to MS spectra. The measured samples were cleaned to remove all materials
not belonging to the studied items. In the case of iron meteorites an additional advan-
tage of using backscattering geometry exists; the avoidance of solid-state transformation,
namely of γ-phase to α-phase induced by filing the metal [27]. In the case of transmission
geometry, the preparation method was different for each type of sample; pieces of iron
meteorites were filed to powder (60 µm diameter) using a diamond file; the stony meteorite
was simply crushed down; the tektites were crushed immersed in silicon oil in order to
prevent oxidation.
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Figure 6. MIMOS II spectrometer measuring an iron meteorite placed on top of the window.

The Miniaturized Mössbauer Spectrometer (MIMOS II) performs the non-destructive
measuring of samples. Due to its miniaturization and backscattering geometry it is light-
weight, portable, and therefore used in a wide range of Mössbauer applications, espe-
cially where no sample preparation is possible. It works over a wide temperature range
(−120 ◦C to +40 ◦C) and has low power consumption. It also measures simultaneously
14.4 keV gamma-rays and 6.4 keV Fe-X-rays. MIMOS II was designed for Mars expeditions
but has been used in several terrestrial applications as well, e.g., industrial applications,
environment and soil analysis, and archaeology studies.

All meteorites’ spectra were analyzed using a set of Lorentzian lines determined by
least squares method while, in the case of tektites, the fitting procedure of the obtained spec-
tra was carried out using a set of Voigt lines and parameters determined by least squares.
This method has already been proved to be adequate to adjust hyperfine parameters of
glasses, in particular tektites [23,24,28,29]. The use of Voigt lines instead of Lorentzian lines
in the case of tektites was chosen because of the high degree of their amorphization. The
isomer shifts are given relative to α-Fe at RT.

3. Results
3.1. Iron Meteorites

Microstructure analysis on polished slices shows that a Widmanstätten pattern and
schreibersite microcrystals ((Fe, Ni)3P) are evident in the Campo del Cielo fragment. The
Find 1 iron meteorite does not exhibit Widmanstätten patterns but shows Neumann bands
along with schreibersite microcrystals [30–32]. Microstructures of each meteorite are shown
in Figure 7.
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Figure 7. Micrographs of (a) unregistered iron meteorite showing Neumann bands (N), and (b) Campo del Cielo mete-
orite demonstrating Widmanstätten patterns (W) and Schreibersite crystals (S). (a) Electron microprobe micrograph and
(b) optical micrograph.

Figures 8 and 9 show microprobe analysis images of polished sections of the iron me-
teorites’ fragments. The inclusions observed have the shape of schreibersite microcrystals
and the composition (Table 1), with high phosphorous content, is in agreement with the
presence of this mineral. The matrix is composed mainly of iron with small content of
nickel being consistent with kamacite. In Table 1 the elementary composition of the main
elements is shown for each meteorite.

Figure 8. Micrograph (a) and elemental mapping obtained by microprobe analysis for Ni (b), P (c)
and Fe (d) for the Find 1 iron meteorite [31].
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Figure 9. Micrograph (a) and elemental mapping obtained by microprobe analysis for Ni (b), P (c)
and Fe (d) for the Campo del Cielo meteorite [31].

Table 1. Elemental composition of the meteorites determined by microprobe analysis [31].

Meteorite Mineral Fe (wt.%) Ni (wt.%) P (wt.%) Other

Find 1
Kamacite (matrix) 93.4 ± 0.4 5.71 ± 0.02 0.090 ± 0.007 Na, K, Cr, Co

Schreibersite 52.5 ± 0.8 34.6 ± 0.50 11.93 ± 0.08 Na, K, Al, Mg

Campo del Cielo Kamacite (matrix) 95.4 ± 0.7 6.20 ± 0.02 0.062 ± 0.01 Na, Co, Al, Cr
Schreibersite 50.8 ± 0.8 35.3 ± 0.04 12.42 ± 0.07 Mn, Al, Ti

Figure 10 shows EDX maps for the Find 1 iron meteorite, taken with a scanning
electron microscope. A schreibersite inclusion is observed in a fissure starting from the
border of the meteorite.

X-ray diffraction performed at room temperature evidences only kamacite (bcc α-
Fe(Ni, Co)) in the interior of both meteorites, but the diffraction patterns of their crusts
reveal maghemite and goethite as weathering oxides, in the case of the Find 1 iron meteorite
and in the case of Campo del Cielo meteorite magnetite as well, of which the surface was
cleaned from terrestrial weathering.

For X-ray diffraction of the interior of meteorites, the same slices used for microscopy
were used while, for the crust, the powder resulting from filing the crust was used.

Mössbauer spectra confirms the existence of kamacite in the interior of meteorites, this
being the only phase determined in the Find 1 iron meteorite (Figure 11). The hyperfine
parameters are similar to those obtained for iron meteorites studied by dos Santos et al. [33],
such as Toluca or Itutinga, which also consist only of kamacite. It is known [34] that different
Fe(Ni, Co) phases in a meteorite can be found related to Ni content: α-Fe(Ni, Co) with
Ni ≤ 7 wt.%, α2-Fe(Ni, Co) with 15–25 wt.% of Ni and γ-Fe(Ni, Co) with 25–50 wt.% of Ni.



Minerals 2021, 11, 628 10 of 26

Figure 10. SEM micrograph (a) and associated X-ray maps (b–d) showing the distribution Fe, Ni and
P in red, green and yellow respectively for Find 1 iron meteorite [30].

Figure 11. Mössbauer spectra of the interiors of Find 1 iron meteorite (a,c) and Campo del Cielo
meteorite (b,d) measured at RT in transmission (a,b) and backscattering (c,d) geometries.
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In backscattering geometry, the spectrum of the Find 1 iron meteorite was fitted
with 2 sextets, Sext 1 being attributed to α2-Fe(Ni, Co) and Sext 2 attributed to α-Fe(Ni,
Co) [33,34]. The first phase is martensite in lamellae or plessite and the other is kamacite
and richer in Ni. The abundance of the second phase is almost twice the abundance of the
first phase (see Table 2).

Table 2. Mössbauer parameters obtained from the fitting to the spectra shown in Figure 11 [31]. The errors in the last digit
are given in brackets.

Meteorite Geometry IS (mm/s) 2ε (mm/s) B (T) Γ (mm/s) % Subspectra

Find 1

Transmission 0.008(1) −0.015(1) 34.0(1) 0.32(1) 100 Sext

Backscattering 0.006(1) −0.015(1) 34.7(1) 0.30(1) 37.5 Sext 1
0.004(1) 0.009(1) 33.4(1) 0.32(1) 62.5 Sext 2

Campo del Cielo

Transmission 0.090(1) −0.019(1) 34.3(1) 0.30(1) 43.3 Sext 1
0.080(1) 0.020(1) 33.3(1) 0.32(1) 56.7 Sext 2

Backscattering 0.010(1) −0.016(1) 34.7(1) 0.30(1) 52.0 Sext 1
0.012(1) 0.010(1) 33.4(1) 0.33(1) 35.8 Sext 2
0.029(1) 0.014(1) 31.5(1) 0.60(1) 12.2 Sext 3

In the case of Campo del Cielo meteorite, already in transmission geometry the
two phases are observed, while in backscattering geometry γ-Fe(Ni, Co) is also found
(Sext 3) [34,35]. This result shows that filing the sample for the transmission measurement
may have transformed the γ phase into α phase. To be sure of that, one should compare
metal powders prepared under different conditions, like in the work of Oshtrakh et al. [34],
work that is being prepared.

Taenite is present in several meteorites as also observed by dos Santos et al. [33]. On
the other hand, tetrataenite (ordered taenite γ-FeNi) or paramagnetic γ-Fe(Ni, Co) phases
were not observed in Campo del Cielo. As referred by Scorzelli et al. [36] and dos Santos
et al. [33], to allow the formation of tetrataenite the meteorite should have been cooled
down at a very slow cooling rate, at temperatures below 320 ◦C and subsequently not
be subjected to a strong shock. The question of whether this meteorite cooled too fast or
was shocked may eventually be answered by performing electron probe microanalyzer
Ni-profiles within taenite crystals as suggested by Goldstein et al. (e.g., [25,37]). We have
not done it for the present paper, but it remains a major priority for future work.

A fragment of Campo del Cielo fall, referred as a hexahedrite meteorite, was studied
by Cabanillas et al. [20]. Their work shows Mössbauer spectra of the surface and interior
of the meteorite, but no parameters from the fitting procedure are given. The spectrum of
the internal region is similar to the spectrum of Campo del Cielo meteorite obtained by
us, and the surface spectrum exhibits a magnetic contribution assigned to oxides and a
quadrupole interaction.

Figure 12 shows the Mössbauer spectra of the crusts (both fusion and terrestrial
weathering) of meteorites in transmission and backscattering geometries. Table 3 gives the
hyperfine parameters determined in the fitting procedure. In this figure, besides kamacite,
several weathering products can be observed.

In general, iron oxides as maghemite, lepidocrocite, akaganite, and goethite are often
found as weathering products of iron meteorites [38].

For the Find 1 iron meteorite the same phases are found in both geometries; Sext 1
is attributed to maghemite, a weathering product, Sext 2 is attributed to kamacite and a
Fe3+ doublet, from weathering. This doublet is a relatively large component of the spectra
and has a magnitude of splitting that usually is not specific from the mineral, and can be a
combination of several phases, as superparamagnetic hematite or goethite, lepidocrocite,
akaganite, ferrihydrite and phyllosilicates [38]. As in XRD patterns we saw the presence of
goethite, the Fe3+ doublet can be assigned to superparamagnetic goethite, meaning that
this phase exists in very small particles.
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Figure 12. Mössbauer spectra of the exterior part of Find 1 iron meteorite (a,c) and Campo del Cielo meteorite (b,d)
measured at RT in transmission (a,b) and backscattering (c,d) geometries.

Table 3. Mössbauer parameters obtained from the fitting to the spectra shown in Figure 12 [31]. The errors in the last digit
are given in brackets.

Geometry IS (mm/s) 2ε/QS (mm/s) B (T) Γ (mm/s) % Subspectra

Find 1

Transmission
0.29 (1) 0.01 (1) 49.7 (1) 0.45 (1) 11.7 Sext 1
0.01 (1) 0.014 (1) 34.0 (1) 0.35 (1) 70.7 Sext 2
0.45 (1) 0.85 (1) − 0.61 (1) 17.6 Doubl

Backscattering
0.32 (1) 0.06 (1) 49.5 (1) 0.75 (1) 22.5 Sext 1
0.01 (1) −0.01 (1) 34.0 (1) 0.50 (1) 56.5 Sext 2
0.40 (1) 0.72 (1) − 0.59 (1) 21.0 Doubl

Campo del Cielo

Transmission

0.39 (1) 0.03 (1) 49.0 (1) 0.41 (1) 13.6 Sext 1
0.40 (1) −0.10 (1) 45.6 (1) 0.70 (1) 5.2 Sext 2
0.03 (1) −0.005 (1) 33.6 (1) 0.45 (1) 42.5 Sext 3
−0.14 (1) −0.09 (1) 21.8 (1) 1.29 (1) 15.7 Sext 4
0.47 (1) 0.74 (1) − 0.60 (1) 23.0 Doubl

Backscattering

0.32 (1) −0.002 (1) 49.8 (1) 0.67 (1) 26.2 Sext 1
0.60 (1) −0.09 (1) 46.0 (1) 0.68 (1) 7.8 Sext 2
0.02 (1) −0.05 (1) 32.9 (1) 0.90 (1) 18.5 Sext 3
−0.32 (1) 0.08 (1) 21.5 (1) 1.37 (1) 14.6 Sext 4
0.31 (1) 0.70 (1) − 0.50 (1) 27.5 Doubl 1
0.27 (1) 1.44 (1) − 0.95 (1) 5.4 Doubl 2

One can see that the kamacite component found in transmission geometry has a
larger fraction than the one found in backscattering geometry, possibly a result of the filing
procedure to obtain powder samples for the transmission measurement. The backscattering
spectrum has larger linewidths showing a much higher degree of disorder of the phases.
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The comparison of the fitting of the two spectra is not so immediate, as there are different
absorption effects and the fitting quality is not the same. One can see a base line distortion,
due to the cosine effect, in the case of the transmission spectrum.

In the case of Campo del Cielo meteorite, Sext 1 and Sext 2 are attributed to the two
sites of magnetite, while Sext 3 belongs to kamacite and Sext 4 to a relaxation phase at RT.
The doublet (Doubl 1) can also be goethite in very small particles. A second Fe3+ doublet
(Doubl 2) is seen in the case of backscattering geometry. This doublet should be another
superparamagnetic oxide-hydroxide.

It is evident that the weathering of Campo del Cielo fragment is much higher than
that of the other iron meteorite, as the spectral components of oxides have larger contri-
butions. Comparing the backscatter spectra of both raw meteorites one can see that there
are weathering products also observed in Mars soil and meteorites (Meridiani Planum)
specially the doublet assigned to nano-oxide nanoparticles [38].

We have observed the border of the meteorites by SEM (see Figure 13 for an example).
SEM/EDX analysis confirmed the existence of oxides by the great amount of oxygen
present. The need to use SEM/EBSD seems to be essential in a future work to determine
the minerals present in them.

Figure 13. SEM micrograph obtained for Find 1 where the crust can be observed.

The results obtained so far, and shown here, indicate that the iron meteorite from the
Campo del Cielo fall is an octahedrite and that the Find 1 iron is a hexahedrite. Of course,
the general classification we offer for this unregistered meteorite shall be further refined in
the future, namely when we perform Ge, Ga and Ir analyses [39].

3.2. Stony Meteorite

Microscope observations indicate that NWA 1990 stony is an achondrite.
Figure 14 shows a typical optical micrograph of the meteorite. One can observe a

multi-mineral brecciated texture.
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Figure 14. Typical optical micrograph of NWA 1990 stony meteorite.

The chemical composition of the meteorite is common for stony meteorites, with
a large fraction of Si. The composition analysis, done by XRF with the second method
described in Section 2.3, is shown in Table 4.

Table 4. Mean elemental composition of NWA 1990 stony meteorite excluding oxygen. The error in
the values is 2%.

Element Mean Concentration (wt. %)

Fe 39.4
Si 30.1

Mg 21.2
Al 3.5
Ni 1.9
Co 1.2
Ca 1.2
Cr 0.4
Na 0.4
P 0.3
Ti 0.3
K 0.1

Mn 0.1

We can see in Figure 15 that the elements are not uniformly distributed and, as
expected, several phases with different compositions exist. Mössbauer spectroscopy
(Figure 16) shows that the main element, Fe (39%), is only related to the abundance of
maghemite and troilite. The RT spectrum is similar to that obtained for schreibersite pieces
of Sikhote-Alin iron meteorite [40–43] but, in fact, in our case it shows superparamagnetic
behavior with iron in trivalent coordination, as indicated in Table 5, and splits at 4.2 K.
Most of the 4.2 K spectrum was fitted with the two sextets of maghemite expected at this
temperature (see for instance [44]), plus a very small amount (1.1%) of troilite (FeS). Troilite
was fitted with only one sextet, as explained in other works [45], instead of an octet. Other
Fe-bearing phases, like kamacite, can be present and masked in the maghemite envelope,
but most probably Fe-containing minerals within this meteorite are affected by weathering,
which is observed to be very strong. This kind of weathering is common in chondrites
found in hot deserts [46,47].
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Figure 15. Backscattered electron image and associated EDX map obtained for some indicated elements.

Figure 16. Mössbauer spectra obtained for NWA1990 stony meteorite at (a) RT and (b) 4.2 K. The
inset in (a) represents the distribution of the hyperfine field.
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Table 5. Mössbauer parameters obtained from the fitting to the spectra shown in Figure 16. The
errors in the last digit are given in brackets.

Temp. IS (mm/s) 2ε/QS (mm/s) B (T) Γ (mm/s) % Subspectra

RT
<0.35> 0 <29.1> 0.33 (1) 76.5 Dist B
0.40 (1) 0.82 (1) 0.85 (1) 23.5 Doubl

4.2 K
0.48 (1) −0.24 (1) 50.1 (1) 0.43 (1) 84.2 Magh 1
0.48 (1) −0.03 (1) 51.4 (1) 0.54 (1) 14.7 Magh 2
0.93 (1) −0.14 (1) 32.8 (1) 0.40 (1) 1.1 Troilite

The presence of troilite, together with a fusion crust, is evidence that this may indeed
be a meteorite. Troilite can also be found, rarely, in Earth ultramafic rocks but, as far as we
know, has never been reference in Northwest African ultramafics, namely in the Anti-Atlas
belt. This result revealed by Mössbauer spectroscopy shows that this method may be useful
in distinguishing between real and false meteorites, as referred by Bogusz et al. [48].

The XRD pattern (Figure 17) shows a lot of other silicate minerals. As we can deduct
from Mössbauer spectrum at 4.2 K, iron is not included in those silicates. Actually, are only
formed with other elements listed in Table 4. For instance, olivine is purely magnesian
(forsterite—Mg2SiO4), orthopyroxene is also purely magnesian /enstatite-MgSiO3). It
is worth mentioning that for low angles there is a difference between experimental and
calculated patterns, so that at least one additional phase is present. A mineral from the
group of osumilite was found. Such a mineral has already been found in aubrites [49].
To confirm its occurrence in NWA 1990, SEM-EBSD measurements are envisaged for a
future work.

Figure 17. XRD pattern obtained at RT for the NWA 1990 stony meteorite and indexed phases.

The mineral assemblage found in our unregistered stony meteorite indicates that it is
probably an enstatite achondrite (aubrite) [50,51]. Dunlap studied an enstatite chondrite
from Abee, Canada, using Mössbauer spectroscopy [52] and also found troilite. In that
study, other magnetic components at RT were found to be kamacite and taenite. Two
paramagnetic phases were observed, niningerite and γ-FeNi. Maliszewski et al. [53] studied
an enstatite achondrite from Zaklodzie, Poland, by Mössbauer spectroscopy. Troilite was
also found, as well as kamacite, γ-FeNi and niningerite, for instance.
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3.3. Tektites

In Figures 18 and 19, typical micrographs of polished sections of the studied glasses
are observed.

Figure 18. Optical micrographs of (a) a chinite and (b) Darwin glass.

Figure 19. A macrograph and an optical micrograph of a section of Muong Nong tektite from Laos (Laos-1 sample).

The micrograph of a chinite (Figure 18a) is typical of all other splash-form and aerody-
namic tektites. There are no inclusions observed but some marks left by bubbles formed
during melting and solidification of the glasses. X-ray diffraction carried out in such
samples shows that they are amorphous. The Darwin glass (Figure 18b) is also amorphous
and in the micrographs one can see a lot of bubble marks which cannot be observed with
naked eye.

Figure 19 shows the layered structure of the Muong Nong, observed at naked eye
(photograph on the left) and the micrograph calls the attention to inclusions as well as
marks of bubbles. X-ray diffraction demonstrated that the sample is amorphous.

The composition of the studied tektites and the Darwin glass from Tasmania are
shown in Tables 6 and 7. Two methods were applied for composition determination. The
method used for the compositions shown in Table 7 indicates individual elements and it
was not possible to quantitatively identify Na and Mg. This way, the values listed in both
Tables cannot be directly compared.

One can verify that the compositions obtained for tektites are in general in accordance
with the literature [6,7]. Ordinary tektites have typically about 70 wt.% of silica. Bediasites,
for instance, have very low Mg and Ca, while moldavites are rich in Si and K, as observed
in our case. The composition of the Darwin glass and the layered tektites (Muong Nong)
are also in accordance with the literature [6–8].
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Table 6. Average major elements chemical composition (oxide wt.%) of tektites from different strewn fields and the obsidian
from Arizona, determined from XRF by the first method using PANalytical instrument. The error in the values is 2%.

SiO2 Al2O3 Na2O Fe2O3 MgO CaCO3 K2O TiO2

Muong Nong (Laos) 70.12 18.45 2.79 2.52 2.94 1.42 1.25 0.40
Thailandite 70.53 17.17 3.02 2.74 2.90 1.62 1.62 0.31

Rizalite 71.09 15.67 2.74 2.34 2.34 3.63 1.55 0.32
Chinite 70.94 15.61 2.81 3.32 2.51 2.34 1.56 0.79

Australite 72.20 13.40 1.57 2.81 3.07 3.95 1.84 0.80
Bediasite 73.54 17.46 3.35 2.58 1.13 0.63 0.91 0.20

Moldavite 80.10 9.56 0.52 1.23 2.21 1.60 2.95 0.31

Darwin Glass 82.16 8.46 0.04 3.58 0.69 0.03 2.13 0.61

Table 7. Average major elements chemical composition (wt.%) of Australasian tektites determined
from XRF by the second method using SEA6000 instrument. The method does not allow the determi-
nation of Na and Mg contents. The error in the values is 2%.

Si Al Fe Ca K Ti

Muong Nong (Laos-2) 77.62 12.01 2.54 2.43 2.31 0.52
Muong Nong (China) 76.81 12.02 3.02 3.80 2.43 0.61

Tibet 70.21 9.24 1.65 1.35 1.42 0.35
Vietnam 73.42 9.61 1.84 1.83 1.54 0.32

Cambodia 78.12 11.31 3.15 2.35 2.25 0.51

Mössbauer spectroscopy was performed at room temperature in all the samples,
some in backscattering geometry and others in transmission geometry. We have used
Voigt functions and discrete spectral components determined by the least squares fits. In
general, the results of Mössbauer spectroscopy for the Fe-oxidation state ratios in tektites
depends on the method of analysis. The analysis using discrete spectral components
with Lorentzian functions give in general, anomalous results [54]. We have obtained
consistent and homogeneous parameters within the same strewn field. For the tektites of
the same strewn field averages of parameters were considered after fitting and are shown
in Tables 6 and 7. Typical spectra are shown in Figures 20 and 21. The Mössbauer spectra
have a similar shape with an apparently single asymmetric doublet, a characteristic shape
of glass that contains mainly ferrous iron. The absence of sextuplets is due to the diluted
nature of the glasses and indicates the absence of magnetic phases, also for the Darwin
Glass. On the contrary, several Mössbauer studies on impactites show the presence of
magnetic phases on those systems, e.g., [55–57]. The widening effects of the peaks are
important in the glass spectra where the line widths are in the order of 0.60 mm/s. The
Mössbauer spectra were used to estimate the fraction of each iron species, assuming that the
peak area is directly proportional to the amount of iron in each site. We obtained hyperfine
values for Fe2+ in both octahedral and tetrahedral coordination, as well as for Fe3+ ion
coordination. The doublet corresponding to ferrous iron in tetrahedral coordination is not
always seen in the spectra of tektites, when fitted with a distribution of parameters [58].
However, some authors have already fitted the corresponding spectra including these iron
species [10,54,59].

As one can observe, the area of Fe3+ and Fe2+ in tetrahedral coordination is very small,
so a unique fit is not an accomplished task. However, for each spectrum we chose the
configuration fit with the lowest goodness parameter. It is worth mentioning that the
spectra taken in transmission geometry are in good agreement with the ones taken in
backscattering geometry.
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Figure 20. Representative 57Fe Mössbauer spectra taken at RT in backscattering geometry of typical tektites.
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Figure 21. 57Fe Mössbauer spectra taken at RT in transmission geometry of some groups of tektites.

The variations in the Fe3+/Fe2+ ratio during the solidification of the molten material
correspond to the absorption of oxygen on the sample surface from its environment. As seen
in Tables 6 and 7, the mean Fe2+ octahedral isomer shifts values are within the range reported
in the literature, typically +0.92 to +1.02 mm/s, and the mean quadrupole splitting values lie
among the ones reported in the literature (typically 1.94 mm/s). Dunlap et al. [10,54,59] have
used Voigt based analysis to determine isomer shift and quadrupole splitting distributions.
Those authors have similar average isomer shifts for Fe2+ in octahedral coordination but
much smaller values for quadrupole splitting. The Fe3+/Fe2+ ratio observed in tektites is
abnormally low compared, for example to terrestrial volcanic rocks, suggesting that they
solidified in an environment with little oxygen, such as high temperatures and reduced
conditions. Muong Nong tektites are examples of relatively high Fe3+/Fe2+ ratio. These
ratios are also shown in Tables 8 and 9, for tektites measured in backscattering geometry
and transmission geometry, respectively. Those values are higher than those obtained
by Dunlap et al. [10,54,59], but consistent within each strewn field. Additionally, for the
Muong Nong tektites we have obtained higher Fe3+/Fe2+ ratios than for other tektites.
Impactites, including Darwin Glasses, have lower contents of Fe2+ octahedral component
than tektites [60]. We have accordingly obtained 75% of Fe2+ in octahedral coordination
against 80–90% in tektites, but with similar hyperfine parameters. To verify the ratios of Fe
coordination, one can use a complementary technique, such as EXAFS, which we will try
to use in a future work.



Minerals 2021, 11, 628 21 of 26

Table 8. Average hyperfine parameters obtained from the fitting procedure to spectra shown in Figure 20 for the different
strewn fields. Errors in last significant digits are given in brackets.

Tektite IS (mm/s) QS (mm/s) WID (mm/s) % χ2 Fe2+tetr/Fe2+oct Fe3+/Fe2+

Muong Nong (Laos)—MN1 1.90 0.038 (7) 0.149 (7)
Fe2+ Oct 1.06 (1) 2.09 (1) 0.60 (1) 83.8 (6)
Fe2+ Tetr 0.59 (1) 1.60 (1) 0.60 (1) 3.2 (6)

Fe3+ 0.22 (1) 0.02 (1) 0.60 (1) 13.0 (6)

Thailandite 1.80 0.048 (7) 0.071 (6)
Fe2+ Oct 1.14 (1) 1.96 (1) 0.65 (1) 89.0 (6)
Fe2+ Tetr 0.89 (1) 1.33 (1) 0.65 (1) 4.3 (6)

Fe3+ 0.16 (1) 0.02 (1) 0.65 (1) 6.7 (6)

Rizalite 1.92 0.027 (7) 0.059 (6)
Fe2+ Oct 1.05 (1) 1.93 (1) 0.60 (1) 91.9 (6)
Fe2+ Tetr 0.61 (1) 1.20 (1) 0.60 (1) 2.5 (6)

Fe3+ 0.20 (1) 0.01 (1) 0.60 (1) 5.6 (6)

Chinite 1.63 0.080 (7) 0.025 (6)
Fe2+ Oct 1.07 (1) 1.93 (1) 0.60 (1) 90.4 (6)
Fe2+ Tetr 0.68 (1) 1.14 (1) 0.50 (1) 7.2 (6)

Fe3+ 0.11 (1) 0.02 (1) 0.50 (1) 2.4 (6)

Australite 1.81 0.119 (8) 0.104 (7)
Fe2+ Oct 1.07 (1) 1.93 (1) 0.60 (1) 81.0 (6)
Fe2+ Tetr 0.56 (1) 1.40 (1) 0.60 (1) 9.6 (6)

Fe3+ 0.12 (1) 0.02 (1) 0.60 (1) 9.4 (6)

Bediasite 1.73 0.110 (7) 0.035 (6)
Fe2+ Oct 1.09 (1) 2.12 (1) 0.60 (1) 87.0 (6)
Fe2+ Tetr 0.61 (1) 1.21 (1) 0.60 (1) 9.6 (6)

Fe3+ 0.32 (1) 0.02 (1) 0.60 (1) 3.4 (6)

Moldavite 1.40 0.022 (7) 0.093 (7)
Fe2+ Oct 1.02 (1) 1.83 (1) 0.60 (1) 89.5 (6)
Fe2+ Tetr 0.61 (1) 1.20 (1) 0.60 (1) 2.0 (6)

Fe3+ 0.25 (1) 0.04 (1) 0.60 (1) 8.5 (6)

Darwin Glass 1.61
Fe2+ Oct 1.13 (1) 2.02 (19 0.60 (1) 75.3 (6) 0.292 (8) 0.028 (6)
Fe2+ Tetr 0.65 (1) 1.60 (1) 0.85 (2) 22.0 (6)

Fe3+ 0.13 (1) 0.02 (1) 0.60 (1) 2.7 (6)

Table 9. Average hyperfine parameters obtained from the fitting procedure to spectra shown in Figure 21 for some groups
of tektites. Errors in last significant digits are given in brackets.

IS (mm/s) QS (mm/s) WID (mm/s) % χ2 Fe2+tetr/Fe2+oct Fe3+/Fe2+

Vietnam 1.13 0.099 (7) 0.086 (7)
Fe2+ Oct 1.08 (1) 1.98 (1) 0.72 (1) 83.8 (6)
Fe2+ Tetr 0.66 (1) 1.74 (1) 0.65 (1) 8.3 (6)

Fe3+ 0.32 (1) 0.02 (1) 0.60 (1) 7.9 (6)

Tibet 1.41 0.053 (7) 0.074 (6)
Fe2+ Oct 1.09 (1) 1.99 (1) 0.76 (1) 88.4 (6)
Fe2+ Tetr 0.66 (1) 1.30 (1) 0.60 (1) 4.7 (6)

Fe3+ 0.21 (1) 0.001 (1) 0.60 (1) 6.9 (6)

Cambodia 1.14 0.242 (8) 0.087 (7)
Fe2+ Oct 1.00 (1) 2.01 (1) 0.67 (1) 74.0 (6)
Fe2+ Tetr 0.66 (1) 1.75 (1) 0.60 (1) 18.0 (6)

Fe3+ 0.21 (1) 0.02 (1) 0.60 (1) 8.0 (6)

Muong Nong (Laos-2) 1.55 0.068 (8) 0.172 (7)
Fe2+ Oct 1.02 (1) 2.00 (1) 0.60 (1) 79.9 (6)
Fe2+ Tetr 0.60 (1) 1.00 (1) 0.60 (1) 5.4 (6)

Fe3+ 0.37 (1) 0.02 (1) 060 (1) 14.7 (6)

Muong Nong (China) 1.73 0.094 (8) 0.198 (8)
Fe2+ Oct 0.99 (1) 2.07 (1) 0.80 (1) 76.3 (6)
Fe2+ Tetr 0.75 (1) 1.20 (1) 0.70 (1) 7.2 (6)

Fe3+ 0.28 (1) 0.02 (1) 0.65 (1) 16.5 (6)
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Based on data in Tables 8 and 9, we plotted relevant charts for the available hyperfine
parameters (Figure 22). In the plots there is also data reported on Dunlap et al. [54] for
several strewn fields’ tektites. For the adjustment of spectra, Dunlap et al. used fixed
isomer shift and quadrupole splitting for the Fe3+ site, which is represented, together with
the fixed interval, in Figure 22c.

Figure 22. Average hyperfine parameters of analyzed tektites plotted with data from Table 8 (triangles) and Table 9 (squares)
and Dunlap et al. [54] (circles). (a) Fe2+tetr; (b) Fe2+oct; (c) Fe3+; (d) (Fe3+/ Fe2+) vs (Fe2+tetr/ Fe2+oct). MN1: Laos
Muong-Nong 1; MN2: Laos Muong-Nong 2; MNC: Chinese Muong-Nong.

Comparing our results with the ones obtained by Dunlap et al. [54] we can see that
for Fe2+ octahedral site, the hyperfine values are in agreement, but for octahedral are
much lower. Also, for Fe3+ site, the average isomer shift obtained by us agrees with
the value fixed by Dunlap et al. [54], but the quadrupole splitting is in the limit of the
distribution imposed by those authors. The Fe3+/Fe2+ ratio is higher in our study, but
consistent with expected values. As for Muong Nong samples, the ratio is higher than
for the other tektites. In the analysis of Dunlap et al. [54], this ratio for australite tektites
is close to Muong Nong, and for Tibetanite is higher. The differences, well observed in
these charts, are related to the method of analysis. Our results are comparable with ratios
obtained with many wet chemical analyses, as also referred by Dunlap et al. [54] when
explaining the results obtained with their fitting method. Fudali et al. [61] used four
wet chemical analysis (two standard volumetric methods, an experimental volumetric
method for direct determination of Fe3+ and a colorimetric method) and two instrumental
techniques (Mössbauer spectroscopy and electron spin resonance). They found out that
the Fe3+/Fe2+ ratios are in the range 0.02–0.12 and agree with what they believe is the best
published analysis for tektites (review [62]). We obtained Fe3+/Fe2+ ratios within these
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values, except for Muong Nong tektites, which was to be expected given that they are
supposedly found nearest to the original impact crater [19].

There seems to be no doubt that moldavites are analogous to Australasian tektites:
they almost always plot closely grouped together on Figure 22. The exception is the Fe2+

octagonal coordination IS x QS chart (Figure 22b).
The cambodiatite sample is mostly individualized, plotting only once near the vietna-

mite (Figure 22a).
Our tibetanite sample sometimes plots not far from australasites (near the vietnamite

on Figure 22b and near the thailandite in Figure 22d) but we must note the low QS for Fe3+

(0.01 mm/s on Figure 22c) and some individuation on Figure 22a. Our analyses do not
conclusively remove persistent doubts that tibetanites are fake Australasian tektites (see,
e.g., https://bit.ly/3s62aAe (accessed on 10 June 2021)).

Laotian Muong-Nong samples (MN1 and MN2) always plot far from each other but
their high Fe3+ contents (between 13% and 15%) allows them to display a linear trend with
the Chinese Muong-Nong (16.5% Fe3+) on Figure 22d. There are evidences that Muong
Nong tektites may have a higher Fe3+/Fe2+ ratio than splash form tektites, consistent with
their general morphology and solidification from the melt at a lower temperature [19].

The Darwin Glass stands, in overall, separate among the other items, namely in
Figure 22d, so Mössbauer spectroscopy is also useful to distinguish Darwin Glasses
from tektites.

4. Conclusions

X-ray diffractograms evidence only kamacite in the interior of both iron meteorites
and weathering oxides on their crust (fusion and terrestrial weathering). Mössbauer spectra
confirm these results.

In Campo del Cielo meteorite, Widmanstätten patterns and schreibersite inclusions are
evident. The unregistered iron meteorite exhibits Neumann lines along with schreibersite
inclusions. Campo del Cielo meteorite is found to be an octahedrite and the Find 1 iron
meteorite a hexahedrite. This general classification for this unregistered meteorite shall be
further refined, namely when we have Ge, Ga and Ir analyses.

The composition of the unregistered NWA 1990 stony meteorite is common to high-Si
stony meteorites. XRD patterns show several silicate minerals, but iron is not included on
them, as evidenced by Mössbauer spectroscopy at 4.2 K. At this temperature, maghemite
and a very small amount of FeS are found. These results, together with minerals content,
suggest that NWA 1990 stony meteorite is an enstatite achondrite.

Mössbauer spectroscopy is one of the most powerful methods for determination of the
iron atoms valence/spin state and coordination and its importance for the characterization
of both meteorites and tektites cannot be overstated.

The observed hyperfine parameters and higher Fe3+/Fe2+ ratios in Muong Nong than
in other tektites are consistent with the conditions under which Muong Nong tektites are
assumed to be formed.

The analyses of a Darwin Glass by Mössbauer spectroscopy is consistent with the
formation of this impact glass and reinforces the idea of the use of Mössbauer spectroscopy
to distinguish between tektites and impactites.
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