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Abstract: Ultra-fine tailings cemented paste backfill (UCPB) exhibits special rheological characteristics
with the effect of an ultrasonic sound field. In this study, in order to explore the thickening effect
of slurry under ultrasonic wave action, we examined the rheological properties with ultrasonic
wave tests of UCPB and the rheological properties after ultrasonic wave tests of UCPB. We found
that the rheological curve of the slurry changed; the Herschel–Bulkley (HB) model in the initial
state transformed into the Bingham model under the action of ultrasound. Ultrasonic waves have
a positive effect on reducing slurry viscosity and yield stress. The rheological test of the slurry
with ultrasonic wave action had a positive effect on significantly reducing the apparent viscosity
and initial yield stress of slurry with a 62% mass concentration. The rheological test of slurry with
ultrasonic wave action and the rheological test after ultrasonic wave action both have positive effects
on reducing the viscosity and yield stress of the slurry with a 64% to 68% mass concentration; the
overall effect of reducing the viscosity and yield stress of UCPB is greater after ultrasonic wave action
of UCPB.

Keywords: ultra-fine tailings cemented backfill (UCPB); rheological properties; ultrasonic waves;
slurry pipeline transportation

1. Introduction

The rheological characteristics of mortar in the process of conveying slurry is one of
the important parameters for judging fluidity, which directly affects the stability of the
tailing silo, pipe conveying, and other links [1–3]. However, the rheological problems of
slurry, such as the ease of solidifying the tailings discharge at the mouth of the tailing silo
and the ease of blocking the conveyor pipe, are often perplexing for mining enterprises
in high-concentration tailings cemented filling [4–6] and seriously affect filling efficiency
and cost. Therefore, it is important to study how to effectively improve the rheological
properties of slurry for continuous mine filling operations [7–9].

In recent years, studies have been conducted to investigate the factors that influence
the rheological properties of backfilling slurry from different aspects [10–12]. Ali et al.
found that the addition of silicate and sodium silicate could improve the rheological prop-
erties of mortar [13,14]. Roshani et al. found that the yield stress and viscosity of slurry
containing nanocrystalline silica increased significantly at different temperatures [15].
Xue et al. found that a high temperature environment and the addition of fly ash reduced
the yield stress of slurry and enhanced the rheological properties of slurry [16]. Taheri et al.
analyzed the effects of different types and dosages of gels on the rheological properties of
slurry [17]. Fall et al. found that yield stress showed a trend of decline as the initial sulphate
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concentration was increased, while the apparent viscosity showed the opposite trend [18].
Zhang et al. used fly ash powder (FA), ground slag (GGBS), and quicklime as mineral ad-
mixtures and analyzed the rheological properties of foam-cemented backfill [19]. Guo et al.
analyzed the effect of an efficient water reducer on the rheological properties of super-
fine tailings cemented paste through the theory of water film thickness [20]. Majid et al.
analyzed the effects of slurry concentration, additives, cement content, temperature, pH
value, particle size distribution, and other factors on rheological parameters [21]. Lima et al.
used recycled fine aggregate from building waste as an additive to study its effect on the
rheology of cement slurry [22]. It is not difficult to see that the above studies were mainly
based on the influence of additives, slurry concentration, temperature, pH, and other
factors on the rheological properties of slurry. However, some admixtures pollute mine
environments and affect the early or long-term strength of backfill, and therefore, the cost
of slurry preparation is higher [23–25].

As a type of sound wave, ultrasonic waves have the advantages of strong penetration
and good directivity. Relevant studies have used ultrasonic wave action to improve the
rheological properties of slurry such as sludge, coal water slurry, and cement tailing mortar,
and have achieved good effects [26–29]. Ultrasonic wave action effectively reduces the use
of admixtures, saves economic costs, and also improves the ecological environment to a
certain extent. Zhao et al. studied the effect of ultrasound on the dewatering of biological
sludge in sewage treatment plants under different conditions [30]. Ruiz-Hernando et al.
examined changes in the rheological features of secondary sludge as a function of ultrasonic
specific energy [31]. Luo et al. analyzed the mechanism of ultrasonic degradation of
oily sludge and found that low-frequency ultrasound could generate larger and stronger
cavitation bubbles, which were more effective in oil desorption [32]. Zhu et al. found that
ultrasonic wave action could significantly improve the rheological properties of filling
slurry and reduce the plastic viscosity and yield stress of total tailings slurry [33,34].
However, the effect of ultrasound on the rheological properties of UCPB has not attracted
the attention of researchers, and there are few studies on the mechanism of UCPB.

In this study, rheological tests of slurry with and after ultrasonic wave action were
carried out using a rheological tester and homemade ultrasonic container. In this study,
we analyzed the effect of ultrasonic wave action on the rheological properties of slurry in
order to provide a reference for its application in the mine filling process.

2. Methods and Materials
2.1. Materials

Tailings were collected from an iron mine processing plant in Hebei Province, China.
The physical and chemical properties of the tailings were tested by the Tangshan Institute
of Geology and Mineral Bureau of Hebei Province. The chemical composition of the tailings
is listed in Table 1, indicating that the main chemical components of the tailings are SiO2,
Al2O3, total iron as oxides, MgO, and CaO, which amount to 90.52% of the total weight.
The physical properties of the tailings are provided in Table 2. The tailings were free of
sulfide minerals. The particle size distribution of the tailings is shown in Figure 1.

Portland cement was chosen as the cementitious materials. A mixture of UCPB, water,
and cement was used as the test sample.

Table 1. Chemical composition of used tailings.

Composition SiO2 Al2O3 Total Iron MgO CaO Loss on Ignition

Content (%) 67.24 7.30 6.00 5.60 4.04 9.48

Table 2. Physical parameters of used tailings.

Density (g·cm−3) Average Particle Size
(um) Porosity (%) Specific Surface Area of

Volume (cm2·cm−3)

2.620 15.05 40.99 11457.6



Minerals 2021, 11, 718 3 of 11

Minerals 2021, 11, x FOR PEER REVIEW 3 of 12 
 

 

Table 2. Physical parameters of used tailings. 

Density (g·cm−3) 
Average Particle 

Size (um) Porosity (%) 
Specific Surface Area of 

Volume (cm2·cm−3) 
2.620 15.05 40.99 11457.6 

 

 
Figure 1. The particle size distribution of the tailings. 

Portland cement was chosen as the cementitious materials. A mixture of UCPB, wa-
ter, and cement was used as the test sample. 

2.2. Preparation of UCPB Mixtures 
The UCPB samples were prepared with a cement/tailing (c/t) ratio of 1:4, and the 

specimens had a mass concentration of 62–70% by weight, which is commonly used in the 
Hebei Iron mine. The details of the mixtures are listed in Table 3. 

Table 3. The UCPB mix proportions for rheological tests. 

Mixture 
Volume (m3) 

Cement/Tailin
g Ratio 

Solid Content 
(%) Cement (kg) 

Ultra-Fine 
Tailings 

(kg) 
Water (kg) 

0.0002 1:4 

62 0.041 0.163 0.125 
64 0.043 0.172 0.121 
66 0.045 0.181 0.116 
68 0.048 0.190 0.112 

The filling slurry with a 62% mass concentration was segregated, and it was consid-
ered to be a low-concentration slurry; the filling slurry did not have obvious segregation 
when the mass concentrations were 64%, 66%, and 68%, thus, these were considered to be 
high-concentration slurries [35–38]. The slurry segregation state is shown in Figure 2. 

Figure 1. The particle size distribution of the tailings.

2.2. Preparation of UCPB Mixtures

The UCPB samples were prepared with a cement/tailing (c/t) ratio of 1:4, and the
specimens had a mass concentration of 62–70% by weight, which is commonly used in the
Hebei Iron mine. The details of the mixtures are listed in Table 3.

Table 3. The UCPB mix proportions for rheological tests.

Mixture
Volume (m3)

Cement/Tailing
Ratio

Solid Content
(%)

Cement
(kg)

Ultra-Fine
Tailings (kg) Water (kg)

0.0002 1:4

62 0.041 0.163 0.125

64 0.043 0.172 0.121

66 0.045 0.181 0.116

68 0.048 0.190 0.112

The filling slurry with a 62% mass concentration was segregated, and it was considered
to be a low-concentration slurry; the filling slurry did not have obvious segregation when
the mass concentrations were 64%, 66%, and 68%, thus, these were considered to be
high-concentration slurries [35–38]. The slurry segregation state is shown in Figure 2.

Minerals 2021, 11, x FOR PEER REVIEW 4 of 12 
 

 

 
Figure 2. Slurry segregation state. 

2.3. Testing and Monitoring of Samples 
To obtain the rheological parameters of UCPB, the rheological tests, rheological prop-

erties under ultrasonic wave action, and rheological properties after ultrasonic wave ac-
tion were conducted as follows: 

2.3.1. Rheological Tests of UCPB 
A rheometer (HAAKE Viscotester iQ, Thermo Fisher Scientific, Waltham, MA, USA) 

was used to test the rheological behavior of the UCPB. The test was started with a con-
trolled shear rate (CR) process, and a computer monitoring system was used to capture 
data samples (shear rate, shear stress, and apparent viscosity) every second. The shear 
rate sweep was set to a CR increase from 0 to 100 r/s for 60 s. 

2.3.2. Rheological Tests of UCPB under Ultrasonic Wave Action 
As shown in Figure 3, the experimental equipment for rheological testing consisted 

of the following: (1) an ultrasonic container, (2) a rheometer, (3) a container with the mix-
ture, and (4) a rotor. The bottom of the slurry container was equipped with an ultrasonic 
generator and converter, and the radiation effect of ultrasonic waves from the bottom to 
top optimized the fluidity of the slurry. The HAAKE Viscotester iQ rheometer was used 
and the ultrasonic container was customized through Mojie Ultrasonic Equipment Co., 
Ltd. (Guangzhou, China). A model FL22 rotor (Thermo Fisher Scientific, Waltham, MA, 
USA) was selected. The test was carried out immediately after the preparation of the 
slurry. The ultrasonic radiation was performed simultaneously with the rotation of the 
rotor of the rheometer. Ultrasonic waves were applied to the slurry when the rheometer 
started to work. The shear rate sweep was set to a CR increase from 0 to 100 r/s for 60 s. 
The ultrasonic wave was set to a frequency of 28 kHz and a power of 12 W. 

Figure 2. Slurry segregation state.



Minerals 2021, 11, 718 4 of 11

2.3. Testing and Monitoring of Samples

To obtain the rheological parameters of UCPB, the rheological tests, rheological prop-
erties under ultrasonic wave action, and rheological properties after ultrasonic wave action
were conducted as follows:

2.3.1. Rheological Tests of UCPB

A rheometer (HAAKE Viscotester iQ, Thermo Fisher Scientific, Waltham, MA, USA)
was used to test the rheological behavior of the UCPB. The test was started with a controlled
shear rate (CR) process, and a computer monitoring system was used to capture data
samples (shear rate, shear stress, and apparent viscosity) every second. The shear rate
sweep was set to a CR increase from 0 to 100 r/s for 60 s.

2.3.2. Rheological Tests of UCPB under Ultrasonic Wave Action

As shown in Figure 3, the experimental equipment for rheological testing consisted of
the following: (1) an ultrasonic container, (2) a rheometer, (3) a container with the mixture,
and (4) a rotor. The bottom of the slurry container was equipped with an ultrasonic
generator and converter, and the radiation effect of ultrasonic waves from the bottom to
top optimized the fluidity of the slurry. The HAAKE Viscotester iQ rheometer was used
and the ultrasonic container was customized through Mojie Ultrasonic Equipment Co.,
Ltd. (Guangzhou, China). A model FL22 rotor (Thermo Fisher Scientific, Waltham, MA,
USA) was selected. The test was carried out immediately after the preparation of the slurry.
The ultrasonic radiation was performed simultaneously with the rotation of the rotor of
the rheometer. Ultrasonic waves were applied to the slurry when the rheometer started
to work. The shear rate sweep was set to a CR increase from 0 to 100 r/s for 60 s. The
ultrasonic wave was set to a frequency of 28 kHz and a power of 12 W.
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2.3.3. Rheological Tests of UCPB after Ultrasonic Wave Action

This experiment consisted of two steps, i.e., the slurry was subjected to ultrasonic
radiation, and then rheological tests. In the first step, the UCPB was subjected to ultrasonic
action for 60 s, and the ultrasonic wave was set to a frequency of 28 kHz and power of
12 W. In the second step, the rheological tests were carried out, and the shear rate sweep
was set to a CR increase from 0 to 100 r/s for 60 s.

3. Results and Discussion
3.1. The Rheological Behavior of UCPB

The shear rate and the shear stress were automatically recorded by the rheometer
apparatus. The apparent shear stress vs. shear rate flow curves of the UCPB mixtures are
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presented in Figure 4. The experimental studies showed that the rheological behavior of
UCPB mixtures may be sufficiently described by the Hershel–Bulkley equation as follows:

τ = τ0 + µ
.
γ

n (1)

where τ (Pa) is the shear stress; γ (1/s) is the shear rate, n is the Hershel–Bulkley (H-B)
index; and τ0 (Pa) and µ (Pa·s) are the initial yield shear stress and plastic viscosity,
respectively. The values of the shear stress and shear rate were substituted into the HB
model, and Table 4 illustrates the results of fitting Equation (1). It is worth noting that
the higher the slurry concentration, the more consistent the curve form is with the HB
model [39].
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Table 4. Fitting equation parameters of UCPB.

Solid Content
(%)

Apparent
Viscosity (Pa·s)

Initial Yield Shear
Stress (Pa) Index n R (%)

62 1.11 31.55 2.31 99.2

64 1.79 83.04 2.75 98.3

66 2.63 152.61 3.71 98.6

68 3.32 188.79 3.92 90.3

The effect of concentration on the viscosity and yield stress of filling slurry is obvious.
The viscosity value and yield stress value of tailing slurry increases gradually with an
increase in concentration. A change in the free water content of the slurry causes a change
in the dispersion degree of structural units in the slurry, and then affects the viscosity value
of the filling slurry macroscopically. The free water quantity decreases with an increase
in the concentration of the filling slurry, and the dispersion degree of structural units
decreases when the cement/sand ratio of the filling slurry remains constant. Therefore, the
viscosity value of the slurry increases. However, the free water in the slurry is in a state of
supersaturation in a certain range of low slurry concentrations and has no obvious effect
on the dispersion effect of the structural units.
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3.2. The Rheological Behavior of UCPB with Ultrasonic Wave Action

Slurry rheological tests with ultrasonic effects were carried out using a rheometer
and homemade ultrasonic container. The apparent shear stress vs. shear rate flow curves
of UCPB mixtures with ultrasonic wave action are presented in Figure 5. The curves of
shear rate and shear stress of filling slurry changed with the ultrasonic wave action. The
experimental studies show that the rheological behavior of UCPB mixtures with ultrasonic
wave action may be sufficiently described by the Hershel–Bulkley equation.
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The values of the shear stress and shear rate were substituted into the HB model, and
Table 5 illustrates the results of fitting Equation (1).

Table 5. Fitting equation parameters of UCPB with ultrasonic wave action.

Solid Content
(%)

Apparent
Viscosity (Pa·s)

Initial Yield Shear
Stress (Pa) Index n R (%)

62 0.85 20.45 1.12 97.7

64 1.33 55.38 1.09 98.5

66 1.66 142.02 1.15 97.2

68 1.99 157.83 1.11 98.1

Viscosity and yield stress still changed regularly with mass concentration, i.e., the
higher the concentration, the greater the viscosity and yield stress. The slurry absorbs
the ultrasonic energy when the ultrasonic wave propagates in the slurry. It intensifies
the vibration of molecules in the equilibrium position, increases the energy of molecular
chains, and at the same time enhances the activity of molecular chains. Thus, it weakens
the interaction between molecular chains and reduces the viscous resistance to flow. As the
degree of freedom and energy of the single molecular chain increase, the conformation of
the molecular chain of the filling slurry changes under the action of ultrasound. At the same
time, the thermal effect caused by the ultrasonic cavitation produces high temperature
and high pressure in an instant. It still produces thermal degradation of the surrounding
molecular chains, although the scope of action is small [40,41]. The microjet and shock
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waves shear part of the molecules and decrease the molecular weight of the filling slurry.
The change in molecular structure resulted in a decrease in the viscosity of filling slurry.

3.3. The Rheological Behavior at UCPB after Ultrasonic Wave Action

Slurry rheological tests after ultrasonic effects were carried out using a rheometer and
homemade ultrasonic container. The apparent shear stress vs. shear rate flow curves of
UCPB mixtures after ultrasonic waves are presented in Figure 6. The filling slurries with
mass concentrations of 62%, 64%, 66%, and 68% conform to the HB model. The filling
slurry with a 62% mass concentration is considered to be a low-concentration filling slurry.
It is easy to destroy the molecular arrangement structure in the slurry after the ultrasonic
action is completed, when the rotor rotates. Therefore, the curve form is the same as that of
the filling slurry without the ultrasonic effect. The filling slurries with mass concentrations
of 64%, 66%, and 68% are considered to be high-concentration slurries. It is difficult for the
rotor to destroy the molecular arrangement structure after ultrasonic treatment in a short
time, because of the high viscosity of the slurry. Therefore, the curve form is the same as
that of the filling slurry accompanied by ultrasonic wave action. Table 6 shows the fitting
results of Equation (1).
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Table 6. Fitting equation parameters of UCPB after ultrasonic wave action.

Solid Content
(%)

Apparent
Viscosity (Pa·s)

Initial Yield Shear
Stress (Pa) Index n R (%)

62 1.03 31.15 3.04 98.3

64 1.17 52.59 1.14 97.5

66 1.41 125.88 1.12 98.1

68 1.92 148.74 0.97 98.5
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3.4. Effects of Ultrasonic Wave Action on the Yield Stress and Viscosity of UCPB

In order to further explore the influence of ultrasonic wave action on the rheological
properties of UCPB, the yield stress and viscosity of the filling slurries with mass con-
centrations of 62%, 64%, 66%, and 68% were compared and analyzed. Table 7 shows the
rheological tests results for the apparent viscosity and initial yield shear stress of filling
slurries, obtained (a) without ultrasonic wave action of UCPB, (b) with ultrasonic wave
action of UCPB, and (c) after ultrasonic wave action of UCPB. The apparent viscosity vs.
mass concentration curves of UCPB are presented in Figure 7. The initial yield shear vs.
mass concentration curves of UCPB are presented in Figure 8.

Table 7. Apparent viscosity and initial yield shear stress of filling slurry.

Mass
Concentration

(%)

Without Ultrasonic Waves
of UCPB

With Ultrasonic Waves of
UCPB

After Ultrasonic Waves of
UCPB

Apparent
Viscosity

(Pa·s)

Initial Yield
Shear Stress

(Pa)

Apparent
Viscosity

(Pa·s)

Initial Yield
Shear Stress

(Pa)

Apparent
Viscosity

(Pa·s)

Initial Yield
Shear Stress

(Pa)

62 1.11 31.55 0.85 20.45 1.03 31.15

64 1.79 83.04 1.33 55.38 1.17 52.59

66 2.63 152.61 1.66 142.02 1.41 125.88

68 3.32 188.79 1.99 157.83 1.92 148.74
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The velocity of ultrasonic waves varies in different media, and the velocity differences
produce shear force and directional force at the interface between the water and tailings.
Directional force can cause strong mechanical vibrations of medium particles centered on
their equilibrium positions. The shear force can weaken the binding force between the
medium, so that the viscosity and yield stress are reduced.

The higher the slurry concentration, the higher the viscosity and the higher the initial
shear stress. The viscosity and initial stress of different concentrations are decreased with
and after ultrasonic action. The results showed that the ultrasonic wave had different
effects on the molecular arrangement of slurry. The effect of filling slurry with ultrasonic
waves on reducing the apparent viscosity and initial stress of slurry is better when the
mass concentration of filling slurry is 62% as compared with conventional technology, i.e.,
the apparent viscosity is reduced by 23% and the initial stress is reduced by 35%. The effect
of filling slurry after ultrasonic wave action on reducing the apparent viscosity and initial
stress of slurry is better when the mass concentration of the filling slurry is above 64% as
compared with conventional technology, i.e., the apparent viscosity is reduced by 42% and
the initial stress is reduced by 21%.

4. Conclusions

In this study, the rheological properties of filling slurry with mass concentrations of
62%, 64%, 66%, and 68% were studied under three conditions, i.e., no ultrasonic action,
with ultrasonic action, and after ultrasonic action. The rheological curve, viscosity, and
initial stress were compared and analyzed.

The following conclusions can be drawn based on the above results:

(1) The effect of concentration on the viscosity and yield stress of filling slurry is obvious.
Ultrasonic wave action has a positive effect on reducing slurry apparent viscosity and
initial yield shear stress. The effects of UCPB with and after ultrasonic wave action on
reducing the apparent viscosity and initial stress of slurry are both better if the UCPB
is of high concentration.

(2) Ultrasonic effects on slurry in different time periods also have different effects on
its fluidity. It is worth noting that the effect on UCPB with ultrasonic wave action
on reducing the apparent viscosity and initial stress of slurry is better if the UCPB
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is of low concentration. However, the overall effect of reducing the viscosity and
yield stress of UCPB is more significant after ultrasonic wave action of UCPB, and the
higher the slurry concentration, the better the effect.

(3) The rheological test of slurry with ultrasonic wave action has a positive effect on
reducing the viscosity and yield stress of slurry with a 62% mass concentration, in
which the apparent viscosity is reduced by 23% and the initial yield shear stress
is reduced by 35%. The rheological test of slurry with ultrasonic action and the
rheological test after ultrasonic action both have good effects on reducing the viscosity
and yield stress of the slurries with a 64% to 68% mass concentration, however, the
overall effect of reducing the viscosity and yield stress of UCPB is more outstanding
after ultrasonic wave action of UCPB, i.e., the apparent viscosity is reduced by 42%
and the initial stress is reduced by 21%.
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