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Abstract: The mining of layered soft bauxite under coal seams (BCS) will cause serious underground
goaf disasters and surface Bayer process red mud (BRM) pollution. In order to realize the safe and
efficient mining of BCS, the feasibility of recycling BRM as a backfilling aggregate was explored.
A series of tests were conducted to prevent the pollution diversion of BRM from surface storage
to underground goafs, and a numerical simulation analysis of the backfilling mining process was
carried out based on FLAC3D to protect the overlying coal seam. The results show that: under
the action of encapsulation, solidification and inhibiting precipitation from cementitious materials,
the leaching concentration of harmful substances in red mud-based cemented backfill (RCB) can
be reduced 70% more than fresh BRM. Mining disturbance redistributes the in-situ stress field of
overlying strata; normal backfilling can not only reduce the pressure stress of pillars, but also release
the tensile stress in the roof and floor from +0.4956 MPa to −0.1992 MPa, effectively preventing roof
subsidence. Since the creep damage process of past backfill will absorb and dissipate lots of energy,
the disturbance range caused by backfill mining is controlled within 3 m, which is only 10% of the
open-stope method.

Keywords: Bayer process red mud (BRM); red mud-based cemented backfill (RCB); backfill mining
technology; layered soft rocks; bauxite under coal seams (BCS)

1. Introduction

As the world’s largest producer and consumer of alumina, China’s total output of
alumina in 2020 was 70.353 million tons, accounting for about 52.5% of the world’s total
output. However, China’s bauxite reserves are less than three percent of the world’s total,
and 98% of them are diasporic bauxite with poor quality, difficult processing and high en-
ergy consumption. Different from lateritic bauxite ores in foreign countries, bauxite ores in
China are mainly an ancient weathering crust, and industrial coal seams are often produced
in the overlying strata [1]. For example, nearly 2/3 of the bauxite deposits in Shanxi and
Henan provinces, which account for about half of China’s reserves, belong to bauxite under
coal seams (BCS). In order to protect the safety of the overlying coal seam, a large number
of pillars are left to support the roof, thereby causing loss to the plentiful mineral resources.
Additionally, continuous high-intensity mining can also produce large mined-out area
groups of accumulating roof caving, and collapse accidents extremely easily, leading to
overlying roof bending deformation, damage, and the overall fall. Furthermore, it may run
through the overlying coal seam and generate gas outburst disaster, surface subsidence,
and collapse, causing serious damage to surface rivers, highways, and structures [2].

At present, 95% of the world’s aluminum companies are using the Bayer process
to treat bauxite ore to produce alumina, and the solid waste produced is called Bayer
process red mud (BRM). BRM contains a large amount of free alkali, chemically bound
alkali which are difficult to remove. Open-air stockpiling not only takes up a lot of land,
but also easily causes serious pollution to the surface environment [3]. In consideration of
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its latent hydration properties, BRM has been used for developing effective adsorbents [4],
producing cements [5], building bricks [6], glasses, and special ceramics [7], as well as
additives or excipients for asphalt materials, roadbed materials [8], thermal insulation
materials, and other building materials. However, due to the complex process and low
number of value-added products, it’s a great challenge to obtain economic benefits during
the comprehensive utilization process of BRM. As a consequence, the annual production
of BRM in China is up to 60 million tons, while the comprehensive utilization rate is
only 10% [9]. Consequently, it is particularly urgent to minimize the harm of BRM and
realize its multi-channel and large-scale utilization. Further, the concentrations of chlorides
and fluorides in the BRM filtrate, which may pollute the groundwater nearby, were also
detected and far exceed the recommended groundwater quality standards of China [10,11].

Cemented backfill mining is a well-proportioned mixture of solid aggregates, ce-
menting materials, and water, and is transported from the surface backfilling station to
underground mining goafs in a pipeline [12]. After osmotic dehydration and consolidation
hardening, cemented backfill shows excellent superiority in ground pressure manage-
ment and mining safety guarantee [13]. Meanwhile, cemented backfill also provides an
environment-friendly, economic, and feasible way for the large-scale disposal and utiliza-
tion of bulky industrial solid wastes. The lead zinc tailings, which contain a great quantity
of heavy metal ions, were used as a backfilling aggregate for underground backfill mining
for more than 15 years in the Huize mine in the Yunnan province [14]. In many provinces
of China, coal mines are required to reuse coal gangues and fly ash for backfill mining to
prevent surface subsidence and collapse [15]. Smelting slags, which are calcined at a high
temperature and rapidly cooled by water quenching, show superior cementitious activity
and can be reused for backfill mining as new cements [16]. As a strong acid solid waste,
phosphogypsum has been used as a backfilling aggregate for more than 10 years in the
Kaiyang mine in the Guizhou province, which provides a significant demonstration for the
safe disposal of BRM [17].

However, owing to the unique properties of BRM, no successful practical application
has been found for red mud-based cemented backfill (RCB) using such a type of BRM.
Whether BRM can be used for backfill mining, the primary challenge is to prevent the pollu-
tion diversion of BRM from surface storage to underground goafs, and avoid polluting the
groundwater. The second task is to improve the early strength of RCB and ensure the min-
ing safety of layered soft BCS. Therefore, a full understanding of its material characteristics,
mixture parameters, rheological behavior, and pollution episodes is necessary before the
practical application of RCB. The objective of this study is to realize the safe and efficient
mining of layered soft BCS. The feasibility of recycling BRM as a backfilling aggregate was
explored by a lot of tests, and a numerical simulation analysis of the backfilling mining
process was carried out based on the FLAC3D software.

2. Mixture Proportion Tests and Groundwater Pollution Analysis of RCB

To explore the feasibility of BRM as a backfilling aggregate, the following tests, shown
in Figure 1, were carried out using the BRM of an aluminum oxide plant in Shanxi. First
of all, tests on the physical properties, chemical composition, and SEM microstructure of
BRM were carried out to explore its material characteristics (see Table 1). Then, a series of
mixture proportion tests were carried out to obtain the optimum mass concentration and
cement–sand ratio of RCB. Additionally, the rheological behavior of RCB was evaluated
according to the collapse, shear rheology, and L Tube tests [18]. Finally, the effect of RCB
on the environmental safety of groundwater was analyzed due to the results of bleeding,
leaching toxicity, and immersion tests (see Figure 2) [19,20].
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which is suitable for the Herschel–Bulkley rheological model [23]. 

The contents of several common heavy metal ions, pH values, fluoride, chloride, ni-
trate, nitrite, sulfate, ammonia nitrogen, chloride, and other contaminants were detected, 
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Table 1. Physical properties of BRM.

Permeability
Coefficient (cm/s)

Median Particle
Size (µm)

Specific Surface
Area (m2/kg) Nonuniform Coefficient Curvature Coefficient

3.35 × 10−7 3.248 2940 4.741 0.946
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The material characteristic tests represented that: the particle size of BRM is superfine,
88% of which is below 15 µm, and the median diameter is just 3.248 µm [21]. With a
specific area of 2940 m2/kg, the porosity of BRM is much larger than that of common soil.
Further, the density of BRM is 2.38 t/m3, the plasticity index is 17.0~30.0, and the osmotic
coefficient is only 3.35 × 10−5 cm/s. As a strong alkaline solid waste produced by the
alumina industry, BRM contains plenty of alumina, iron oxide, titanium dioxide, sodium
oxide, and calcium oxide [22]. Traditional PO 42.5 cement shows a slow solidifying rate
and low early strength when mixed with BRM. By using S95 slag powder (account for 90%)
as the cementitious material, and lime (account for 10%) as the activator, the compressive
strength of RCB with a cement–sand ratio of 1:6 and 60% mass concentration solidified
quickly within 12 h and reached a high strength of 1.1 MPa in 7 days. The rheological
behavior tests indict that, RCB shows obvious time-varying shear thinning characteristics,
which is suitable for the Herschel–Bulkley rheological model [23].

The contents of several common heavy metal ions, pH values, fluoride, chloride,
nitrate, nitrite, sulfate, ammonia nitrogen, chloride, and other contaminants were detected,
and the results of the bleeding and immersion tests are shown in Table 2.

Table 2. Results of bleeding and immersion tests (unit: mg/L).

Indicators Mine Groundwater Bleeding Water Immersing Water
Groundwater Quality Standard of China

I II III IV V

pH value 7.75 11.68 11.58 6.5~8.5 5.5~6.5
8.5~9.0

<5.5
>9.0

Ammonia
nitrogen 0.37 0.56 0.41 ≤0.02 ≤0.1 ≤0.5 ≤1.5 >1.5

Nitrate 0.045 2.71 1.97 ≤2.0 ≤5.0 ≤20.0 ≤30.0 >30
Nitrite 0.029 1.20 0.12 ≤0.01 ≤0.10 ≤1.00 ≤4.80 >4.8

Fluoride 0.16 <0.05 <0.05 ≤1.0 ≤1.0 ≤1.0 ≤2.0 >2.0
Sulfate 5.54 204.37 12.77 ≤50 ≤150 ≤250 ≤350 >350

Chloride 11.64 19.94 11.37 ≤50 ≤150 ≤250 ≤350 >350
Na 154.2 276.35 158.55 ≤100 ≤150 ≤200 ≤400 >400
Fe 0.18 0.055 0.046 ≤0.1 ≤0.2 ≤0.3 ≤2.0 >2.0
Cu <0.001 <0.001 <0.001 ≤0.01 ≤0.05 ≤1.00 ≤1.50 >1.50
Zn <0.001 <0.001 <0.001 ≤0.05 ≤0.5 ≤1.00 ≤5.00 >5.00
As <0.001 <0.001 <0.001 ≤0.001 ≤0.001 ≤0.01 ≤0.05 >0.05
Cd <0.001 <0.001 <0.001 ≤0.0001 ≤0.001 ≤0.005 ≤0.01 >0.01
Pb <0.001 <0.001 <0.001 ≤0.005 ≤0.005 ≤0.01 ≤0.1 >0.1

As shown in Figure 3, after mixed with S95 slag powder, lime, and water at a certain
ratio at a high speed, RCB is produced and transported via pipage through surface drilling
and underground laneways to a mining goaf. As a strong alkaline solid waste, BRM
contains fluoride, heavy metal ions, and other substances, and can easily pollute the
surface environment by the way of open-air storage [24]. However, due to the groundwater
recycling process of RCB, RCB will not transfer the surface pollution to the underground.
The main reasons are as follows:

(1) A large number of S95 slags are added and mixed with BRM, which will produce
a large number of ettringite, C-S-H gel, and other hydration products and have a
significant effect on the encapsulation and solidification of pollutants in BRM [25,26].
The leaching toxicity test results show that the leaching concentration of harmful
substances in RCB can be reduced 70 % more than fresh BRM.

(2) In order to improve the backfilling effect and reduce the bleeding water, RCB is
generally prepared into a paste state. After entering the goaf, only a small amount of
bleeding water will be discharged through the basket drain embedded in the filter
wall. According to estimates, the bleeding rate is less than 5% and the bleeding flow
is less than 0.1 t/h.
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(3) The bleeding water has a high pH value, and the contents of ammonia nitrogen,
nitrite, and sodium belong to the grade IV groundwater standard of China. Therefore,
bleeding water must be discharged uniformly through the gutterway to the central
water sump. After entering the water sump, the bleeding water will be mixed with
the mining gushing water, fault drainage water, and goaf water, causing a dilution
effect. According to the different water inflow, the dilution ratio can reach at least
50–100 times, and the water quality after dilution belongs to the grade I groundwater
standard of China.

(4) The gushing water in the water sump will be periodically discharged to the surface
sewage tank for centralized purification treatment, and recycled for backfill or under-
ground production, realizing the total recycling and zero discharge of groundwater.
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3. Mining Safety Simulation of Layered Soft BCS
3.1. Engineering Geological Condition

As typical ancient weathering crust-type bauxite deposits, 70% of the bauxite resources
in the Shanxi province belong to BCS [27]. Taking a typical bauxite mine in Shanxi as an
example, the deposit occurs in the lower part of the Benxi formation of the Carboniferous
middle series, which is unconformable in contact with the erosion surface of Ordovician
limestone and iron clay rock at the bottom. As we can see from Figure 4, the overlying strata
are composed of clay rock (C2b1) and mudstone (C2b2) of the Benxi formation, mudstone
(C3t1) and sandstone (C3t2) of the Taiyuan formation, laterite (N2) of Neogene, and loess
(Q3) of Quaternary. The ore quality is medium with an Al2O3 content of 65% and an
alumina–silica ratio of 5.5. The bauxite orebody average thickness is 2.85 m, the average
dip angle is 7◦, while the overlying 13# coal seam is 6.10 m thick and 53 m away from the
bauxite orebody. With a low ultimate tensile strength of 0.48 MPa and softening coefficient
of 0.53, the orebody roof is soft, weak, and unstable. The in-strips drift backfilling method
(IDBM) is selected as the main mining method. Due to the two-step interval process of
IDBM, high-strength RCB is adopted in the first step, while low-strength RCB is adopted
in the second step [28].
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The rock mechanic parameters used in the numerical simulation are from the verifica-
tion report of resources and reserves, while the mechanical parameters of two-step RCB are
obtained from the mixture proportion tests and laboratory mechanical tests (see Figure 2a).
For RCB, S95 slag powder (account for 90%) is used as the cementitious material and lime
(account for 10%) as the activator. In the first and second step, the cement–sand ratio
of RCB is 1:6 and 1:12, respectively, and the mass concentration is 60%. The mechanical
parameters of each material are shown in Table 3. Among them, the results of RCB were
measured after 28 days of curing.

Table 3. Mechanical parameters of rocks and backfilling body.

Rock Layer Code Elastic Modulus
(GPa)

Compressive
Strength (MPa)

Tensile
Strength (MPa)

Poisson
Ratio

Bulk Density
(kN·m−3)

Cohesion
(MPa)

Internal Friction
Angle (◦)

Q3 0.33 1.18 0.21 0.33 17.46 0.13 21.60
N2 0.38 2.07 0.24 0.31 17.85 0.19 22.35

C3t2 73.81 35.70 0.84 0.28 25.41 3.12 44.00
C3t1 75.40 46.40 1.00 0.30 26.19 3.66 42.63

Coal seam 0.99 4.74 0.50 0.29 13.73 1.05 28.10
C2b2 20.48 11.80 0.72 0.32 24.92 1.29 27.65
C2b1 18.34 61.30 0.48 0.33 23.15 0.97 28.35

Bauxite 69.32 131.30 2.70 0.28 26.68 18.53 41.15
O2f 77.40 146.00 1.85 0.36 26.39 5.54 48.70

First step RCB 0.91 2.52 0.48 0.26 19.23 0.34 49.85
Second step RCB 0.53 1.74 0.27 0.31 18.93 0.22 42.62

3.2. Model Construction and Variable Selection

Due to the lack of surface data in the study area, in order to simulate the mining
process of a complete panel, the two-dimensional section of Figure 4 was stretched to
establish a three-dimensional model, and the grid was reasonably divided and imported
to the FLAC3D software. The final numerical analysis model of BCS is shown in Figure 5,
and the bottom dimension of the model is 300 m × 300 m, and the highest roof is 272 m
above the bottom. All of the overlying strata are included in the model, the bauxite layer
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is divided into three mining areas, and the middle of the mining area is separated by
10 m-wide pillars. According to the two-step interval process of IDBM, the mining strips
are arranged perpendicular to the orebody strike and divided into two steps, with a stope
width of 4 m, height of 3 m, and length of 50 m. The model boundary is large enough
that the impact of the model boundary could be ignored. Therefore, we used the FIX
command to limit the displacement of the bottom and side surfaces of the model to zero.
In FLAC3D software for numerical analysis, the elastic–plastic material model was chosen,
and the Mohr–Coulomb yield criterion was selected to judge material failure [29]. The
shear failure surface is simplified as a linear failure surface, which can be expressed by
Equations (1) and (2):

fs = σ1 − σ3Nϕ + 2c
√

Nϕ (1)

ft = σ3 − σ1 (2)

where σ1 is the maximum principal stress; σ3 is the minimum principal stress; c is cohesion;
ϕ is internal friction angle; Nϕ = (1 + sinϕ)/(1 − sinϕ). Additionally, when fs = 0, shear
failure occurs; when ft = 0, tensile failure occurs.
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3.3. Simulation Plan and Process

As the first step of the FLAC3D simulation, the initial equilibrium state with a maxi-
mum unbalanced force of less than 1.0 × 10−5 N is calculated based on the gravity field
condition under the maximum premise value of material parameters. Then, the displace-
ment velocity element state is returned to zero, so as to obtain the initial stress condition [30].
Under the premise of not mining coal seam and only mining bauxite for the time being,
the main steps of FLAC3D simulation are carried out according to the following three
mining conditions:

(1) Simulation of the non-mining condition. According to the given material param-
eters of each rock layer, the final equilibrium state of the model with a maximum
unbalanced force of less than 1.0 × 10−5 N is calculated directly.

(2) Simulation of the normal backfilling condition according to the two-step interval
process of IDBM. First, the odd mining strips are mined out and calculated for ten
steps based on the given material parameters of each rock layer. Second, the odd
mining strips are backfilled with the first step RCB and calculated for ten steps.
Further, the even mining strips are mined out and calculated for ten steps. Finally,
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the even mining strips are backfilled with the second step RCB and calculated for the
final equilibrium state.

(3) Simulation of the non-backfilling condition to the equilibrium state. The most danger-
ous mining condition happens when the even mining strips are mined out while the
second step RCB is cancelled.

4. Numerical Simulation Results and Analysis

According to the above simulation plan and process, the numerical simulation results
are obtained and used for analyzing the feasibility of RCB for the safe mining of BCS.

4.1. Distribution of Principal Stress

Cutting from the middle of the model along the direction of the mining strips, the
distributions of maximum principal stress and minimum principal stress are obtained and
shown in Figures 6 and 7, respectively.
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As we can see from Figures 6a and 7a, the distributions of maximum principal
stress and minimum principal stress under the non-mining condition are originally dis-
tributed like layers and decreased from top to bottom. As for the normal backfilling
condition, the principal stress was redistributed after mining disturbance and backfill (see
Figures 6b and 7b), and there are obvious differences between the stress conditions of the
pillar and RCB. The maximum principal stress and minimum principal stress of the pillar
are significantly lower than that of RCB, and both of them are negative, which indicates
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that the pillar is mainly subject to the compression action. Under the non-backfilling
condition (see Figures 6c and 7c), the maximum principal stress in the middle of the roof
and floor decreases, while the maximum principal stress of pillar improves significantly,
which is called the local tensile stress concentration. Since the maximum principal stress is
changed from negative to positive during this condition, the pillar is more prone to plastic
deformation and collapse failure, endangering mining safety. Therefore, the backfilling
treatment of mining strips can greatly alleviate the compression state of pillars and avoid
serious tensile stress concentration of the roof and floor.

4.2. Distribution of Displacement and Plastic Zone

Cutting at the same position, the distribution of Z-direction displacement under the
non-mining condition (see Figure 8a), the normal backfilling condition (see Figure 8b),
and the non-backfilling condition (see Figure 8c) are obtained, respectively. Compared
with Figure 8a,b, backfill mining will cause little floor displacement and obvious roof
displacement, especially in the middle of the roof, which is a consequence of the local
tensile stress concentration. Compared with the non-backfilling condition, the maximum
roof displacement of normal backfill mining is only 50% of that of non-backfilling, while
the roof displacement range is only 30% of that of non-backfilling.
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Since the average ultimate tensile strength of the ore direct roof C2b1 is very low, the
roof will be exposed and easily tensile-damaged once the bauxite is mined out. Extensive
crack propagation may cut through the overlying coal seam and cause gas outburst disaster,
endangering mining safety. Therefore, more attention should be paid to the ore direct roof
C2b1 during this numerical simulation. By hiding the other strata, except for the C2b1

stratum, the distribution of the plastic zone along the Z-direction under the non-mining
condition (see Figure 9a), normal backfilling condition (see Figure 9b), and non-backfilling
condition (see Figure 9c) are obtained, respectively.

As we can see from Figure 9, no roof unit is damaged under the non-mining condition,
while a certain amount of partial failure units will occur in the roof under the normal
backfilling condition. Most of the partial failure units belong to tensile failure and are
caused by the local tensile stress concentration, which is consistent with previous analysis.
Since the number of failure units is limited and has not formed a penetrating area, the roof
damage can be contained easily during the normal backfilling process. In contrast, there are
a great many tensile-damaged units in the case of the non-backfilling condition, and several
penetrating areas have formed and just corresponded to the position of mining strips.
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4.3. Extreme Values of Principal Stress and Displacement

The extreme values of the maximum principal stress of the roof and the minimum
principal stress of the pillar can be obtained from Figures 8 and 9. The maximum displace-
ment of the roof in Z-direction can be obtained from Figure 7. Under non-mining, normal
backfilling, and non-backfilling conditions, the extreme values of bauxite and coal are listed
in Table 4. Meanwhile, the line charts of these extreme values are drawn and shown in
Figure 10.

Table 4. Extreme values of principal stress and displacement under different mining conditions.

Model Location Condition Maximum Principal
Stress of Roof (MPa)

Minimum Principal
Stress of Pillar (MPa)

Maximum Displacement of
Roof in Z-Direction (cm)

Bauxite

Non-mining −0.9228 −1.1236 −0.0283

Normal backfilling −0.1992 −6.9180 −0.9009

Non-backfilling 0.4956 −9.3295 −1.2322

Coal seam

Non-mining −0.4863 −2.1303 −0.0068

Normal backfilling −0.3942 −1.9428 −0.3416

Non-backfilling −0.4139 −1.9480 −0.4965
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It can be seen from Table 4 that the mining disturbance redistributes the in-situ stress
field of overlying strata and changes the bauxite roof and floor stress state from compression
to tension and the pillar stress state from common compression to the local tensile stress
concentration. Normal backfilling can not only reduce the pressure stress of pillars, but
also release the tensile stress in the roof and floor from positive to negative, effectively
preventing roof subsidence. For example, the maximum principal stress of a bauxite roof
under normal backfilling conditions is −0.1992 MPa, while that of non-backfilling conditions
is +0.4956 MPa. The minimum principal stress of a bauxite pillar under normal backfilling
conditions is −6.9180 MPa, which is reduced by 26% than that of non-backfilling conditions.

It can be seen from Figure 10 that backfilling mining has an obvious influence on
the maximum displacement of the roof in Z-direction. For example, the maximum dis-
placement of the bauxite roof in Z-direction under the normal backfilling condition is
−0.9009 cm, while that of the non-backfilling is −1.2322 cm. The maximum displacement
of a coal seam roof in Z-direction under the normal backfilling condition is −0.3416 cm,
which is reduced by 31% of that of the non-backfilling condition. As long as the mining
strips are backfilled in time after being mined out, the roof tensile failure can be prevented
from developing effectively, and the serious tensile stress concentration of pillars will be
avoided. Therefore, RCB shows excellent superiority in ground pressure management and
mining safety guarantees, and the RCB mining technology of layered soft BCS is technically
feasible and economically reasonable.

5. Coupling Mechanism Analysis of Paste Backfill and Layered Soft Rocks

Layered rock mass with different failure forms exists widely in steep slope and
underground mining engineering [31]. Microscopically, the failure of the layered rock mass
can be divided into five forms, including penetrating shear failure, bedding shear failure,
composite shear failure, bedding sliding failure, and compression distortion failure [32].
The overlying strata of bauxite, which belong to typical plate-cracking structural rocks, are
refractory clay ore, sandy clay rock, coal seam, thin layer sandstone, black mudstone, and
other soft, brittle rocks. Its particularity is that even if the stress is not too high, structural
failure and instability may occur [33]. The layered soft rocks tend to exhibit structural
rather than material destruction, which is manifested in the phenomenon of roof bending,
side collapse, floor heave, and so on [34].

As shown in Figure 11a, if bauxite ore is mined by the traditional open-stope method,
then a large number of pillars will be left in a stope to support the roof [35]. Since the
stability of pillars deteriorates sharply under the continuous action of blasting vibration,
weathering, and leaching, these high-quality resources will be difficult to recover with the
passage of time, resulting in permanent losses [36]. Meanwhile, continuous high-strength
mining of bauxite will also produce large-scale goafs, easily causing roof fall and side
collapse accidents. As a result, these accidents may lead to caving zones, fissure zones, and
bending subsidence zones occurring in the above clay layer [37], as shown in Figure 11b.
Extensive crack propagation may cut through the overlying coal seam and cause gas
outburst disaster, endangering mining safety. In addition, large-scale goafs may also lead
to surface subsidence and collapse, causing serious damage to surface rivers, highways,
and structures [38].

As shown in Figure 11c, backfilling has been recognized as an excellent method for
goaf disposal and ground pressure management [39]. Paste backfill entering goafs interacts
with surrounding rocks after osmotic dehydration and consolidation hardening, then a
series of complex interactions will make a difference [40]. First, crack propagation and large
deformation can be effectively suppressed by paste backfill for sealing the releasing face
of elastic potential energy. Secondly, broken soft rocks can be supported by paste backfill
to provide lateral pressure on the slip trend. Additionally, under the action of interfacial
frictions between paste backfill and side rocks, partial self-weight stress of roofs can be
transferred and the closure trend of stopes will be suppressed [41].
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Subject to the uneven stope roof and paste backfill sinking, there will be an uncon-
nected area of 0.1–0.3 m above the backfill body (see Figure 11d), but paste backfill can
still play an excellent supporting role and effectively control the roof disturbance within
3 m. Although limited unconnected areas may cause the structural failure of direct roofs,
a certain extent of roof failure is beneficial to alleviate the stress concentration and block
the disaster chain effect of rock burst, which is known to be caused by the accumulation
and sudden violent release of the surrounding strain energy [42]. Meanwhile, due to the
crushing expansion character of rocks [43], a small amount of roof collapse rocks can fill
the unconnected 0.1–0.3 m area, thus completely eliminating the hidden danger of goafs
and closing the release surface of strain energy. In addition, the combined bearing structure
of collapsed rocks and backfill body is both rigid and flexible, which has the advantages of
high stiffness from rigid rocks, and a large buffering effect from the backfill body. Since
creep damage of the flexible backfill body will absorb and dissipate lots of energy, the
overall effect of collapsed rock and the backfill body is better than that of single rigid
rocks [44].

6. Conclusions

This study explored the feasibility of recycling BRM as a backfilling aggregate for the
safe and efficient mining of layered soft BCS. A series of tests were conducted to prevent
the pollution diversion of BRM from surface storage to underground goafs, and avoid
polluting the groundwater. A numerical simulation analysis of the backfilling mining
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process was carried out based on the FLAC3D software to protect the overlying coal seam
and ensure mining safety. The following conclusions were drawn.

(1) As a strong alkaline solid waste produced by alumina industry, BRM contains plenty
of alumina, iron oxide, titanium dioxide, sodium oxide, and calcium oxide, which
are difficult to remove and easy to pollute the surface environment by open storage.
Since PO 42.5 cement shows a slow solidifying rate and low early strength when
mixed with BRM, S95 slag powder and lime were evenly mixed with BRM with a
cement–sand ratio of 1:6 and 60% mass concentration, which solidified quickly within
12 h and reached a high strength of 1.1 MPa in 7 days.

(2) Under the action of encapsulation, solidification, and inhibiting precipitation from
cementitious materials, the bleeding rate of RCB is only 5% and the leaching concen-
tration of harmful substances can be reduced by 70% more than fresh BRM. After
flowing into a water sump through a gutterway, the bleeding water can be further
diluted at least 50–100 times to the Grade I groundwater standard of China, and
finally discharged to a surface sewage tank for centralized purification and recycling.
Therefore, RCB is technically feasible, economical, and reasonable, and has significant
environmental protection and safety demonstration effects.

(3) Taking a typical bauxite mine in Shanxi as an example, a three-dimensional model
was constructed by FLAC3D software, the IDBM was selected as the main mining
method, and the Mohr–Coulomb yield criterion was selected to judge material failure.
The results show that backfill mining will cause little floor displacement and limited
roof displacement; the maximum roof displacement of normal backfill mining is only
50% of that of non-backfilling, while the roof displacement range is only 30% of that
of non-backfilling.

(4) Mining disturbance redistributes the in-situ stress field of overlying strata; normal
backfilling can not only reduce the pressure stress of pillars, but also release the
tensile stress in the roof and floor from positive to negative, effectively preventing roof
subsidence. The maximum principal stress of bauxite roof under normal backfilling
conditions is −0.1992 MPa, while that of non-backfilling is +0.4956 MPa. The maximum
displacement of a coal seam roof in Z-direction under normal backfilling conditions is
−0.3416 cm, which is reduced by 31% more than that of non-backfilling condition.

(5) Layered soft BCS belongs to typical plate-cracking structural rocks, the structural
failure and instability of which may occur even if the stress is not too high. Continuous
high-strength mining of bauxite will produce large-scale goafs, easily causing roof fall
and side collapse accidents, and may also cut through the overlying coal seam and
cause gas outburst disaster. Since creep damage processes will absorb and dissipate
lots of energy, past backfill shows excellent superiority in goaf disposal and ground
pressure management. Under the overall effect of collapsed rock and the backfill
body, the disturbance range of IDBM is controlled within 3 m, which is only 10% of
the open-stope method.
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