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Abstract: In this study, siliceous nodules from the world-famous Myrtos beach, as well as from
Avithos beach, in the western flanks of Kefalonia Island in Greece are examined by means of petro-
graphical, mineralogical, geochemical and micropaleontological methods. The objectives of this study
are to characterize the textural and compositional features of the nodules, with the aim to provide an
initial interpretation of their origin and their diagenetic evolution. The studied siliceous nodules are
hosted within Lower Cretaceous thin-bedded limestones at Myrtos and Upper Eocene limestones
at Avithos. Nodules from both areas display a characteristic concentric texture at a macroscopic
and microscopic scale. They both have a dense fine-grained siliceous sedimentary fabric, composed
mainly of microcrystalline or cryptocrystalline quartz and moganite with common residual calcite
in the case of Avithos. These results, and in particular the shape of the nodules, along the textural
and compositional characteristics, indicate different conditions of formation in the two localities,
both during the early epigenetic stages, as well as later during the diagenetic processes. Myrtos
nodules originated from Si-precursors deposited in a pelagic environment, going through intense
Si-replacement. Avithos nodules were deposited in a more proximal environment, being influenced
by a less intense silicification. Nevertheless, the higher degree of recrystallization of Avithos samples
indicates a syn- or post-diagenetic tectonic activity that resulted in the circulation of geothermal
fluids. The conclusions drawn from this work demonstrate the usefulness of thorough studies of
siliceous nodules in order to get a more comprehensive understanding of the initial depositional
conditions, as well as diagenetic pathways and processes.

Keywords: cherts; flint-like rocks; Kefalonia island; moganite; siliceous nodules

1. Introduction

Different varieties of siliceous sedimentary rocks (i.e., siliceous nodules, cherts, porce-
lanite, etc.) have been investigated all over the world according to their textural, sedimen-
tological and physicochemical characteristics [1–6]. Among the siliceous sedimentary rocks
the cherts are dominant, being described as siliceous hard-dense rocks consisting mainly of
micro to cryptocrystalline quartz and low impurities, ranging in ages from Precambrian to
Quaternary. The most common mode of origin of Si in these lithologies is either related to
biogenic or hydrothermal processes [2,6,7]. Siliceous lithologies usually are hosted within
carbonate rocks (e.g., limestones, chalk) as layers or as nodules, the latter after replacement
of carbonate minerals by amorphous biogenetic silica under changing palaeodepositional
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or diagenetic conditions [7–9]. Varieties of the siliceous nodules that display zoning of
high-purity micro-layers of grey-tones are commonly termed as flints [1,10].

The increased scientific interest in siliceous rocks, either from geologists, gemologists,
or archaeologists, lies in the fact that these lithotypes have been extensively used by various
cultures throughout human history because of their hardness and weathering resistance.
Furthermore, their systematic study provides significant information about their silica
source, the palaeo-depositional conditions and the diagenetic evolution [1,3,7]. For instance,
Gotze et al. [11] have shown an inverse correlation between the amount of moganite in
agates with their age of formation, while Bourli et al. [3,4] have related the different sizes of
siliceous nodules with redox-diagenetic zones and host rock characteristics. Nevertheless,
the variety of siliceous nodules types, host rocks, the timing of formation and diagenetic
pathways does not allow for a simplistic “genesis-model”, although the importance of
Si-input and redox boundaries in the sea-bed subsurface play the most crucial role at the
early epigenetic stages, e.g., [1,11].

Moreover, the detailed petrogeochemical evaluation of such rocks in combination with
their physico-mechanical properties contributed further to the knowledge of their potential
utilization. Luedtke [12] highlighted the strong relationship between mineralogical and
microstructural characteristics of siliceous rocks (cherts), as well as their water content with
their thermo- mechanical strength and knapping characteristics. Nevertheless, nowadays
siliceous rocks are mainly used as gemstones and tumbled stones, and less for other
purposes (e.g., guns, blades, ceramics, construction materials) [12].

On the other hand, archaeologists focus on the sources of chert artifacts, since these
rocks played an important role in being used as tools by prehistoric communities, after
knapping or heat treatments. Physicochemical characteristics (e.g., hardness, color, impuri-
ties, etc.) and macro-microtextural characteristics (e.g., shape, fracture, lustre, mineralogy,
grain size, weathering phenomena) are very important criteria for researchers and related
provenance studies of chert artifacts, providing significant answers about their signature,
the past human techniques and culture or further information about the migration of popu-
lations and trade development [6,12–14]. However, recent studies indicated that a detailed
macroscopic and petrogeochemical characterization of the siliceous stones is necessary
for provenance issues to be answered [6,15]. In Greece, as in many places around the
world, outcropping siliceous rocks have been studied, as well as artifacts from different
regions such as Western Macedonia, Aegean area or Ionian Sea from both geological and
archeological points of view [3,4,16–18].

Although siliceous nodules from Kefalonia island have been the subject of a recent
study [4,18], in this article the characteristics of siliceous nodules hosted within carbonates
that outcrop in Myrtos and Avithos bays, respectively (Figure 1), in the western coastal part
of Kefalonia island (Greece), are presented for the first time. The objectives of this study
focus on the textural and compositional features of the nodules by applying a set of optical
and electron microscopical techniques, mineralogical and geochemical analyses. The aim
of this initial approach is to provide a base characterization of the siliceous nodules, as well
as an interpretation of their origin and diagenetic evolution.
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2. Geological Setting

Kefalonia Island belongs to the Ionian Islands and lies at the external edge of the
Hellenides fold-and-thrust system created in response to the Cenozoic continental collision
following the closure of the Tethys Ocean [20–23]. The external Hellenides lie to the
west of the Pindos thrust and are subdivided into three units: the Gavrovo, the Ionian,
and the Pre-Apulian Units. The Gavrovo and the Ionian Units have been considered to
represent the external large Hellenide thrust sheets emplaced onto the relatively stable Pre-
Apulian autochthon, as part of the latest Hellenic orogenic events [20,24–26]. The geological
structure of Kefalonia consists of two different geotectonic units (alpine formations) of the
External Hellenides, with an overall NNW-SSE orientation (Figure 1).

The Pre-Apulian Unit, in the west, is the autochthonous foreland of the Hellenic
fold-thrust belt, and is generally believed to have been unaffected by major shorten-
ing [20,24,26–30], covering the major part of the island. The Ionian zone appears in the
southeastern part of the island, and is thrusted over the Pre-Apulian Unit.

From the Triassic to the Late Cretaceous, Western Greece was part of the Apulian
continental block on the southern passive margin of Tethys. Specifically, the island of
Kefalonia is characterized by widely exposed Cretaceous limestones of the Pre-Apulian and
Ionian Units, which were deposited at the margin of the Apulian carbonate platform. The
Pre-Apulian Unit of the Kefalonia island is characterized by a continuous sequence of neritic
carbonate rocks (dolomites, limestones, marly limestones), with deposition starting in the
Early Cretaceous and continuing until the Late Miocene (marly sediments, often sandstones,
alternating with brecciated limestones). The Ionian Unit comprises sedimentary formations
ranging from Triassic evaporites to Jurassic Upper Eocene carbonate rocks, including minor
chert and shale horizons, overlain by Oligocene flysch deposits [29–31]. Finally, Pliocene-
Quaternary formations can be identified, which rest unconformably on the older rocks
(Figure 1).

Myrtos bay is located in northwestern Kefalonia, in a transitional zone, between the
northern part of Mount Aenos (Mount Agia Dynati) and the southern part of the Erissos
(Kalon Oros) peninsula. The region belongs to the Pre-Apulian Unit, consisting of Upper
Cretaceous limestones, Paleocene fine-bedded pelagic limestones, Eocene well bedded
pelagic limestones (up to 120 m thick) including greyish to reddish chert beds, and finally
Miocene marl formations. Tectonically, this area is affected by the NW-SE strike-slip reverse
fault of Agia Efimia [3], since the area is still under stress. The Avithos region presents
strongly tectonized and folded Eocene limestones, which are unstratified or densely bed-
ded with bioclasts of foraminifera (Nummulites, Alveolina) and algae (Microcodium). The
thickness of these neritic limestones does not exceed 40 m.

3. Materials and Methods

Sampling took place in outcropping carbonate cliffs at Myrtos Beach (MB, Figures 1 and 2)
and Avithos Beach (AVB, Figures 1 and 3). A total of three nodules were collected from each
site based on their macroscopical characteristics (i.e., shape, texture, size, and colour based
on [32]). However, since the nodules displayed very similar macroscopic and petrographic
features, only one sample per site was geochemically analyzed.

The MB samples derived from Myrtos Beach being located within thin-bedded micro-
crystalline white carbonates (Figure 2), whereas the AVB samples were collected as clasts
within the Neogene-Quaternary conglomerate, being a detrital input from carbonate strata
(Figure 3).

Bulk mineral composition of six samples (MB1-3 and AVB1-3 from Myrtos and Avithos,
respectively) was determined through X-ray powder diffraction (XRPD) analyses, using a
Bruker D8 Advance diffractometer with Ni-filtered CuKa radiation, at 40 kV/40 mA with a
~2%–4% detection limit (Section of Earth Materials, University of Patras). Random powder
mounts were pressed into the available holders. The specimens were scanned twice in the
ranges of 3–70◦ and 17–24◦ 2θ with a scanning angle step 0.015◦/0.3 sec. and 0.015◦/10 sec.
respectively. The mineral phases were detected using the DIFFRACplus EVA 12® software
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(Bruker-AXS, Billerica, MA, USA) based on the ICDD Powder Diffraction File of PDF-2 2006.
Semi-quantitative analyses were performed based on the peak area calculations and using
the same software and the “area” toolbox, while calculations of crystal sizes were carried
out according to the Scherrer formula [33]. The petrographic examination of the collected
samples was conducted on polished-thin sections using a polarizing microscope (Leica
Microsystems, Leitz Wetzlar, Germany, Section of Earth Materials, University of Patras).
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A detailed observation of the microstructure and the distribution of silica was per-
formed by Scanning Electron Microscopy (SEM). The thin sections were gold coated and
were examined by a JEOL 6300 SEM at the Laboratory of Electron Microscopy and Micro-
analysis of the School of Natural Sciences, University of Patras. The SEM is equipped with
an energy dispersive (ED) spectrometer and is operating under an accelerating voltage of
20 kV.

Transmission Electron Microscopy analysis was performed on the MB samples, in
order to gain an insight into the variation in silica features between the outer rim (MB1a)
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and the inner core (MB1b) of the nodule. The analyses were conducted on a JEOL JEM-
2100 system at the School of Natural Sciences, University of Patras, operated at 200 kV
(resolution: point 0.23 nm, lattice 0.14 nm). TEM Images and Selected Area Electron
Diffraction (SAED) patterns were recorded by means of an Erlangshen CCD Camera (Gatan
Model 782 ES500W). The selected specimens (MB1a, b) were prepared by dispersion in
water and spread onto a carbon-coated copper grid (200 mesh).
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Additionally, Raman spectra were collected from representative samples in order to
detect the Si-bearing phases and complemented the TEM and XRD analysis. The examina-
tion was conducted using a Jobin-Yvon Horiba LabRam-HR Mirco Raman spectrometer
that is coupled with an Ar+ excitation source wavelength 514 nm and is equipped with an
Olympus microscope (the 20× objective was used). The spectra were recorded within a
20 s acquisition time in the case of 10 successive spectral windows. The observation was
conducted at the Laboratory of Electron Microscopy and Microanalysis of the University of
Patras.

For determining the geochemical composition, one sample per site was examined
through Wavelength Dispersive X-Ray Fluorescence (WD-XRF), in order to get the con-
centrations of major, minor and trace elements. The analysis was also carried out at the
Laboratory of Electron Microscopy and Microanalysis of the University of Patras. An
amount of 1.8 g of dried ground sample was mixed with 0.2 g of wax (acting as a binder)
and was pressed on a base of boric acid to a circular powder pellet of 3.2 cm in diame-
ter. Analyses were performed with a RIGAKU ZSX PRIMUS II spectrometer, which is
equipped with Rh-anode running at 4 kW. Loss on ignition (LOI), as a measure of the
volatile substances, was determined as weight loss during combustion at 950 ◦C for 2 h.

Thin sections were examined under an OPTIKA B293 optical microscope to identify
and determine the microfauna and particularly the planktonic foraminifera.
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4. Results
4.1. Macroscopic Lithological Features and Micropaleontolofical Findings

Macroscopic similarities and differences were observed among the sampled siliceous
nodules from the two different localities (Table 1). In all hand rock samples a microcrys-
talline to cryptocrystalline texture with a conchoidal fracture and a hardness of 6.5–7 in
Mohs scale were identified, while a distinct colour-zonation is recognized, with colours
ranging from white to grey to beige grey.

Table 1. Macroscopic features and micropaleontological data of the studied siliceous nodules.

Sample AVB1 MB1

Colour
(based on Munsell
Chart) [32]

Light grey to pale yellow (2.5Y 7/1-6/1) with grey
laminations (2.5Y 5/1) Light grey (Gley 1 7N)

Texture of surface rough smooth

Cortex and alterations Very thin Alteration such as white patina of 5 mm to 1 cm

Shape of nodules Elliptical Subspherical

Identified fossils

Radiolaria—Nasselaria and Spumelaria, Turborotalia
cerroazulensis, Algae,
Subbotina yeguaensis,
Subbotina sp., Eorupertia sp.

Radiolaria—Nasselaria and Spumelaria, Globigerinelloides
ferreolensis, Alanlordella
bentonensis, Hedbergella rishi, Hedbergella gorbachicae,
Clavihedbergella sp.

Inferred
depositional setting Proximal (toe of slope) Distal (more pelagic)

Collected nodules from Myrtos area (MB1 sample) are characterized by a dense, hard,
grey-coloured body, with a sub-vitreous lustre covered with an outer white crust of a few
centimeters in width exhibiting lower hardness than the inner grey part (Figure 2) and in
some parts affected by red-brown metallic oxide precipitates. Moreover, the main body
shows a concentric cryptocrystalline texture from the inner to the outer part of the core
with slight variations in colour.

The AV1 sample displays also a distinct light/dark zonation (Figure 3), nevertheless it
is rougher and coarser with a micro- rather than a cryptocrystalline texture, in comparison
to the MB1 sample (Figure 3).

Through micro-paleontological analysis (Table 1), an Early Cretaceous age (Aptian-
Albian) is implied for the MB1 sample, and a Late Eocene (Middle Bartonian-Priabonian)
age for the AV1 (Table 1, Figure 4).
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4.2. Mineralogical Composition

Representative semi-quantitative results and X-ray diffractograms of the studied
samples are presented in Table 2 and Figure 5, respectively.
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Table 2. Semi quantitative analysis of mineral composition in studied samples (% crystalline phases).

Sample Calcite Moganite Quartz Fe-Oxides

AVB1 13 3 84 tr
MB1a <2 2 95
MB1b <2 2 95

In the case of sample AVB1 (Figure 5) the major crystalline phase is, as expected, quartz
(84 wt%) coexisting with low amounts of calcite (13 wt%). Moganite was also detected in
minor amounts. Moreover, the high intensity and sharpness of X-ray diffraction peaks of
quartz indicated its well crystalline character, while the X-ray diffractogram did not present
any evidence of amorphous material in the matrix. According to the XRD analyses, the
detected phases in MB-1a, b samples (Figure 5) consist predominantly of well crystalline
quartz (95 wt%) with minor occurrences of moganite and traces of calcite. Based on the
Scherrer formula calculations [33], the mean quartz particles size was 59, 37, and 40 nm, in
AVB1, MB1a, and MB1b samples, respectively.

4.3. Optical Petrographic Features

The optical petrographical study under the polarizing microscope revealed that sample
AVB1 is comprised of microcrystalline to cryptocrystalline siliceous material, filling the
initial pores and acting as cement and/or replacing partially primary calcite and bioclasts
(Figure 6). The syngenetically deposited grains or bioclasts usually retain their initial
shape (“ghost crystals”) after being substituted by fine-grained quartz (Figure 6c). Locally
spherulitic texture from radiating fibrous chalcedony with a diameter up to 300 µm was
developed (Figure 6c,d), while microsparite was also observed. Frequent quartz crystals
exhibit a drusy texture (Figure 6c), due to their different colours (white-grey to yellow).
Additionally, the concentric textural characteristics observed in the microstructure of
these rocks indicate selective replacement of micritic limestone from siliceous material
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(Figure 6a,b). This mechanism led to the different ratios of silicate/carbonate minerals in
different zones as is evident in the microscale observation.
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a siliceous-rich matrix; (e,h) bioclasts remnants (Bc), and micritic bioclasts partially replaced by
siliceous material (P-Bc) within the matrix.

Samples MB-1a and 1b exhibit a finer and more homogenous siliceous texture com-
pared to that in AVB1 (Figures 7 and 8). The MB samples comprise mainly microcrystalline
to cryptocrystalline quartz acting as cement, with spherulites of chalcedony usually of
smaller diameter compared to those in AVB1. Rare radiolarian and “ghost” calcareous
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bioclasts are almost totally replaced by silica (Figure 7c). Significant texture variations
between the main body and its rim were not distinguished, whilst the outer surface of these
nodules (sample MB1a, Figure 7) exhibit a more cryptocrystalline texture compared to the
main body (MB1b, Figure 8), locally with iron oxides (Figure 7c,d), as well as with a more
porous matrix (Figure 9).
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Figure 9. Photomicrographs in cross polarized light (XPL) comparing the textural characteristics of
(a) inner part of nodule (MB1b); (b) a slightly more porous texture is evident for the outer surface
(sample MB1a), (Sph: spherulite of a “ghost radiolarian”).

4.4. Scanning Electron Mircoscopy (SEM-EDS) and Transmission Electron Microscopy (TEM)
Analysis

SEM-EDS analyses confirmed the optical petrographic examination. Representative Si,
Ca elemental mapping analyses indicate that apart from the siliceous material in sample
AVB1, there are significant calcium concentrations, representing the carbonates based on the
petrographical results (Figure 10a–c). Moreover, scarce remnants of bioclasts were observed
in the MB1a microstructure (Figure 10a), while recrystallized fibrous quartz commonly
replaces carbonate bioclasts (Figure 11c,d).
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The study of samples MB1a and MB1b using a transmitted electron microscope (TEM)
showed the nanometer and micrometer size of crystallites in the siliceous rock (Figure 12a,b).
Crystallites of nano scale were observed mainly in sample MB1a, whereas both nano and
micro crystallites were present in sample MB1b. Quartz crystallites were recognized in
both samples as evidenced by all the strong diffractions d = 3.3, 4.2, 2.4. Å (Figure 11a,b).
Moganite was also recognized in the SAED of Figure 11 a by the diffraction d = 3.1 Å. TEM
examination complemented XRD analysis confirming the presence of moganite in sample
MB1.

4.5. Raman Spectroscopy Results

Micro-Raman spectroscopy was performed on samples MB1a, b and AVB1, and all the
spectra were normalized based on the maximum intensity of each spectrum (Figure 13).
The aim was to detect the silica polymorph moganite. A band at 464cm−1 represents Si-O
vibrations that are associated with quartz, whereas a band at 502 cm−1 is associated with
moganite [34,35]. Moganite was detected in both samples with slight differences in peak
areas and relative intensities in the spectra (Figure 13), especially in the case of sample
MB1a. Specifically, the external surface-patina of MB1 (white area, MB1a) shows a broader
peak area and lower peak intensity compared to samples MBIb and AVBI, being probably a
result of lower content and/or lower crystallinity of the siliceous material within MB1a.
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patterns (inset); and (b) quartz’s crystallites and reflections in the SAED pattern (inset). Due to
similarities in quartz and moganite d-spacings, there are not discrete moganite domains.
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4.6. Geochemical Features

Representative chemical analyses of the studied samples are presented in Table 3.
Results from sample AVB1 indicate that its bulk composition is comprised mainly of
silicon oxide (87 wt%), lower amounts of calcium oxide (6 wt%) and traces (<0.5 wt%) of
other oxides and elements. The loss on ignition (LOI) was determined at 7.16 wt% and
after combination with the aforementioned mineralogical results, it could be principally
attributed to the carbonates and with small amounts to hydrated amorphous or semi-
crystalline silica-rich phases. The latter phases could not be detected using XRD, as they
occur in concentrations below the detection limit and/or their crystallinity could not be
resolved (Figure 5).

Table 3. Representative chemical analyses of the studied samples.

Oxides
wt% AVB1 MB1a MB1b Elements

mg/kg AVB1 MB1a MB1b

SiO2 87.40 98.30 98.70 Cr 18 15 22
TiO2 0.02 0.02 0.02 Co 154 68 67
Al2O3 <0.01 0.05 <0.01 Ni <1 3 3
Fe2O3

t 0.03 0.01 0.01 Cu 21 15 8
MnO 0.01 0.01 0.01 Zn 10 7 8
MgO 0.29 0.13 0.10 Rb <1 <1 <1
CaO 6.17 0.15 0.14 Sr 56 6 5
Na2O 0.10 0.11 0.12 Y <1 <1 <1
K2O 0.02 0.03 0.03 Zr 2 <1 <1
P2O5 0.01 0.02 0.01 Nb <1 5 29
LOI 7.16 0.91 1.16 Pb 20 25 18
Total 101.22 99.74 100.31 Ba 14 <1 <1

V 23 24 24
Hf <1 <1 <1
S <1 3 555

Siliceous nodules from Myrtos area (MB1a, b) have high purity siliceous materials
(containing 98.26–98.67 wt% SiO2) with minor occurrences of other oxides and trace ele-
ments in their matrix, in accordance with the petrographic and mineralogical results. The
LOI values are much lower (0.91–1.16 wt%) compared to that in sample AVB1 and related
mainly to minor carbonates and silica-rich hydrated material. The rims of sample MB1
(MB1a) exhibited a higher LOI value compared to its body. Among the trace elements,
only sulfur in sample MB1b exhibited values above 200 ppm, whereas Sr displays elevated
values in sample AV1, probably related to the high content of Ca in carbonate remnants.

5. Discussion: Formation of the Nodules and Their Diagenesis

The studied siliceous nodules from Myrtos and Avithos beaches in Kefalonia Island
display characteristic concentric textures both at macroscopic and microscopic scale, being
more evident in samples from Avithos beach. In general, the analyzed nodules from both
locations display a dense fine-grained siliceous sedimentary fabric, composed mainly of
microcrystalline or cryptocrystalline quartz with rare to common residual calcite. These
characteristics are similar to the features of the siliceous concretions from Ionian Islands
described by Bourli et al. [4], although in our case the micro-zoning is more evident.
Siliceous Radiolaria and other bioclasts in the microstructures of the nodules reflect the
biogenic source of silica.

The principle textural characteristics of the studied nodules, namely the grain size
and the concentric zoning, are attributed to the very early burial (early epigenetic) stage
and/or diagenetic conditions of formation [7,36,37]. During the early epigenetic phase,
the major factors include the physicochemical conditions below the seabed (i.e., redox
potential) that control silica dissolution and precipitation, any bioturbation activity and
the textural characteristics of the surrounding calcareous muds. In later diagenetic stages,
the major factors include the textural characteristics of the host rocks, including porosity,
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any tectonic activity resulting in fracturing, as well as circulation of diagenetic and/or
hydrothermal/geothermal fluids.

Generally, moganite, being a polymorph of SiO2, is used as a diagenetic index, since
it is considered a moderate phase of amorphous to the microcrystalline quartz forma-
tion [9,10,38]. Therefore, the occurrence of moganite in the studied samples implies that
biogenetic amorphous silica was initially precipitated, and almost totally recrystallized
later as the degree of diagenesis increased [3]. Therefore, the amount and or the crystallinity
of moganite, as well as the formation of crystalline quartz at the expense of moganite and
amorphous phases, are measures of compaction during burial and/or effects of circulated
diagenetic/hydrothermal solutions, as well as tectonic impacts. The moganite content
of the studied samples, using the work of Graetsch and Grüenberg [39], indicates an ap-
proximate age of formation of ~150 Ma. This age is in accordance with the depositional
age of the Lower Cretaceous Myrtos samples, but the Avithos samples are much younger
(Eocene); therefore an additional impact apart from the normal burial history is implied for
Avithos siliceous nodules.

In order to elucidate the depositional environment, certain geochemical proxies are
applied. Based on the relative concentrations of silica, aluminum and iron oxides [40] it is
suggested that the depositional setting was a continental margin (Figure 14a). Moreover,
the diagram proposed by Adachi et al. [41] (Figure 14b) suggests a hydrothermal impact;
nevertheless, both in Pre-Apulian and Ionian Units no magmatic activities have been
reported, hence in our case it is more appropriate to accept the influence of diagenetic
(geothermal) fluids.
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5.1. Myrtos Siliceous Nodules

Based on the remaining bioclasts within the matrix of the nodules, the Myrtos nod-
ule is of Early Cretaceous age, hosted within thin-bedded microcrystalline limestones,
which were formed in a pelagic relatively deep-water environment. The MB nodules are
composed almost entirely of siliceous material (mainly quartz) reflecting a Si-rich palaeoen-
vironment, as well as Si-precipitation under relatively stable physicochemical conditions
(Gotze et al., 2021) at the early epigenetic stage shortly after burial [40]. The high silica con-
tent in such conditions can probably be explained by the higher solubility of calcium ions
acting as electrolytes, in comparison to Si; this Ca2+ saturation of the solution is reflected
by the deposition of pure micritic limestone, acting as host rocks. This process favoured
the observed advanced silicification [42] in Myrtos, evidenced by the appearance of “ghost”
radiolarian and calcareous bioclasts being totally replaced by silica.

An interesting feature of the Myrtos nodules is the younger outer white siliceous
crust (MB1a, Figure 3), which exhibits lower hardness, as well as smaller size of quartz
crystals compared to the main body (M1Ab). The formation of this crust is related to the
occurrence of bioclast remnants that were resistant to silicification (Figures 11 and 14b) [42].
Alternatively, it may be the result of frictional activity at the interface of the nodule and the



Minerals 2022, 12, 101 15 of 17

host rock. Additionally, the minor occurrence of opaque minerals in micro-areas of the MB
matrix may be associated with diagenetic solutions circulation during the episode of rim
precipitation and/or the result of weathering contributing further to a loose structure [12].

Moreover, the size of the spherulites (up to 200 µm) can be attributed to the host
porosity and/or the size of the grains replaced in the host rock [42]. The primary poros-
ity of the host rock seems to influence the final size and shape of the siliceous nodules;
Pelagic limestones like the Lower Cretaceous in Myrtos have low porosity that might
have contributed to the observed well-formed sub-spherical and spherical nodules during
diagenesis.

5.2. Avithos Siliceous Nodules

The studied nodules from Avithos contain bioclasts that point to the Eocene age. Since
the published geological map of the area does not show Cenozoic carbonate strata in
the vicinity of Avithos it is safe to assume that either the local stratigraphy is not well
documented, or that the nodules represent lithologies of the Eocene of the Ionian Unit
developing in the eastern part of Kefalonia island (see Figure 1) and have been transported
for a long distance (i.e., allochthonous); actually, as described in the sampling section, the
studied AVB nodules were retrieved from a Neogene-Quaternary conglomerate.

The nature of the bioclasts from Avithos represents a shallow shelf or toe of slope envi-
ronment, in which the sedimentation regime was influenced by both chemical precipitation
and detrital influx.

The texture of the AVB nodules shows selective replacement of primary carbonates by
siliceous material; nevertheless, the frequent remnants of calcite, indicate more variable
physicochemical conditions than in Myrtos case, as well as on the silica supply during the
period of precipitation. Moreover, in the case of AVB1 siliceous nodule, in which calcite
has remained, Sr was also not totally mobilized to the host rocks. The larger size of the
spherulites (up to 300 µm) of the nodules are probably attributed to a larger porosity of the
host rock [37]. Nevertheless, additional factors that could play a significant role include
the tectonic activity, in combination to the circulation of geothermal or diagenetic fluids.
The epigenetic tectonic impact is more evident in the Avithos nodules, as the microfaulting
indicates, promoting additionally the secondary porosity [43]; this more evident impact can
either be related to the intensity of the tectonism, and/or to the calcite impurities within
the nodules that reduce the mechanical strength.

In terms of diagenetic imprint, the presented data, particularly of the quartz and
moganite relative concentrations and crystallinity, suggest that the Avithos nodules display
larger crystals of quartz, as well as higher crystallinity of moganite (Figure 13) than the
nodules in Myrtos. Hence, although younger in age than Myrtos, Avithos nodules seem to
have experienced higher degree of diagenesis, possibly related to a combination of other
factors, such as tectonic and geothermal impacts.

6. Conclusions

This research work involves a first attempt to study the characteristics of siliceous
nodules hosted within carbonates that outcrop in Myrtos and Avithos beaches, in the
western coastal part of Kefalonia Island, in Greece. The objectives of the study focus on the
textural and compositional features of the siliceous rocks by applying a set of optical and
electronic microscopical techniques, mineralogical and geochemical analyses. The main
conclusions of this study are summarized below:

• In Myrtos and Avithos beaches concentric spherical and elliptical siliceous nodules
occur, respectively.

• Myrtos nodules formed in a more distal and deeper palaeoenvironment than the
Avithos ones.

• The presence of moganite in both sites suggests an amorphous silica precursor of
biogenic origin such as from Radiolaria.
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• The Lower Cretaceous Myrtos siliceous (flint-like) nodules exhibit higher siliceous
purity than the Eocene Avithos nodules, which contain significant calcite residue.

• However, the obtained data indicate a higher degree of recrystallization for the
siliceous nodules in Avithos than in Myrtos, probably related to the circulation of
diagenetic fluids along tectonic fractures.

• The distribution of Al-Fe-Mn provides additional evidence for a geothermal-related
imprint in Avithos nodules.

• Thorough studies of siliceous nodules provide a more comprehensive understanding
of the respective sedimentary formation conditions, as well as the diagenetic pathways.
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