
����������
�������

Citation: Gawenda, T.; Saramak, D.

Optimization of Aggregate

Production Circuit through Modeling

of Crusher Operation. Minerals 2022,

12, 78. https://doi.org/10.3390/

min12010078

Academic Editors: Chiharu Tokoro,

Ngonidzashe Chimwani and Murray

M. Bwalya

Received: 6 November 2021

Accepted: 7 January 2022

Published: 9 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

minerals

Article

Optimization of Aggregate Production Circuit through
Modeling of Crusher Operation
Tomasz Gawenda and Daniel Saramak *

Department of Environmental Engineering, Faculty of Civil Engineering and Resource Management,
AGH University of Science and Technology, 30-059 Cracow, Poland; gawenda@agh.edu.pl
* Correspondence: dsaramak@agh.edu.pl

Abstract: The paper concerns investigation of the effect of impact crusher operation on selected
qualitative characteristics of mineral aggregate products. Qualitative characteristics of crushing
products in terms of size reduction ratio and fine particles contents were analyzed from the point of
view of operational parameters of the impact crusher. An investigative program was carried out on a
plant scale and two primary parameters of the impactor were analyzed: velocity of the crusher rotor
and the width of the outlet gap. The models of the crushing device operation were built separately
for each type of the tested material, as well as for general conditions.
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1. Introduction

Production of mineral aggregates is realized in processing circuits that use mostly
crushing and screening operations. However, these relatively simple systems require a
certain control and need to be adopted to the characteristics of the feed material as well as to
expected technological outcomes [1]. Three main groups of variables can be distinguished
when an issue of improvement of work effectiveness is considered:

• Physical and mechanical parameters of the feed material,
• Operational parameters of crushing and screening devices,
• Parameters linked with the type of technological process or operation.

Properties of the feed material seem to be of crucial impact on the quality of obtained
products, especially in terms of strength characteristics of specific fractions of aggregates or
quality of produced concrete and asphalt mixtures [2–4]. The shape of particles also affects
the outcomes of some operations of mechanical processing, like gravity concentration and
hydraulic classification [5,6]. Particles that are irregular in shape, i.e., elongated, oblong, or
flat, are undesired in final products, and qualitative requirements and standards determine
maximum boundary contents of such particles [7].

Results of investigations show that depending on the type of rock material, there
can be usually observed a correlation between the content of irregular particles in feed
and in products [1,2], and when the yield of irregular particles in feed is significant, it
is relatively harder to obtain products with regular particles. The technological regime,
process course, and especially the type of applied crushing devices have a great impact on
the shape of obtained products [8–12]. There can be observed various ideas and solutions
aiming at irregular particles in the crushing products, both in crushing and screening
operations. Several patents were worked out as well [13]. Scanning techniques utilizing
image analysis vision systems are also helpful in accurate characterization of the granular
material properties and usually help in real-time process control [14,15].

The crushing process is of key significance in the aggregate processing sector but
is also of a special concern in raw materials treatment, in general. In ore processing it
applies both crushing and grinding operations, for the reason they are energy consuming,
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and breakage effectiveness is relatively low, especially in grinding operations in tumble
mills [16]. Industrial comminution consumes from 3 to 5% of world electric energy us-
age [17], and negatively affects the environment through high rates of CO2 emission, as well
as noise, dust, and heat generation [18–23]. It leads to deterioration of the living standards
of inhabitants in the vicinity of mineral processing plants and constitutes a potential health
risk for mine workers [24].

2. Problem Significance and Research Motivation

Results of up-to-date investigations as well as an industrial practice show that crush-
ing and classifying circuits, despite their relative simplicity, may operate with too low
effectiveness, in terms of insufficient size reduction ratio, lower liberation level (in case of
ores), or inaccurate particle size distribution of final products. Most frequently, the type
and general strength properties of the feed are taken into consideration at the starting point
of the optimization approach. However, results of various investigations show that particle
shape of aggregate product [25,26] significantly influences the qualitative characteristics of
concrete mixes and cement mortals with adding of such aggregate. It is, however, worth
mentioning that the problem of control the crushing products characteristics—is the subject
of many studies. It is common to all types of granular materials: from coals [27], through
aggregates and cement powder production, ending on ore processing, and relates both to
crushing and grinding devices. More investigative programs were carried out for crushing
devices, due to relatively higher number of operational parameters (i.e., gap, frequency
of rotation, jump, profile of liners, nip angle, and others), and higher potentials of their
steering [28]. The models worked out for crushing devices that usually operate on entire
crushing stages, like cone and jaw crushers, were developed in works of Whiten [29,30]
where the breakage function was described as a functional relationship of the feed particle
size distribution. More recent investigations focus on impact crushers, where the authors
have taken into consideration both the operational parameters of crushing devices and feed
characteristics. In Ref. [31], the model based on classification and breakage matrices that
depended both on the rotor radius, angular velocity, and the throughput was developed.
The Weibull’s distribution was used in modeling and the results were compared with data
achieved in plant-scale operation. Models of size distribution for products from various
crushers were developed in [32,33], where statistical distribution of t-family was used,
and material characteristics based on Bond index values were taken into consideration.
Investigations were carried out for limestone samples and a high value of determination
coefficient was achieved.

An approach aiming at improvements of aggregate production effectiveness should
also focus on the final effects that are achieved as an operation of the entire circuit, not
only a single device. It means that a key-device should be optimized, but the potential
effect should be related to qualitative parameters of the final products, not only to the
crusher product. The scope of the presented paper investigates an impact of the crusher
device operation on the production of the fine aggregates. A practical tool for control
(model) was developed, and showed what effects could be expected, for specific values
of primary operational parameters of the crusher. The two main parameters were used in
the model and the influence of each of them was determined, so it was possible to observe
which parameter has a potentially greater impact on the final effect. Such a model can be
developed, and a higher number of values can be used, depending on the requirements and
specific situation. It is worth remembering that heuristic analysis should be performed prior
to modeling. The presented approach is a novelty, and not commonly met in literature.

3. Materials and Methodology
3.1. Circuit and Device Characteristics

An investigative program was carried out on an industrial scale on an aggregate
production circuit operating in the Dolomite Imielin Mine, located in Imielin, in Silesia
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(Poland). The mine extract rock raw materials in an open pit system and also operates
circuits of mineral aggregate production.

The circuit that was the object of investigations consisted of two-stage crushing pro-
cesses and a series of screening and sieve classification operations. The product from a first
stage of crushing in the jaw crusher is downstream classified in a three-decked vibrating
screen. The size fraction over 120 mm is re-crushed in the impactor, products of which
are subjected to further classification, as a result of what the further fine sized fractions of
products can be obtained. A simplified scheme of the circuit is presented in Figure 1.
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Figure 1. Technological circuit under testing.

The main purpose of the investigations is an assessment operation of an impact
crusher that operates on the second crushing stage. This is a device of key significance
in the circuit, because its crushing product is classified into final products according to
specific particle size fractions (see Figure 1), and at the same time constitutes the final
aggregate products. This type of crushing device is quite commonly used in aggregate
production circuits due to the fact that crushing products contain relatively lower content
of irregular (i.e., flat, elongated) particles comparing to jaw crushers, what is often expected
for aggregate products.
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The tested impact crusher KU65-120 (Figure 2a) is the device with horizontal shaft,
equipped with four blades, and powered by a 200 KW engine. Dimensions of an inlet of
the working chamber are 650 mm × 1200 mm. Three consecutive gaps are in the working
chamber of the crusher and each of them is adjustable, according to requirements. The
last one, called the calibrating gap (Figure 2b), has the smallest width, which was subject
to change in the investigative program. The first and the second gaps remained constant
during experimental program and equaled 20 and 90 mm, respectively. The speed of rotor
is controlled by adjustment of a specific frequency value on the thyristor box. For example,
the frequency within the range 40–50 Hz corresponds to rotor velocity from 30 to 38 m/s.
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Figure 2. Crushing device—impact crusher KU 65-120 during investigations (a); calibrating gap in
the crusher (b).

The rotational speed of the rotor was the other operational changeable parameter.
Nominal throughput of the crusher varies from 200 to 300 Mg/h depending on the breakage
resistance of the crushed material. The machine is equipped with a counter of the power
consumed during operation. This value was registered during the testing program and the
unit energy consumption was calculated as a relationship of total power consumed to the
throughput of the machine.

The device is top-fed by means of vibrating feeder. The material entering the working
chamber is subjected to a series of collisions with the rotating blades of the rotor, walls and
plates of the chamber, as well as other particles and after that exits the chamber as suitably
finer particles, and around 80% of them have a regular shape.

3.2. Material Properties

Five types of feed material were used in the testing program: dolomite (M1), lime-
stone (M2), gravel (M3), sandstone (M4), and diabase (M5). Maximum particle size of
gravel feed was 150 mm, while dolomite and limestone Dmax equaled 200 mm. Maximum
size of diabase was 250 mm and the coarsest material, sandstone, was characterized with
maximum particle size 300 mm. Detailed characteristics of particle size distributions of
individual material types in semi-log scale are presented in Figure 3.
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Particle size distributions of individual types of materials differ, which is due to
various conditions, i.e., internal structure of material, physical and mechanical properties of
the feed, upstream mining techniques of material treatment, including blasting and primary
crushing. Therefore, comparative analysis was based on achieved size reduction ratios S90.
Limestone and sandstone can be characterized as materials that are easily crushed, while
diabase and gravel showed the highest breakage resistance. Values of Bond’s work indices
(BWi) were determined that equal, respectively, for the sandstone BWi = 9.2 kWh/t, for
limestone BWi = 9.9 kWh/t, for dolomite BWi = 11.6 kWh/t, for gravel BWi = 13.1 kWh/t,
and for diabase BWi = 13.4 kWh/t. The values were determined according to the Bond’s
procedure in laboratory ball mill with dimensions 305 mm × 305 mm. The material volume
for each single batch test was 700 cm3 with the load of 285 steel grinders (balls) (20.1 kg)
with diameters from 15.2 to 38.1 mm.

Investigations were carried out on an industrial scale. The parameters of the device
were set accordingly, and the production started. Samples of specific crushing products in
a total mass about 200 kg each, were collected from the belt, after stabilization of the circuit
capacity. Next, they were subjected to a mass reduction with use of a riffle sample splitter.
Mass of a single sample for further analyses amounted from 30 to 50 kg, depending on the
particle size of individual crushing products. After the sample collection, the settings of
operational parameters were changed according to the testing program and after further
stabilization of the circuit operation, another sample was collected.

3.3. Structure of the Model

Tests for various types of material and various operational parameters of the crusher
were included in an investigative program. The variables can be therefore grouped into
two categories: the one connected with material properties, and the other related to charac-
teristic of the crushing device. A general form of the mathematical model can be written
as follows:

y = f (material type, rotor velocity, gap) (1)

where y denotes a dependent value, which was defined either as a size reduction ratio Sx,
or as yield of the finest product (FP1). The size reduction ratio, presented in Formula (2), is
an index calculated as a relation of characteristic particle in the feed (i.e., D50, D80, D90) to
the characteristic particle of the product (i.e., d50, d80, d90).

Sx =
Dx

dx
(2)
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The second dependent variable, FP1, was obtained during the sieve analysis performed
for each crushing product. The FP1 denotes yield of the finest particle size fractions, i.e.,
below 2 mm, that existed in individual crushing product. Feed analysis shows (Figure 3)
that none of the material contains size fractions below 2 mm. Determined values of
both dependent variables for each crushing products are presented in specific columns in
Tables 1–6, along with the other results of experiments.

Table 1. Scheme of the investigative program.

Number of Sample Variable 1 (Velocity) Variable 2 (Gap) M1 M2 M3 M4 M5

I 30 40 Yes Yes Yes Yes Yes
II 34 40 Yes Yes Yes No No
III 38 40 Yes Yes Yes Yes Yes
IV 30 60 Yes Yes Yes No No
V 34 60 Yes Yes Yes No No
VI 38 60 Yes Yes Yes No No
VII 30 80 Yes Yes Yes Yes Yes
VIII 34 80 Yes Yes Yes No No
IX 38 80 Yes Yes Yes Yes Yes

Table 2. Results obtained for dolomite (M1).

Sample Number Speed of Rotor Gap Q Esp FP1 S90

1 30 40 262 0.27 11.0 5.4
2 34 40 255 0.32 12.5 5.8
3 38 40 250 0.46 14.9 6.2
4 30 60 267 0.30 9.3 3.9
5 34 60 258 0.33 13.1 3.9
6 38 60 254 0.47 12.4 4.5
7 30 80 286 0.30 10.0 3.6
8 34 80 275 0.34 10.1 3.8
9 38 80 263 0.48 12.2 3.2

Table 3. Results obtained for limestone (M2).

Sample Number Speed of Rotor Gap Q Esp FP1 S90

1 30 40 273 0.26 13.6 4.6
2 34 40 264 0.33 13.8 6.1
3 38 40 253 0.47 18.2 7.0
4 30 60 277 0.29 12.3 4.3
5 34 60 268 0.33 14.5 4.2
6 38 60 254 0.49 16.4 4.9
7 30 80 294 0.30 7.1 4.0
8 34 80 283 0.32 10.3 4.1
9 38 80 270 0.47 14.3 4.3

Table 4. Results obtained for gravel (M3).

Sample Number Speed of Rotor Gap Q Esp FP1 S90

1 30 40 165 0.38 16.4 4.4
2 34 40 155 0.43 17.5 5.3
3 38 40 142 0.54 20.3 6.1
4 30 60 178 0.40 12.8 3.5
5 34 60 169 0.46 13.5 3.4
6 38 60 151 0.55 16.5 3.6
7 30 80 230 0.41 9.1 2.6
8 34 80 210 0.50 13.2 3.1
9 38 80 201 0.57 15.4 3.4
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Table 5. Results obtained for the sandstone (M4).

Sample Number Speed of Rotor Gap Q Esp FP1 S90

1 30 40 283 0.33 12.2 6.4
2 38 40 261 0.53 16.8 7.4
3 30 80 297 0.40 8.1 4.0
4 38 80 284 0.53 11.4 4.5

Table 6. Results obtained for the diabase (M5).

Sample Number Speed of Rotor Gap Q Esp FP1 S90

1 30 40 253 0.39 10.1 5.1
2 38 40 241 0.60 13.8 5.7
3 30 80 271 0.46 7.1 3.7
4 38 80 256 0.64 9.4 4.0

The experimental program was conducted according to methodology of factorial
experiments [34,35], in which various levels of variability were used, depending on the
type of variable. Two major operational parameters of the impact crusher (variable 1 and
variable 2) were selected as independent variables in specific models and three levels of
changeability were assumed for each of them.

For variable 1 (linear velocity of rotor) values 30, 34, and 38 m/s were tested, while for
the gap (variable 2) the widths 40, 60, and 80 mm, were used. During the crushing process
two additional operational parameters were registered:

• Crusher’s productivity, Q,
• Unit energy consumption, Esp.

In the case when each testing variable has the same number of changeability levels,
the total number of required single experiments to be performed can be described through
Formula (3).

N = nk (3)

where k—number of variables; n—number of variability levels. For the above assumptions
nine single experiments were carried out for a given type of feed material. Investigations
were carried out for five various types of feed materials, in order to check the potential
effect of material on crushing results. The material type can be then treated as a variable 3,
with five levels of changeability.

A complete factorial experiment was conducted for materials M1, M2, and M3, with
N = 9 tests for each material. On the basis of the obtained results, it was possible to reduce
the one variability level for the variable v1 (34 m/s of rotor’s linear velocity) in the testing
of materials M4 and M5. The results indicated that it was also possible to eliminate the
middle value of variable v2 (gap 60 mm), and the further tests, conducted on materials M4
and M5, included two variables with two levels of changeability. A factorial experiment
with N = 4 tests was conducted for materials M4 and M5. A detailed testing scheme is
presented in Table 1.

As it was defined in Formula (1), for each configuration of independent variables, the
crusher’s work models were calculated separately for FP1 and S90.

Considering the above, the Formula (1) can be written as follows:

Y(FP1, S90) = f (speed o f rotor, gap) (4)

where: FP1—yield of the finest product; S90—90% size reduction ratio. In total, 35 single
experiments were conducted on plant scale.

4. Results

Tables 2–4 present the achieved results for materials M1–M3: dolomite, limestone, and
gravel, respectively.
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Analysis of throughput (Figure 4) shows that the highest diversity in results can
be observed for the material M3 (gravel) and the lowest for dolomite (M1). However,
changeability for limestone (M2) was almost identical as for dolomite. The results obtained
for material M3 were also the lowest in absolute numbers. It can be stated that processing
of broken aggregates (M1 and M2) can be carried out at higher throughputs, while for the
gravel much less favorable throughput was achieved. This is due to physical properties of
the material and individual characteristics related to breakage resistance. It is not possible
to clearly state which of the variables have a more significant impact on the throughput,
especially for broken aggregates, i.e., materials M1 and M2. It is, however, visible that the
gap width is proportionally correlated with the productivity, while the speed of rotor shows
an inverse relationship: an increase in the speed of rotor from 30 to 38 m/s is effective
in decreasing the throughput value by nearly 10%. This is due to the higher number
of collisions with the rotor and plates, that a single particle experiences in the working
chamber. The relationship between speed of rotor and the throughput for the gravel
material is similar to materials M1 and M2, also in terms of the magnitude of changeability,
but the gap has a significantly higher impact on the throughput. Increasing the gap from
40 to 80 mm causes the throughput increase by about 30%.
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Both the relationship between a unit energy consumption and the speed of rotor
appear to be proportional for all tests (Figure 5). For materials M1 and M2, an increase in
the Esp together with the higher values of the speed of the rotor is more intense than for
the gravel—Figure 4. On the basis of these results, it can be stated that in the case of broken
aggregates the speed of the rotor has the higher impact on energy consumption than for
the gravel aggregates. Processing (comminution) of these aggregates requires more input
of energy, probably due to the more rounded shape of single particles, causing it to be
more difficult to disintegrate them in the crushing device. The width of gap has a much
less significant impact on the energy consumption than speed of rotor and can be even
disregarded in this approach.
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Figure 5. Energy consumption registered for various speeds of the rotor for materials M1–M3.

The yields of finest size fractions (i.e., below 2 mm) in individual crushing products
are presented in Figure 6. The lowest content of fines was observed for the material M1,
and equaled 11.72%, on average. For the limestone (M2), this value was nearly 2% higher
(13.39%) and the highest value was observed for the gravel aggregate M3 and amounted
to 14.97%. For the M2 and M3, a relationship between FP1 and speed of rotor is inverse,
while for the material M1 it is hard to determine a clear relationship, because depending
on the gap width, the relationship is parabolic or inverse. The width of the gap, in turn, is
proportional to the yield of finest products, regardless of the speed of the rotor (Figure 6).
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Figure 6. Yield of finest product obtained for respective setting of variables 1 and 2, materials M1–M3.

Analysis of values achieved for the 90% crushing ratio shows that the highest results
were obtained for the width of gap 40 mm. Analogous values for the gaps of 60 and 40mm
were significantly lower, regardless of the type of material. A significant impact of the
speed of the rotor on the crushing ratio can be observed especially for M2 and M3, but
mostly for the smallest gap. For 60 and 80 mm of gap values, there are rather insignificant
variations observed in S90 values, both in terms of material type and the speed of the rotor
(Figure 7).
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Figure 7. Size reduction ratio obtained for respective setting of variables 1 and 2, materials M1–M3.

In the second stage of experiments, two levels of values were accepted for analyzed
variables. Results of investigations show that most achieved results (Figures 4 and 5)
for the mid-values of speed of rotor and the gap are placed proportionally between the
boundary values. Similar tendencies can be observed inspecting Figures 6 and 7. Therefore,
only boundary values were taken into consideration in investigations, and for variable
v1—speed of rotor—30 and 38 m/s were accepted, while for variable v2—the gap—40 and
80 mm widths were used. Two further materials, sandstone (M4) and diabase (M5), were
tested and four tests in total were carried out for each material (see Table 1). The test results
are presented in Tables 5 and 6.

Figure 8 presents relationships between the throughput speed of the rotor and the
gap, while Figure 9 shows the correlation of the above variables with the specific energy
consumption. Both relationships are similar in direction and changeability range to those
established for materials M1–M3. For the limestone processing, a material comparably less
resistant to comminution than the diabase, relatively higher throughput values and lower
energy consumption were achieved. It is hard to decide definitely which of the variables
has more significant impact on the throughput, but in the case of Esp, the speed of the rotor
has a slightly higher impact on energy consumption than the gap.

In the case of a yield of size fraction below 2 mm in crushing product, it can be seen
that this content grows together with increasing the speed of the rotor. Lower contents of
fines were achieved for the diabase for the gap width of 80 mm (Figure 10). For the size
reduction ratio, in turn, the speed of rotor did not have a very significant impact, especially
for the gap of 80 mm. On the other hand, a visible difference can be observed for products
crushed at the gap of 40 mm, and a distinction regarding the type of material can be noticed
for that value. For the gap of 80 mm, in turn, the achieved size reduction ratios are similar,
regardless of the type of material (Figure 11).

Each product was also assessed in terms of the content of irregular particles. Yields of
flat particles were determined using of a set of bar sieves, and values of flatness indices
were obtained accordingly. For the material M1 the range of flatness index varied between
15 and 20%, for M2: 14–20%, for M3: 15–24%, for M4: 15–19%, and for M5: 19–22%. It can
be seen that the most favorable results were achieved for materials M1 and M2, and the
least favorable for the gravel (M3) and then diabase (M5). It is worth mentioning, however,
that the lowest values of flatness index were achieved for the samples crushed at the highest
speed of the rotor, regardless of the type of material.
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Figure 10. Yield of finest product obtained for respective setting of variables 1 and 2, materials M4
and M5.



Minerals 2022, 12, 78 12 of 16

Minerals 2022, 12, 78 12 of 17 
 

 

can be noticed for that value. For the gap of 80 mm, in turn, the achieved size reduction 
ratios are similar, regardless of the type of material (Figure 11). 

 
Figure 10. Yield of finest product obtained for respective setting of variables 1 and 2, materials M4 
and M5. 

 
Figure 11. Size reduction ratio obtained for respective setting of variables 1 and 2, materials M4 and 
M5. 

Each product was also assessed in terms of the content of irregular particles. Yields 
of flat particles were determined using of a set of bar sieves, and values of flatness indices 
were obtained accordingly. For the material M1 the range of flatness index varied between 
15 and 20%, for M2: 14%–20%, for M3: 15%–24%, for M4: 15%–19%, and for M5: 19%–22%. 
It can be seen that the most favorable results were achieved for materials M1 and M2, and 
the least favorable for the gravel (M3) and then diabase (M5). It is worth mentioning, 
however, that the lowest values of flatness index were achieved for the samples crushed 
at the highest speed of the rotor, regardless of the type of material. 

  

0

2

4

6

8

10

12

14

16

18

20

M4 M5

Yi
el

d 
of

 fi
ne

st
 p

ro
du

ct
, F

P1
, [

%
]

Type of material

40_30 40_38 80_30 80_38

0

1

2

3

4

5

6

7

8

9

M4 M5

Cr
us

hi
ng

 ra
tio

, S
90

Type of material

40_30 40_38 80_30 80_38

Figure 11. Size reduction ratio obtained for respective setting of variables 1 and 2, materials M4 and M5.

5. Analysis and Discussion
5.1. Modeling Results

The results of investigations were the starting point for building of general relation-
ships describing the final product qualitative characteristics, in relation to operational
parameters of the crusher device and process course. The models described the yield of the
finest particles, i.e., below 2 mm (FP1), and 90% size reduction ratio (S90). Significance of
each independent variable in the model was checked at the significance level 1 − α = 0.95,
and significant values were marked in red font. The model determination coefficient R2

was also calculated for each model. Table 7 presents all models, calculated separately for
each type of material, along with individual R2 values.

Table 7. Models determined for each material.

Type of Material
Size Reduction Ratio, S90 Yield of Finest Fractions, FP1

Model R2 Model R2

Dolomite S90 = 6.46 + 0.04v − 0.06e 0.866 FP1 = 1.74 + 0.38v − 0.05e 0.803
Limestone S90 = 2.80 + 0, 14v − 0.04e 0.759 FP1 = −2.19 + 0.66v − 0.12e 0.877

Gravel S90 = 3.02 + 0.16v − 0.07e 0.991 FP1 = 0.99 + 0.58v − 0, 10e 0.979
Sandstone S90 = 6.36 + 0.09v − 0.07e 0.992 FP1 = 2.46 + 0.49v − 0.12e 0.989

Diabase S90 = 5.04 + 0.06v − 0.04e 0.988 FP1 = 2.90 + 0.37v − 0.09e 0.976

Results of modeling show that both models regarding the gravel material show full
significances with all parameters. They are also characterized by very high levels of R2

coefficients. In the case of dolomite and limestone, the models regarding the yield of finest
size fractions (FP1) show full significance, but only the gap width appears to be significant
in models for S90. Values of R square are lower, comparing to the gravel. Models for the
sandstone and diabase show values of R square even higher than in the case of analogous
models for dolomite and limestone. However, both parameters appeared insignificant on
the accepted level of significance 1 − α. Apart from the above differences, all models show
the same direction in changeability of both parameters. Both types of models show an
inverse relationship between dependent values and gap width e, while the relationship
between speed of rotor and dependent values S90 and FP1 is proportional.

In the second stage of modeling there were general models determined without
distinguishing the type of material. Two technological parameters were added to the
model, namely throughput Q and unit energy consumption Esp—Formulas (5) and (6). The
results of all experiments (in total 35 cases) were used for modeling.

FP1 = 8.64 + 0.66v − 0.07e − 0.04Q − 11.09Esp, R2 = 0.805 (5)
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S90 = 1.89 + 0.07v − 0.06e + 0.01Q + 2.33Esp, R2 = 0.825 (6)

The results show that in the model describing the yield of the finest particle size
fraction (FP1) all independent variables are statistically significant on confidence level
1 − α = 0.95. It shows that the variables were selected properly for the model, what
is also in line with main assumptions and findings presented in [28]. Achieved values
of model determination coefficients (R2) confirm similar modeling results obtained for
limestone [32]. In general, the gap width, throughput, and energy consumption have an
inversely proportional effect on the value of γ. It means that in order to obtain the lowest
possible yields of size fractions below 2 mm in the crushing product of an impactor, higher
values of the outlet gap should be adopted. The process should be also carried out at
higher throughput as well as higher linear velocity rotor. On the other hand, in the model
characterizing the S90 size reduction ratio, only the gap width and throughput have a
statistically significant impact on the dependent value—90% size reduction ratio.

5.2. Validation

The models presented in Section 5.1 show high level of determination, thus a high
degree of explanation of the values of dependent variables through independent variables.
All models are statistically significant at the probability level 1 − α = 0.95. The standard
estimation error, SE, defined through Formula (7), was also calculated for each model from
Table 8. The SE value determines average deviation of the model from empirical data.

SE =

√
∑n

i=1
(
yemp − ŷ

)2

n − 2
(7)

where yemp—empirical results, obtained in the testing program or during verification;
ŷ—modeling results. Table 8 contains values of SE, calculated for each type of material,
separately for S90 and FP1 models.

Table 8. Average values of SE calculated for each material and each type of model.

Type of Material SE (S90) SE (FP1)

Dolomite 0.51 0.85
Limestone 0.66 1.28

Gravel 0.68 1.21
Sandstone 2.18 0.55

Diabase 0.14 0.50

As can be seen from the table, the results indicate that content of the finest fractions
(FP1) obtained from the model differs from empirical values from 0.5% to 1.28 %, while
for size reduction ratio S90 from 0.14 to 2.18. The more favorable modeling results were
achieved for models describing the finest fractions content in crushing products.

Apart from the SE calculations, a validation of models was performed. Fresh operating
data on crushing the dolomite, limestone, and the gravel on plant scale was collected.
Impact crusher was in operation at the speed of rotor 30 m/s and the calibrating gap
width of 80 mm. Particle size distribution of the feed and crushing product for dolomite is
presented in Figure 12 while more detailed results are included in Table 9.
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Table 9. Values of SE for selected single test (v = 30 m/s, e = 80 mm), obtained for dolomite, limestone,
and gravel.

Type of Material
Size Reduction Ratio, S90 Yield of Finest Fractions, FP1

Empirical Value Model Empirical Value Model

Dolomite 3.3 2.9 9.6 9.1
Limestone 4.3 3.8 9.4 8.0

Gravel 2.4 2.2 10.2 10.4

The presented results are generally in line with accuracy of specific models. The lowest
differences between modeling and empirical results were achieved for the gravel (M3), and
the models for this type of material were also characterized by highest values of R2. On the
other hand, convergence of model and empiric situation for dolomite and limestone was
also high, what, to some extent, confirms the proper selection of individual variables for
the models and accepted modeling approach.

6. Summary and Conclusions

The results of the investigation presented in the paper showed that control of qual-
itative characteristics of the final aggregate products is to some extent possible through
adjustment of a specific operation of the crushing device. It was also possible to design and
build mathematical models of crusher operation, with independent variables connected to
the feed characteristics and operational parameters of the machine.

Both obtained models i.e., describing the 90% size reduction ratio as well as character-
izing the yield of finest particle size fraction, were convergent for each type of the tested
material. However, the significance and influence of individual variables in models was
diverse. The gap shows an inverse relationship with size reduction ratio and the yield of
finest particle size fraction both in general models and in the models built separately for
each type of feed material.

A very high level of model fitting was achieved, too. Only one model showed the
value of determination coefficient R square lower than 80%. In six cases, the R2 value was
greater than 90%. Both general models achieved an R2 value greater than 80%. Validation
of the obtained model with real operational results for dolomite, limestone, and the gravel
also show high degree of accuracy, especially for the latter material type. It proved that
the modeling approach was selected properly, and that potential improvement of model
accuracy can be achieved through more detailed investigative programs and additional
independent variables can be investigated.
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The presented models fit the specific situation, i.e., given technological circuit of
aggregate production and individual type of crushing device. It is possible, however, to
adopt this approach into different specifics of raw materials processing, provided certain
assumptions and characteristics, related to such new operational practice, are implemented.
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