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Abstract: As the main part of the Indosinian metallogenic province in the eastern part of the Tethys
metallogenic domain, Southeast Asia has experienced multiple stages of tectonic magnetic activities
accompanied by the formation of rich mineral resources. However, due to the undeveloped economy,
low degree of geological work, dense vegetation cover, and lack of obvious prospecting marks,
traditional geological prospecting work in the area is not optimal. Consequently, the combination
of high-precision geophysics and geochemistry has become an important method of looking for ore
bodies deep underground in this area. The Nanpo gold deposit is a hydrothermal gold deposit that
occurs in the Indosinian felsic volcanic rock body, and its mineralization is closely related to felsic
magmatism. This study carried out comprehensive geophysical and geochemical exploration methods
of soil geochemical survey, induced polarization (IP) survey, and audio-frequency magnetotelluric
(AMT) survey. Based on the characteristics of geophysical and geochemical anomalies, geological
inference, and interpretation, the integrated geophysical and geochemical prospecting criteria of the
ore area have been determined: The large-scale and overlapping Au-Ag-Cu anomaly area in the host
felsic magmatic rocks (mainly diorite, monzodiorite and granodiorite) is a favorable metallogenic
area. Two anomalies, P1–H1 and P3–H6, with the best metallogenetic conditions and the deepest
extensions of the known ore bodies, were further selected as engineering verification targets. After the
study of the drill core, gold (mineralized) bodies consistent with the anomalies were found, indicating
that the combined method is suitable for the exploration of mineral resources in this area, and the
prospecting effect is good. At the same time, the metallogenic prediction shows that the deep part of
the mining area still has great metallogenic prospects and prospecting potential. The characteristics
of geophysical and geochemical anomalies and prospecting experience in the study area can provide
references for the prospecting of hydrothermal gold deposits in the Luang Prabang–Loei structural
belt.

Keywords: gold deposition; geophysical and geochemical abnormalities; magmatism; metallogeny;
Laos

1. Introduction

Over a long geological history of evolution, many different types of tectonic move-
ments have taken place in Southeast Asia, forming various types and multi-stage magmatic
superimposed magmatic tectonic belts. At the same time, there are more endogenetic
metal deposits, such as copper and gold, that include porphyry-type copper–gold deposits,
porphyry–skarn-type copper–gold deposits, and low-temperature hydrothermal-type gold
deposits [1–13]. Due to the underdeveloped economy of Laos and the lack of professional
geological survey teams, the existing geological work in this area is low [14–18]. In addition,
the complex natural conditions in the area, including extremely developed tropical rain
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forest, a few rock outcrops, strong weathering and inconvenient transportation in the forest
area, greatly increase the difficulty of mineral exploration [19–25]. For these reasons, the
traditional geological mapping or soil geochemical methods cannot be used to locate deep
and concealed ore (mineralized) bodies alone. Therefore, the prospecting work in this area
can use the method of soil geochemical survey supplemented by geophysical survey.

The Nanpo gold deposit studied in this study is a new large to super-large gold deposit
discovered recently in the south middle section of the Luang Prabang–Loei structural belt.
The gold (mineralized) bodies mainly occur in Indosinian felsic magmatic rock (mainly
diorite, monzodiorite, and granodiorite). The research shows that gold from the Nanpo gold
mine mainly carries the mineral metal sulfide (pyrite), which is a good benign conductor.
There are obvious physical differences in the properties between the Nanpo gold mine and
the surrounding rock without ore. Therefore, the ore (mineralized) bodies can be located
by the induced polarization (IP) method and the audio-frequency magnetotelluric (AMT)
method.

Soil geochemical surveys can analyze the relationship between the distribution of
elements and geological bodies so as to delineate the areas of geochemical anomaly. By
measuring the resistivity and amplitude frequency of underground materials, induced
polarization surveys can delineate abnormal areas with low resistivity and high amplitude
frequency, which may be potential mineralized areas. Audio-frequency magnetotelluric
(AMT) surveys can infer the spatial distribution of ore (mineralized) bodies and judge the
deep development of ore controlling structures [26–29]. Based on the characteristics of
geophysical and geochemical anomalies, we can delineate the favorable metallogenic area,
explore the deep prospecting potential of the mining area, and provide a geophysical basis
for deep prospecting engineering. However, the current understanding of the deposit is
not sufficient to restrict the genesis of the deposit and the relationship between geophysical
and geochemical anomalies and the regional structure and magmatic metallogenic process.
Based on the regional tectonic magmatic evolution and metallogenic background, the
metallogenic information of the Nanpo gold deposit is studied using complete prospecting
and exploration methods. The results of this research may provide guidance and references
for mineral exploration and further investigation of related deposits in the south-midsection
of the Luang Prabang–Loei tectonic belt.

2. Geological Setting
2.1. Regional Geology

The region of Southeast Asia is geographically situated at the intersection of the eastern
segment of the tectonic domain of Tethys and the tectonic domain of the Western Pacific
(Figure 1a). In the long process of geological evolution, this area experienced the subduction,
collision, and accretionary orogeny of the Paleotethys Ocean from the Late Paleozoic to the
Mesozoic, coupled with multiple stages of tectonic magmatic activities [30–38]. Based on
the distribution and development of regional tectonics and their spatio-temporal properties,
the research area was divided into seven tectonic units of the third order from west to
east (Figure 1b); the study area was distributed in the Luang Prabang–Loei volcanic arc
zone on the southeast margin of Simao–Phitsanulok block, which is nearly parallel to Dian
Bien Phu–Loei suture zone in the east. Paleozoic strata in the volcanic arc belt are mainly
composed of neritic–littoral volcanic rocks and sedimentary rocks, and the main lithology
exposed is sandstone, sandstone, and shale, accompanied by siliceous and ferromagnetic
extrusive rocks of subvolcanic rocks. Mesozoic strata are composed of continental marine
clastic rocks (sandstone, mudstone, calcareous, and schist). The Cenozoic strata are mainly
made up of representatives of silty mudstone, sandy silty mudstone, and quartz greywacke,
intercalated with off-white and greyish-green gypsum salt layers with certain sedimentary
rhythm and locally containing marl or lignite [39,40].
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Figure 1. (a,b) Subdivisions of the location of the Luang Prabang–Loei structural belt and the divi-
sion of Indosinian plate tectonic units; (c) subdivisions of the geological and mineral distribution of 
Luang Prabang–Loei metallogenic belt (modified from [16,39,41,42]) 1. Quaternary; 2. Mesozoic 
clastic rocks, shales, marls, etc.; 3. Late Paleozoic sandstones, shales and epimetamorphic rocks; 4. 
volcanic rocks; 5. faults; 6. Nanpo gold deposits; 7. cities. MPF:Meiping fault, RRF:Red River fault, 
DBPF: Dian Bien Phu fault,DLS: Dian Bien Phu–Loei suture,NUS: Nan–Uttaradit suture, SMS: Song-
Ma suture, CMCS: Changning-Menglian-Chieng Mai suture, ALSS: Ailaoshan suture. 

Figure 1. (a,b) Subdivisions of the location of the Luang Prabang–Loei structural belt and the division
of Indosinian plate tectonic units; (c) subdivisions of the geological and mineral distribution of Luang
Prabang–Loei metallogenic belt (modified from [16,39,41,42]) 1. Quaternary; 2. Mesozoic clastic rocks,
shales, marls, etc.; 3. Late Paleozoic sandstones, shales and epimetamorphic rocks; 4. volcanic rocks;
5. faults; 6. Nanpo gold deposits; 7. cities. MPF:Meiping fault, RRF:Red River fault, DBPF: Dian
Bien Phu fault, DLS: Dian Bien Phu–Loei suture, NUS: Nan–Uttaradit suture, SMS: Song-Ma suture,
CMCS: Changning-Menglian-Chieng Mai suture, ALSS: Ailaoshan suture.

The magmatic activity in the Luang Prabang–Loei tectonic belt is strong, and a series
of island arc magmatic rocks are developed from basic (basalt), neutral (andesite) to acid
(rhyolite). Zircon U–Pb age (248 Ma) from felsic volcanic rocks exhibited in the area of the
Nanpo gold deposit belongs to the earliest Triassic. At the same time, combined with the
analysis of the major trace elements and rare earth elements in the rocks, the properties
of island arc magmatic rocks are revealed (detailed data are published separately). The
analysis of regional tectonic evolution indicates that the study area was at an island arc
environment of oceanic subduction in the Early Triassic, and the mineralization may be
related to the arc volcanic magma formed by the eastward subduction of the Paleo-Tethys
Ocean.

The gold deposit Nanpo is situated in the region of Sanakham in the south-central part
of the arc of the island of Luang Prabang–Loei (Figure 1b,c). Under the control of the Luang
Prabang fault (F3) and the Preshan fault (F4) of the regional super-lithosphere, the overall
structure of the region is characterized by a broad and gentle compound fold and fault
dominated by the NNE direction, and the second is nearly NS and NNW folds/faults and
nearly EW secondary faults. The two boundary flaws above are major structures controlling
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the overall structural framework and mineral distribution in the region including the Nanpo
gold deposit area.

2.2. Gold Deposits and Characteristics of Ore Bodies

Through geological mapping, it was found that the deposit is primarily late carbonif-
erous (C3) nestetic–shoreline facies sedimentary rocks that are covered by a Quaternary
alluvial~slope (residual) layer. The outcropping lithology of the Nanpo deposit area is
mainly variegated sedimentary fine clastic rocks (sandstone/shale), light metamorphic
rocks (sandstone slate/carbonaceous slate), and felsic volcanic rocks (diorite, monzodiorite,
and granodiorite) emplaced in the upper Carboniferous.

The deposit district is situated near the core of the west wing of the H. KHAN–
POUNGLAK Syncline. Regional strata are typically monocline strata strongly tended to the
west, and the angle of dip is locally gentle due to the influence of the faults. The structures
are well developed in the deposit district under the impact of regional translithospheric
Luang Prabang fault and Poleyshan fault. The structural features are mainly characterized
by faults, joint fissures, breccia zones, corrugation, flexure, brittle-ductile shear fracture
alteration zones, etc.

Ore (mineralized) bodies of the Nanpo gold deposit mainly occur in the Indosinian
felsic magmatic rock body, which is closely related to the structural fissure dense zone and
appear as irregular monophyletic and lenticular. Ore (mineralized) bodies are distributed
in NE–SW direction, and the ore veins are strictly controlled by a group of shear joints
and fracture dense zones gently inclining to the southeast. The width of the controlled
mineralization area within the mining area is 935–1784 m, and the length of the strike is
approximately 3058 m. Gold-bearing minerals in the deposit district are mainly pyrite and
limonite, and the types of metal sulfides in the mining area are simple, mainly pyrite, trace
chalcopyrite, occasionally galena, and sphalerite. The type of ore processor is low sulfur
gold ore, and the quality of the ore is mainly low-grade gold ore, followed by medium- and
high-grade ore, on average, Au 4.22 g/t.

In addition to regional metamorphism (greenschist facies), rocks in the district also
have obvious thermal contact metamorphism characteristics. A large and irregular al-
teration halo formed around the southern diorite–monzonite rock mass and shows the
phenomenon of area zoning centered on the rock mass. This reflects the obvious relation-
ship between wall rock alteration and faults, showing a trend of decreasing intensity from
the fault and mineralization center outwards and belongs to the type of extremely low-
pressure contact metamorphism. In addition, alteration phenomena, such as fine-net-vein
carbonation (partially quartz veins) and limonite–pyrite mineralization along the cracks in
the middle and late rock formations, are also common. Especially in the vicinity of fault
structures and in the fracture zone, the pyritization is along with the fractures, light yellow
allomorphic, subhedral to euhedral (mainly cubic) fine to medium granular, with fine to
reticular veins, irregular clumps, and veins of different thicknesses, often accompanied by
strong silicification.

3. Sampling and Methods

In the geological and mineral exploration work in the study area, through the use of
geology, geophysics, geochemistry, and other multidisciplinary, comprehensive research
methods, the geological characteristics and genesis of the ore deposits in the area have been
studied in depth, and better exploration results have been obtained.

3.1. Sampling

In this soil geochemical survey, a total of 34 km2 of field scanning was completed,
and 8690 soil samples were collected including 445 duplicate samples. The samples were
mainly taken from the fine-grained materials in the soil of layer B (eluvial layer) or layer
C (parent material layer) on the surface, mainly composed of fine-grained clay, loam, and
sandy soil. Before the induced polarization survey and audio-frequency magnetotelluric
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(AMT) survey, we collected 6 kinds of main exposed rock (ore) samples (104 in total) in the
mining area and measured the electrical parameters by the forced current method (Table 1).

Table 1. Electrical parameters of rock (ore) samples.

Lithology Number
Fs (%) ρs (Ω·m)

Range of
Variation

Average
Value

Range of
Variation

Average
Value

Silty slate 25 0.00–9.13 0.75 88–2340 306

Pyritized diorite 9 0.33–36.18 12.25 52–2919 603

Pyrite 12 2.25–27.67 18.91 3–308 7

Gabbro 26 0.24–5.25 1.06 1443–25,764 3431

Diorite 22 0.44–2.15 1.24 692–8448 2945

Pyritized sand slate 10 2.67–31.28 18.34 191–2038 756

3.2. Methods

This work was based on a 1:5000 base map, and the soil geochemical survey points
and induced polarization points were arranged on the topographic map according to the
strike perpendicular to the stratum (orebody) at a grid spacing of 100 m× 40 m and 80 m×
20 m (Figure 2). Transformation parameters were corrected by an independent coordinate
system, and the survey points were positioned by hand-held GPS, the GPS system was
UTM, and the map reference was WGS84.

The soil geochemical survey took the GPS survey point as the center, radiated 3–5
sampling points around within 100 m2, and equally combined them into a mixed sample.
The sampling depth was 20–50 cm below the surface, and 0.6–1.0 kg of soil without humus
and stones was taken. The collected samples were sent to the laboratory for analysis in
strict accordance with the procedures of drying→beating→passing through a 60 mesh
screen→mixing and compression→loading into a paper bag→packing and storage. The
weight of samples sent for inspection were greater than 150 g under the condition of
preventing sample pollution. The test and analysis of samples were completed at the
Chengdu test center. Au and Ag were analyzed by graphite furnace atomic absorption
spectrometry, analysis of Cu by flame atomic absorption spectrometry, and determination
of As, Sb, and Hg by atomic fluorescence spectrometry.

Induced polarization measurement was carried out with an intermediate gradient
device (AB = 1200 m; Mn = 40 m), and the SQ-3C dual-frequency IP instrument (including
transmitter and receiver) developed by Central South University was used. The transmitter
synthesizes the high- and low-frequency current (4 and 4/13 HZ in this study) into the
dual-frequency current, and the receiver receives the response of the underground target
to the dual-frequency current and, at the same time (∆VH, ∆VL), measures the response
potential difference of the two frequencies and calculates the apparent amplitude frequency,
FS, and apparent resistivity, ρs, with Formula (1) and Formula (2), respectively.

Fs =
∆VL− ∆VH

∆VH
× 100% (1)

ρs = k
∆V

I
(2)

Audio-frequency magnetotelluric (AMT) survey used the V8 multi-function electrical
method workstation of the Phoenix company of Canada for observation. The 6R mainframe
box adopted a four channel layout (i.e., Hx, Hy, Ex, and Ey), and the RXU-3ER auxiliary
box adopted a two channel layout (i.e., Ex and Ey). The 111 and 191 exploration lines were
selected for measurement (point distance was 50 m, and electrode distance was 40 m). The
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“ten” typical pole distribution method was adopted. The acquisition frequency band was
10,000–0.00005 Hz, and the observation time on a single point as not less than 40 min.

Minerals 2022, 12, x FOR PEER REVIEW 5 of 16 
 

 

the mining area and measured the electrical parameters by the forced current method (Ta-
ble 1). 

Table 1. Electrical parameters of rock (ore) samples. 

Lithology Number 
Fs (%) ρs (Ω·m) 

Range of Variation Average Value Range of Variation Average Value 
Silty slate 25 0.00–9.13 0.75 88–2340 306 

Pyritized diorite 9 0.33–36.18 12.25 52–2919 603 
Pyrite 12 2.25–27.67 18.91 3–308 7 

Gabbro 26 0.24–5.25 1.06 1443–25,764 3431 
Diorite 22 0.44–2.15 1.24 692–8448 2945 

Pyritized sand slate 10 2.67–31.28 18.34 191–2038 756 

3.2. Methods 
This work was based on a 1:5000 base map, and the soil geochemical survey points 

and induced polarization points were arranged on the topographic map according to the 
strike perpendicular to the stratum (orebody) at a grid spacing of 100 m × 40 m and 80 m 
× 20 m (Figure 2). Transformation parameters were corrected by an independent coordi-
nate system, and the survey points were positioned by hand-held GPS, the GPS system 
was UTM, and the map reference was WGS84. 

 
Figure 2. (a) Depositional sequence; (b) structural orthographic projection of the Nanpo deposit (S 
hammer sphere, equal area); (c) regional tectonic stress analysis sketch; (d) geological map of the 
Nanpo deposit district. ALSS: Ailaoshan suture, DBPF: Dian Bien Phu fault. 

Figure 2. (a) Depositional sequence; (b) structural orthographic projection of the Nanpo deposit (S
hammer sphere, equal area); (c) regional tectonic stress analysis sketch; (d) geological map of the
Nanpo deposit district. ALSS: Ailaoshan suture, DBPF: Dian Bien Phu fault.

4. Results
4.1. Soil Geochemical Survey Results

In geochemical prospecting, element combination can reflect the spatial distribution
of elements. According to the average value (X) and deviation (S) of each element obtained
from data processing, the anomaly lower limit of each element was calculated according
to X + 2S, and then a reasonable lower limit of anomalies was determined based on the
geological background of the study area (Table 2). On the basis of each single element
anomaly, the main metallogenic element and indicator element anomalies closely associated
in space and with genetic connection were merged into a comprehensive anomaly. The
soil geochemical survey had obvious concentration center, and the zonal center in many
comprehensive anomalies delineated in the metallogenic favorable areas, such as ore-
hosting strata and ore-controlling structures, and the abnormal area was large and the scale
was good. The element combination was mainly Au–Ag–Cu with high content, and the
overlap of Au–Ag–Cu was also good at the core of the maximum concentration (Figure 3).
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Table 2. The lower limit of the soil geochemical investigation in the Nanpo gold deposit.

Element Average Value
(X) Deviation (S) Calculated

Value Actual Value

Au 4.90 4.53 13.96 15

Ag 0.09 0.04 0.17 0.15

Cu 33.69 12.53 58.25 60

As 8.42 4.84 18.1 20

Sb 0.50 0.22 0.93 1

Hg 0.03 0.01 0.05 0.05

Fs—Amplitude frequency; ρs—apparent resistivity. Calculation formula of abnormal lower limit:
Ca = X + 2S.
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Based on the comprehensive analysis of the element geochemical characteristics, ele-
ment combinations and anomalous spatial correlation, mineralization geological conditions,
and known mineral distribution, it was concluded that the H1, H4, and H6 anomalies
delineated by this soil geochemical survey may be the best anomalies (Figure 3). They were
distributed around the mining area, the anomalous areas were large and scaled, and the
mining area was in the NE–SW direction along with the intermediate acid magmatic body
plane zonal distribution. At the same time, they all had obvious concentration centers and
zonation centers, and most of the high and extreme values of Au were located near faults.
It is speculated that along the H1, H4, and H6 anomalies in the NE–SW direction, there is
a wide and continuously distributed concealed geological body (Figure 3) that may be a
deep gold orebody.
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4.2. Induced Polarization Geophysical Results

Ore in the Nanpo gold deposit (pyrite and pyritized magmatic rocks) had a higher
apparent amplitude frequency (Fs) with an average value of 12.25–18.91%, and the apparent
resistivity (ρs) was lower with an average value of 7–603 Ω·m. This mainly shows the
characteristics of low resistance and high polarization. However, the apparent amplitude
frequency (Fs) of the surrounding rock without ore was lower, generally less than 1.2%,
and the apparent resistivity was higher with an average value of more than 1000 Ω·m.
The statistical results show that there were obvious differences in the physical properties
between mineralized bodies and the surrounding rocks in the study area, which is a
prerequisite for geophysical exploration.

Depending on the IP measurement anomaly map (Figure 4), the eastern, western, and
northern edges of the mining area showed obvious electrical characteristics of low resis-
tance and high amplitude frequency, and the central part showed electrical characteristics
of medium–high resistance and low amplitude frequency, which is basically consistent
with the geological characteristics that the central part is mainly magmatic rock, and the
eastern, western, and northern edges are sandstone slate. Previous research results show
that ore bodies mainly hosted in magmatic rocks, while the target ore bodies (i.e., pyrite
and pyritized magmatic rocks) in this exploration were mainly characterized by medium,
low resistance, and high amplitude frequency. Therefore, in combination with geological
characteristics, abnormal form and scale, we determined that the lower limit of the am-
plitude frequency delineated by IP anomaly was FS = 2.4%, and six IP anomalies (P1~P6)
were delineated in the middle- and high-resistance area (magmatic body).
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Figure 4. Induced polarization (IP) anomaly diagram of the Nanpo gold deposit: (a) resistivity; (b)
amplitude frequency.

The P2 anomaly area is located in the current mining area, corresponding to the
known orebody (mineralization). P1 and P3 are located in the north and south sides of the
mining area. These anomalies are mainly exposed in the Indosinian felsic magnetic body.
Silicification, carbonation, chloritization, epidotization, and potassium feldsparization
usually occur in the surrounding rocks. The fault structural belt mainly passes through
these abnormal areas in the NE–SW direction. The P1 abnormal area mainly passes through
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the F3 and F5 faults, the P2 abnormal area mainly passes through the F6 and F7 faults, and
the P3 abnormal area mainly passes through the F8 faults (Figure 5). Since the P2 anomaly
area was caused by known orebody (mineralization), and the P1 and P3 anomaly areas had
similar faults, such as the P2 anomaly area, and corresponded well with the H1 and H6
anomalies delineated by geochemical exploration, it is speculated that P1 and P3 may also
be caused by orebodies (mineralization) or altered mineralization zone. Two AMT survey
lines (Figure 2d) were preferentially arranged to detect whether there are geological bodies
with low resistivity and high amplitude frequency under the P1–P2 anomaly.
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4.3. Audio-Frequency Magnetotelluric (AMT) Survey Results

According to the AMT inversion resistivity section map (Figure 5), the location and
boundary of magmatic rock and sandstone slate were basically delineated in the vertical
direction, and 10 favorable mineralization areas (D1–D10) were speculated in the local
low-resistivity anomaly area of deep high-resistivity anomaly, with an apparent amplitude
frequency value greater than 2.4%. In the horizontal direction, nine faults (Fw1–Fw9) were
successively inferred in the low-resistivity abnormal area of banded resistivity isolines,
which are discontinuous, abrupt, trap, or semi-trap.

Comparing and analyzing the audio-frequency magnetotelluric survey results of
line 111 and line 191 (Figure 6), it was found that the delineated magmatic body (high-
resistivity body) was distributed stably along the N–S direction, its bottom interface had
good continuity, and it was characterized by shallow east and deep west on the whole,
and the low-resistivity anomaly area distributed continuously along the N–S direction,
and the shape was basically the same. Thus, the ore-forming benefits delineated by the
AMT were divided into three obvious metallogenic favorable zones, numbered: I, II, and
III, respectively. Among them, the metallogenic favorable areas corresponding to I were
D1, D4, and D7; the metallogenic favorable areas corresponding to II were D2 and D8;
the metallogenic favorable areas corresponding to III were D3 and D9. At the same time,
obvious high-resistivity bodies were found in the depth of the two survey lines (below
−1800 m), which indicates that there may be a huge concealed magmatic body spreading
along the N–S direction in the depth of the study area, and there also has a good prospecting
foreground. The predicted faults were also quite consistent with the apparent resistivity
contour lines of the IP intermediate gradient scanning, which proves the reliability of AMT
measurement. These faults control the intrusion of the main magmatic body and the large
geological boundary of the mining area as a whole and have good continuity along the
N–S direction. They are considered to be the channels of the deep magmatic hydrothermal
invasion, and it is speculated that these faults are the ore-guiding and ore-hosting structures
of the ore deposit.
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5. Metallogenic Prediction Ore Prospecting Targets and Confirmation Results
5.1. Ore Prospecting Targets

The IP geophysical anomalies and soil geochemical anomalies (P1–H1 and P3–H6)
coincided with each other in the study area. The NE–SW trending faults were developed in
the study area, and the stratigraphic and lithologic conditions were good. The Au, Ag, Cu,
and other ore-forming elements related to hydrothermal sulfide were mainly enriched in
the felsic magmatic rock. The audio-frequency geodesy results also showed that there was a
huge hidden magmatic rock mass spreading N–S in the deep, which has a good prospecting
foreground. Meanwhile, surface trough exploration and shallow drilling projects found
corresponding orebody (mineralization) and mineralized alteration zones near the P1–H1
anomaly (Figures 3 and 5). It was shown that IP geophysics, soil geochemical survey,
and audio geodesy are suitable for exploration in this area. At the same time, the high
consistency of surface chemical anomalies and IP measurement anomalies provide a reliable
basis for further exploration and verification.

According to the geological characteristics, IP geophysical and soil geochemical anoma-
lies, and audio-frequency geodesy results of the Nanpo gold deposit, the prospecting target
area was determined, especially the deep extension part of the current mining area, and the
deep part of the N–S extension overlapping anomalies (P1–H1 and P3–H6) area, and there
may be industrial-grade concealed orebody (mineralization).

5.2. Prospect Confirmation Results

Through comparative analysis of the IP geophysical and soil geochemical anomaly
areas, it was found that two anomaly areas, P1–H1 and P3–H6, with good overlap were
in good agreement with the existing geological and metallogenic conditions, and they



Minerals 2022, 12, 96 11 of 16

are obvious targets verified by trenching and drilling engineering. In the No. 5 orebody
found in the P1–H1 abnormal area, the controlled strike length of the gold orebody was
approximately 200 m, the dip length was 350 m, the average thickness was 1.37 m, and
the average grade of Au was 2.75 g/t; the No. 16 orebody found in the P3–H6 abnormal
area, the total length of the gold orebody controlled strike was 160 m, the dip length was
83~174 m, the average thickness was 1.96~4.07 m, and the average Au grade was 6.10 g/t.
Several completed bore holes (ZK01–ZK15) were drilled, and corresponding gold bodies
were found (Figure 7). It was verified that the deep features of the abnormal areas of P1–H1
and P3–H6 accorded with the results of the AMT measurement. This indicates that the
gold orebody in the study area extended downward along the fault zone, and there may be
industrial-grade concealed orebody (mineralization) in the depth.
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6. Discussion
6.1. Indicators for Geophysical and Geochemical Prospecting

According to the distribution of geochemical anomalies, metallogenic geological con-
ditions, and distribution characteristics of known minerals in the study area, it was found
that Au, Ag, Cu, and other metallogenic elements related to hydrothermal sulfide in the
Nanpo gold deposit were mainly enriched in intermediate acid magmatic rocks, while IP
anomalies corresponded well with geochemical anomalies. The physical characteristics
of rock (ore) specimens showed that the ore (pyrite and pyritized magmatic rock) mainly
showed the characteristics of medium–low resistance and medium–high polarization. By
comparing the known orebody with the inversion resistivity section of AMT, it can be
found that the ore body was mainly located in the relatively low-resistance anomaly in
the high-resistivity horizon, especially in the position with high-resistivity layer thickness,
local anomaly distortion, sudden decrease in resistivity, and high amplitude frequency.
This is consistent with the characteristics that ore bodies in the study area mainly occur
in magmatic rocks (high-resistance rock masses), and when ore bodies are enriched in
the rock masses, the resistivity will decrease, the apparent amplitude frequency will in-
crease, and the local characteristics are of relatively low-resistance and high-polarization
anomaly. Therefore, a comprehensive prospecting indicator for the study of geophysical
and geochemical exploration in the mining area was determined: A large-scale and highly
overlapping Au–Ag–Cu anomaly area appears in felsic magmatic rocks; at the same time,
the area where the apparent resistivity suddenly decreases and the apparent amplitude
frequency is relatively high is the most favorable ore-forming area.
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6.2. Causes of Geophysical and Geochemical Exploration Anomalies

According to the regional geological background and mineralization characteristics
of the study area, we have explained the main causes of soil geochemical anomalies: (I)
The background values of Au–Ag–Cu–Fe and other metallogenic elements are highly
in the Nanpo Formation Section 2 strata(C3n2); (II) the dense brittle-ductile shear zones,
secondary fracture and fissure zones become the fluid migration paths connecting regional
tectonic–magmatic–hydrothermal activities [43–52]. With the migration of ore-bearing
hydrothermal solution, a strong water–rock reaction occurs with the wall rock, which is
characterized by alteration phenomena such as silicification, carbonation, chloritization,
potash feldspathization, clayization, sericitization, and Au–Ag–Cu–Fe ore (mineralized)
bodies filled with rocks and fissures in fine reticulate vein, irregular clumpy, and veined
manner (different thickness). (III) The dispersion, migration, and secondary enrichment of
these elements on the surface or in the shallow underground are conducive to the formation
of super anomalies in the whole deposit district.

Similarly, the causes of geophysical anomalies may be as follows: (I) frequent tectonic
activities in the district lead to the development of faults and structural fracture zones
as well as the development of associated shear–tensile joints and fissures, which provide
good ore-guiding and ore-hosting space for mineralization (Figure 2); (II) in the later stages,
affected by regional uplift–denudation and other factors, the oxidation-leaching process
on the surface and in the shallow underground promoted the in situ dispersion and local
epigenetic enrichment of Au–Ag–Cu–Fe and other elements to form anomaly belts with
medium and low resistivity and medium and high polarization distributed along the
intermediate acid magmatic rock mass and its fault zone (Figure 6).

6.3. Mineralization Model of the Nanpo Deposit

According to the regional background and geological characteristics of the Nanpo
deposit, including the relationship between mineralogy, structure, and tectonics of ore
minerals, the generation sequence of metallic minerals is as follows: magnetite→ ilmenite
→ hematite→ pyrite→ chalcopyrite→ chalcocite. Previous studies have shown that Au–
Ag–Cu and other ore-forming elements related to hydrothermal sulfides in the Nanpo gold
deposit area are relatively high in Indosinian intermediate acid magmatic rocks, and most
of the element deviations are also large. In addition, there are reddish-brown or yellowish-
brown iron spots (limonitization) distributed in the fissures of the rock stratum, which
are locally in the form of sand, crust, and lump, and they are the products of secondary
leaching and weathering of pyrite and other iron-bearing minerals. Therefore, combined
with the characteristics of major and trace elements, rare earth elements and the zircon
U–Pb age (248 Ma) of felsic magmatic rocks in the Nanpo gold deposit, it was inferred that
the mineralization may be related to the arc volcanic magma formed by the continuous
eastward subduction of the Paleo-Tethys Ocean in the Early Triassic.

Therefore, a conceptual metallogenic model was proposed to describe the metallogenic
process: From the Late Carboniferous to Middle Permian, the Suketai block escaped from
the Indosinian plate due to the subduction of the Paleo-Tethys Ocean Basin to the West,
forming the Nan–Uttaradit back-arc basin. A series of arc-type Calc-alkaline volcanic-
intrusive rocks and a series of NE–SW trending brittle-ductile fault systems (tectonic
fracture zones) were developed in the Phongsali–Ballay–Loei area, which provided migra-
tion channels for ore-bearing hydrothermal fluids. Due to the low temperature and fast
subduction speed of the subducted oceanic crust, the temperature of the oceanic crust had
no time to adjust to the high-temperature range of the surrounding mantle. The strong
temperature and pressure changes led to dehydration and decarbonization to produce meta-
morphic fluid and may have mixed the deep magmatic fluid to form the initial ore-forming
fluid.

During the Late Permian–Early Triassic, the back-arc basin of the Nan–Uttaradit began
to subduct to the East, which resulted in the lithospheric delamination and thinning, the
generation or activation of deep and large faults, and the formation of the Luang Prabang
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fault and the Preshan fault. With the upwelling of the asthenosphere mantle magma,
the thickening lower crust formed. The conclusion that the origin of the felsic pluton in
the Nanpo gold deposit originated from the partial melting of the thickened lower crust
material can prove that the Luang Prabang–Loei tectonic belt experienced a continental
crust thickening event during this period (details will be published separately). With
continuous subduction, the material of the deep asthenosphere is strongly upwelling, which
further generates a large amount of heat energy and leads to the crust remelting, forming a
mixed fluid of crust and mantle. Large-scale magmatic intrusion makes the lithospheric
mantle continuously depleted and thinned, resulting in the removal of metallogenetic
elements (Au, Ag, and others) from the upper mantle and their upward migration through
the mantle plume. In the process of ascending, the ore-bearing fluid reacts strongly with
the wall rock to extract the ore-forming materials. Due to the change in tectonic properties
(Ductile→ Ductile-brittle→ Brittle) and physicochemical conditions, the metamorphic
fluid rich in gold and other minerals is immiscible and phase-separate from the post-felsic
magmatic–hydrothermal solution in the mining area, resulting in the precipitation and
enrichment of ore-forming materials in the structural fracture alteration zone formed in the
early stage (Figure 8). This model provides new insights for the metallogenic research and
exploration of the Nanpo deposit and the entire Luang Prabang–Loei island arc belt.
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island arc belt of Laos; (b) sketched map of Indosinian volcanism caused by eastward subduction of
the Paleo-Tethys Ocean (modified from [13–21,34,43]).

7. Conclusions

Soil geochemical survey, IP intermediate gradient scanning, audio geodesy were
carried out successively in the Nanpo gold deposit, and several achievements were attained
by the different working methods.
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(1) The Nanpo gold deposit occurs in the Indosinian felsic magmatic rock mass in the
Luang Prabang–Loei island arc belt in northwest Laos. Moreover, the gold ore (miner-
alized) bodies showed characteristics of low resistance and high polarization, which
was obviously different from the characteristics of high resistance and low polar-
ization of the surrounding rock. Thus, it has the prerequisite for electromagnetic
exploration;

(2) Large-scale and overlapping comprehensive anomalies were identified, and concealed
ore (mineralization) bodies were delineated in the deep by audio geodetic survey. The
P1–H1 and P3–H6 anomalies were verified by drilling in the extension area around
the known mining area, and the expected gold (mineralized) bodies were found;

(3) From the statistical results of the main metallogenic elements enriched in each strati-
graphic region of the research area, contents of Au, Ag, and Cu related to hydrothermal
sulfide were high in the Upper Carboniferous Nanpo Formation Section 2 strata(C3n2),
and most of the elements had large deviations. This is consistent with the fact that the
known ore (mineralized) points mostly occurred on this horizon, which is the most
promising horizon in the area;

(4) According to the research on the geological, physical, and geochemical prospecting
characteristics of the Nanpo gold deposit as well as the subsequent exploration results,
it was also verified that there may be hidden ore bodies in the area, which have good
prospecting potential. At the same time, the geophysical and geochemical anomaly
characteristics and prospecting experience in the study area can provide reference for
the search for structurally altered rock-type gold deposits and related quartz-vein-type
hydrothermal copper–gold polymetallic deposits in the Luang Prabang arc zone.
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