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Abstract: The northward subduction of the Paleo-Tethys oceanic crust in the Paleozoic to Mesozoic
is critical for the tectonic evolution of the Qinling-Tongbai-Hong’an-Dabie-Sulu-Imjingang-Gyeonggi
orogenic belt. However, the Paleozoic geological fingerprint of the Paleo-Tethys oceanic crust subduction
in the Dabie-Sulu orogenic belt remains obscure. In the present study, apatite from the Muniushan
monzogranite in the Houkuang area was analyzed to constrain the age of metamorphism in the Jiaobei
Terrane and is regarded as the response to the Paleo-Tethys oceanic crust subduction in the Early
Permian. Muniushan apatite with obvious negative Eu anomaly is enriched in LREE and depleted
in HREE. The chondrite-normalized REE patterns of apatite correspond with I-type granitoids and
mafic igneous rocks, implying a magmatic origin. Igneous apatite grains have reset compositional
zonation in the cathodoluminescence image. Apatites plotted on a support vector machine apatite
classification biplot and Eu/Y-Ce discrimination diagram shows a tendency from the region of “mafic
igneous rocks and I-type granitoids” to “low and middle metamorphic”. This evidence consistently
suggests that the Muniushan apatite suffered metamorphism at a later stage. The twenty-six apatite
grains from the Muniushan monzogranite yield a metamorphic age of 297± 8 Ma (by LA-ICP-MS U-Pb),
which is different from the Muniushan zircon SHRIMP U-Pb results of 2110 ± 4 Ma, indicating the
metamorphism occurred in the Early Permian and reset the U-Pb system of apatite. The Early Permian
metamorphism that occurred in the Jiaobei Terrane is synchronous to the subduction of the Paleo-Tethys
oceanic crust and is the response to the Paleo-Tethys oceanic crust subduction.

Keywords: apatite; U-Pb geochronology; trace elements; late Paleozoic metamorphism; Jiaobei Terrane

1. Introduction

The Qinling-Tongbai-Hong’an-Dabie-Sulu (east-central China)-Imjingang-Gyeonggi
(central Korea) orogenic belt was formed in the Paleozoic to early Mesozoic convergent
plate motion (Figure 1a,b) [1–4]. The Qinling-Tongbai-Hong’an-Dabie-Sulu orogenic belt,
between the North China Block (NCB) and the South China Block (SCB), experienced the
early to mid-Paleozoic oceanic arc accretion, Prototethyan and Paleo-Tethys oceanic crustal
subduction, the Late Permian to Triassic continental subduction, HP/UHP metamorphism
and subsequent exhumation [5–10]. The arc-continent collision in the late Paleozoic was
caused by the northward subduction of the Paleo-Tethys oceanic crust, leading to the low-P
metamorphism in the Qinling-Tongbai orogenic belt, the HP eclogite facies metamorphism
in the Hong’an orogenic belt and the crustal accretion to the NCB [11–13]. The subduction
of the Paleo-Tethys oceanic crust in the Hong’an orogenic belt starts in the Carboniferous
resulting in the eclogite facies metamorphism at 309 ± 3 Ma [14]. The Ogcheon belt, south
of the Gyeonggi orogenic belt, is regarded as an eastern continuation of the Dabie-Sulu
belt between the North and South China blocks (Figure 1a) [4,15–18]. The Ogcheon belt
also underwent the Early Permian (290–280 Ma) regional metamorphic event, which is
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synchronous to the Paleozoic Paleo-Tethys oceanic crust subduction [4,15,16]. However,
geological fingerprints of Paleozoic arc-continent collision in the Dabie-Sulu Orogenic Belt
in east China remain obscure.

The Jiaobei Terrane, northwest of the Sulu Belt, was coalesced with the Sulu Terrane
during the Paleozoic to early Mesozoic convergent plate motion (Figure 1b). Paleopro-
terozoic Muniushan monzogranite, southeasternmost of the Jiaobei Terrane, is susceptible
to the Paleo-Tethys oceanic crust subduction (Figures 1 and 2). Apatite, a common and
important accessory mineral, is formed in different apatite-generation environments. The
temperature sensitivity (350–570 ◦C) of the apatite U-Pb system makes it a representative
medium-low temperature thermochronology tool [19–25]. It is prone to isotopic resetting,
which occurred in the metamorphism and recorded the age of metamorphism [26–30].
In the present study, representative Muniushan monzogranite from the Jiaobei Terrane
was selected to investigate a representative geological fingerprint of the Paleozoic arc-
continent collision that occurred in the Dabie-Sulu orogenic belt. Muniushan apatite U-Pb
geochronology and compositional analyses were conducted to prove that the late Paleozoic
metamorphism that occurred in the Jiaobei Terrane was in response to the northward
subduction of the Paleo-Tethys oceanic crust during the same period.

2. Geological Background

The Jiaobei Terrane, to the east of the regional Tan-Lu Fault, consists of the Jiaobei
Uplift in the northwest and the Jiaolai Basin in the southeast (Figure 1a,b) [31–34]. The
Jiaobei Uplift mainly comprises the Neoarchean Jiaodong group of amphibolites and
tonalite-trondhjemite-granodiorite (TTG) gneisses and the Paleoproterozoic sedimentary
Fenzishan and Jingshan groups [1,2,33,35–38]. Magmatic intrusions into the Jiaobei Uplift
include the Late Jurassic (ca. 160–145 Ma) Linglong granite, the Early Cretaceous (ca.
130–122 Ma) Guojialing granitoid, and the Early Cretaceous (ca. 119–110 Ma) Aishan-Type
granitoid (Figure 1b) [31,39–44]. The main controlling structure in the Jiaobei Uplift is the
NE-trending Sanshandao, Jiaojia, Zhaoping, and Qixia fault zones (Figure 1b) [45–47]. The
Jiaolai Basin is the Cretaceous pull-apart basin, where the development is controlled by
Late Mesozoic strike-slip and pull-apart movements along NNE-trending faults [37,48–50].
The exposed formations in the area include the Paleoproterozoic sedimentary Fenzishan
and Jingshan groups, the Cretaceous Laiyang group and the Cenozoic clastic rocks [51,52].
Magmatic rocks in the Jiaolai Basin comprise the Paleoproterozoic Muniushan and Early
Cretaceous Aishan granites (Figure 1b) [53,54]. The main controlling structure in the Jiaolai
Basin is the NE-trending Tan-Lu and Muping-Jimo fault zones (Figure 1b).

The Houkuang area is located in the northeastern part of the Jiaolai Basin (Figures 1 and 2).
Abundant gold resources in the area are widespread, such as the Tudui, Shawang, Dongliujia,
Longkou, and Houkuang gold deposits [34,43,55,56]. The strata consist of the Paleoproterozoic
biotite granulite, diopside granulite and biotite schist, Cretaceous gravel sandstone, muddy
siltstone and conglomerate, and Cenozoic clastic rocks. The major fault is dominated by the SE-
dipping Guocheng Fault. The main magmatic rock exposed in the area is the Paleoproterozoic
Muniushan monzogranite (Figure 2).
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Figure 1. Simplified map showing the location of the Jiaobei Terrane (a) and geological map of the 
Jiaodong Peninsula (b). The dashed line means the eastern continuation of the Dabie–Sulu orogenic 
belt and the rectangle shows the Muniushan monzogranite [35]. 

 

Figure 2. Geological map of the Houkuang gold deposit in the Jiaolai Basin showing the major 
geological units and sample locations [35]. 
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3. Samples and Methodology
3.1. Sample Description

One monzogranite sample was collected from the Muniushan pluton, namely 21HK01
(37◦19′01′′ N, 120◦51′58′′ E). The sample locations and hand specimen photographs are
shown in Figures 2 and 3. Monzogranite intrudes into the Paleoproterozoic Jingshan group
(Figure 3a,b). Shear joints are distributed on the surface of Muniushan pluton, which was
affected by the mylonitization (Figure 3c,d). The light gray-black monzogranite samples
are characterized by a medium-fine granular texture and massive structure (Figure 4a).
The main minerals are quartz, plagioclase, and K-feldspar, and the secondary minerals are
chlorite and sericite (Figure 4b,c). The quartz from monzogranites is subhedral to anhedral
and the particle size distribution ranges from 0.1~0.6 mm (Figure 4b). The plagioclase
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and K-feldspar have subhedral to anhedral crystals, of which the particle size distribution
ranges from 0.2 to 0.5 mm and 0.1 to 0.3 mm (Figure 4b,c). Chloritization and sericitization
were observed under the microscope (Figure 4b,c). The apatite is mainly accessory mineral
in the monzogranite (Figure 4d).
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Figure 4. Photomicrographs showing the Muniushan monzogranite samples. Hand specimens of
the Paleoproterozoic Muniushan monzogranites (a). Transmitted crosspolarized light photomicro-
graphs (b,c). Single polarized photomicrograph (d). Pl = plagioclase, Qz = quartz, Chl = chlorite,
Kfs = K-feldspar, Ser = sericite, Ap = apatite [23,24,57].

3.2. Apatite LA-ICP-MS U-Pb Dating

The separation of apatite grains was carried out at the Langfang Chengxin Geological
Service Co., Hebei Province, China. The apatite grains were separated from the Muniushan
monzogranite through coarse and fine crushing, panning, magnetic separation, and other
methods. Magnetic techniques were used to separate the apatite grains from the clastic
grains. In order to investigate the internal structure of the apatite, the relatively complete
and transparent apatite crystals were mounted in the epoxy, polished to nearly half-section,
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and cleaned in an ultrasonic cleaner containing a 5% HNO3 solution. Transmission, reflec-
tion, and CL imaging were also completed at the Langfang Chengxin Geological Service
Co., Langfang, China.

The apatite U-Pb analyses were carried out using the LA-ICP-MS at the Yanduzhongshi
Geological Analysis Laboratory, Beijing, China. The laser analyses were performed using
a Neptune double-focusing multiple-collector ICP-MS attached to a 193 nm NWR193 Ar-F
excimer laser ablation system. All apatite analyses were completed with a beam diameter
of 37 µm, 10 Hz repetition rate and a 0.25 mJ/pulse power, during a 70 s analysis including
20 s measurement of gas blank, followed by ablation of the sample for approximately 40 s by
raster. MAD2 [58], McClure Mt. [59], Otter Lake and Durango were used as the age standards
for apatite U-Pb. Data were processed using the Isoplot 3.0 program [21,60,61].

3.3. Trace Element Analyses of Apatite

The LA-ICP-MS analyses of trace elements in apatite were carried out at the Isotopic
Laboratory, Tianjin Center, China Geological Survey, Tianjin, China, using a 193 nm excimer
ArF LA system and an Agilent 7900a ICP-MS. All analyses were conducted with a beam
diameter of 29 µm, 8 Hz ablation frequency, and 80 mJ laser energy. In order to ensure the
accuracy of the test, the NIST SRM 610 and 612 reference material glasses were used as
an external reference material for trace element determinations on apatite. The internal
element standard isotope was 43Ca for apatite trace element analyses. Concordia plots and
age calculations were reported at the 2σ uncertainty level and were processed using the
ICPMSDataCal 11.8 program [62]. Thirty-three elements such as Ca, P, Si, Al, Fe, Mg, Mn,
Sr, Y, and REE of apatite were determined in the experiment.

4. Results
4.1. Morphology and Geochronology of Apatite

The 21HK01 apatite was dated by LA-ICP-MS, and the morphology and plots of data
are shown in Table 1 and Figure 5b,c. Most apatite grains from the monzogranite (21HK01)
are colorless, transparent, and subhedral to anhedral. Apatite grains from sample 21HK01
display lengths of 100–250 µm and length/width ratios ranging from 2:1 to 4:1. In the CL
image, apatite grains show a changed compositional zonation. Twenty-six apatite grains
were analyzed on the light and dark compositional zonation. The samples yield a lower
intercept age of 297 ± 8 Ma (n = 26, MSWD = 1.2) and a weighted mean age of 295 ± 11 Ma
(n = 26, MSWD = 0.7) (Figure 5b,c), representing the metamorphic age.
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4.2. Trace Elements of Apatites

The trace element composition and plot of apatite are shown in Table 2 and Figure 6.
The total LREE (ΣLREE) ranges from 650 to 1591 ppm, and the total HREE (ΣHREE) ranges
from 231 to 855 ppm. The Eu anomalies are >0.62 (Eu/Eu* = 0.62–1.02). Apatite is enriched
in LREE and depleted in HREE. The contents of Sr and Y from the Muniushan apatite
ranges from 440.8 to 655.6 ppm and 128.4 to 503.4 ppm. The Sr/Y contents are between
1.24 and 4.43.
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Table 1. LA-ICP-MS U-Pb apatite data from monzogranite (21HK01) at Houkuang.

Sample No. Th U Th/U

Isotopic Ratios
207Pb/206Pb 207Pb/235U 206Pb/238U

Ratio 1σ Ratio 1σ Ratio 1σ

Apatite from monzogranite (21HK01): 297 ± 8 Ma (MSWD = 1.3, n = 26)

21HK01-02 18 5 3.56 0.7492 0.0190 25.2888 1.2111 0.2488 0.0110
21HK01-03 13 4 3.61 0.5126 0.0203 6.2460 0.2403 0.0935 0.0028
21HK01-04 11 3 3.62 0.5533 0.0239 6.9290 0.2295 0.0995 0.0027
21HK01-05 16 6 2.78 0.6071 0.0208 11.4069 0.4121 0.1383 0.0042
21HK01-07 6 3 2.26 0.6596 0.0245 13.1914 0.4346 0.1541 0.0045
21HK01-08 21 4 4.68 0.3804 0.0208 3.3962 0.1559 0.0709 0.0021
21HK01-09 13 5 2.47 0.4698 0.0178 5.7372 0.2228 0.0909 0.0024
21HK01-11 8 4 2.00 0.5315 0.0229 7.6438 0.3909 0.1073 0.0043
21HK01-15 15 5 3.15 0.5119 0.0234 6.7918 0.2511 0.1003 0.0029
21HK01-17 15 6 2.56 0.4387 0.0131 4.8747 0.1352 0.0840 0.0018
21HK01-18 10 4 2.38 0.5298 0.0257 7.0921 0.2743 0.1036 0.0027
21HK01-19 13 4 3.21 0.3997 0.0159 4.0936 0.1495 0.0785 0.0021
21HK01-20 7 3 2.07 0.5729 0.0290 9.1053 0.4528 0.1223 0.0051
21HK01-22 12 3 3.73 0.5013 0.0322 5.7695 0.2848 0.0942 0.0035
21HK01-23 7 3 2.15 0.6555 0.0166 18.8423 0.7507 0.2071 0.0062
21HK01-24 8 3 2.34 0.5269 0.0181 7.8596 0.2612 0.1137 0.0033
21HK01-25 10 5 2.09 0.5818 0.0185 11.2593 0.3663 0.1431 0.0033
21HK01-26 9 3 2.73 0.5499 0.0235 9.6934 0.6076 0.1298 0.0058
21HK01-27 14 5 2.61 0.4891 0.0130 6.9329 0.1698 0.1067 0.0022
21HK01-29 6 3 2.30 0.5879 0.0313 9.5268 0.2753 0.1290 0.0042
21HK01-30 9 3 2.58 0.6800 0.0257 23.3600 1.2905 0.2484 0.0102
21HK01-32 7 3 2.33 0.6587 0.0244 17.7866 0.7779 0.2014 0.0080
21HK01-33 10 3 2.94 0.6387 0.0213 16.1999 0.7132 0.1882 0.0080
21HK01-34 14 4 3.28 0.7293 0.0158 32.4341 0.9251 0.3267 0.0085
21HK01-36 5 3 1.75 0.5571 0.0205 10.0301 0.2563 0.1366 0.0030
21HK01-37 7 3 2.46 0.5858 0.0206 11.2902 0.3714 0.1475 0.0040
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Table 2. LA-ICP-MS apatite trace element composition.

Sample 01-01 01-02 01-06 01-07 01-12 01-13 01-14 01-18 01-19 01-21 01-23 01-24 01-26 01-28 01-29

P 186,406 185,857 186,152 190,362 183,815 183,180 201,961 221,295 201,068 195,086 182,191 178,812 184,656 187,632 187,714
Sr 614.5 495.8 518.2 503.8 613.6 622.6 607.5 655.6 503.3 440.8 504.5 539.7 551.5 518.9 511.2
Y 141.8 185.4 393.6 253.1 151 503.4 202.1 148 216.2 243 182.3 152.7 128.4 260 300.8
La 125.7 109 268 150.4 148.4 116.1 184.8 144.1 146.1 143 151 131.4 159.6 193.6 209
Ce 359.4 304.3 762.9 465.1 381.9 356.6 459.1 384.1 417.3 448.4 422.3 367.1 409.1 459.7 585.1
Pr 47.7 41.3 101.3 67.5 49.5 61.1 56.6 48.2 58.6 66.2 56.3 48.4 48.7 59 78.5
Nd 214.5 195.9 458.8 317.2 218.9 363.3 252.7 214.3 280.1 327.9 258.7 226.4 204.2 270 366.5
Sm 36.8 38.9 87.3 61.6 39.1 123.4 45.2 40 52.5 64.7 44.4 40.7 32.4 54.8 94.1
Eu 9.4 9.4 21 15.2 9.5 27.4 12.2 10.4 11.3 14.7 10.1 8.9 8 16.2 24.5
Gd 36.4 41.9 86.4 61.2 38.2 148.7 46.5 40.1 53.9 60.7 44.3 41.2 30.9 58 106.2
Tb 4.2 5.1 10.9 7.2 4.3 19.3 5.9 4.7 6.6 7.1 5.2 4.7 3.6 7.2 12.7
Dy 21.7 27.6 59.9 37.7 23.2 91.1 31.3 24.2 34.2 36.2 28.4 24.6 19.1 39.4 60.1
Ho 4.2 5.8 12.3 7.8 4.8 16.6 6.4 4.9 7.1 7.5 5.8 4.9 3.9 7.8 10.6
Er 10.7 15 31.9 19.6 12 40.3 16.4 12.3 17.7 19.1 15.4 12.3 10.7 21.3 24.6
Tm 1.4 1.9 4.1 2.4 1.6 4.8 2.1 1.5 2.1 2.3 1.8 1.6 1.3 2.8 3
Yb 9.1 11.3 24.6 16.3 10 26.6 13.2 10.3 13.1 15.1 12 9.2 8.4 17.8 19
Lu 1.5 1.9 4 3 1.6 3.9 2.3 1.7 2.2 2.5 1.9 1.5 1.5 3.1 3

Sr/Y 4.33 2.67 1.32 1.99 4.06 1.24 3.01 4.43 2.33 1.81 2.77 3.53 4.29 2 1.7
ΣLREE 747 650 1591 1000 799 897 953 791 902 985 888 773 822 982 1239
ΣHREE 231 296 628 408 247 855 326 248 353 394 297 253 208 417 540

5. Discussion
5.1. Origins of Apatite

Apatites in this study are subhedral to anhedral and show pronounced LREE enrichment
and HREE depletion on their chondrite-normalized REE patterns (Figures 5a and 6). As seen in
the CL images, apatite grains show a changed but homogeneous compositional zonation (with
light-dark zoning) (Figure 5a) and are interpreted to be of primary magmatic origin [64,65]. The
“coupled REE pattern” of Muniushan apatite also shows the similar curve of apatite in mafic
igneous rocks and I-type granitoids previously published, supporting the view of magmatic
origin (Figure 6) [65–71]. In addition, the support vector machine apatite classification biplot
and Eu/Y-Ce discrimination diagram show that Muniushan apatite has a trend toward the
low- and medium-grade metamorphic and metasomatic fields that is interpreted as the
influence of metamorphism at a later stage (Figure 7) [3,24,72,73]. The apatite only appears in
Muniushan monzogranite, which implies that the apatite has a genetic relationship with the
monzogranite. Previous studies of the geochronological data of Muniushan monzogranite
show emplacement ages of ca. 2.1 Ga and metamorphic ages of ca. 1.85 Ga [74–77]. The
apatite yields a U-Pb Tera-Wasserburg concordia plot with lower intercept age of 297 ± 8 Ma,
which is significantly different from the zircon SHRIMP U-Pb geochronology results of the
Muniushan monzogranite cluster at 2110 ± 4 Ma [77]. This may be explained by the closure
temperature, at which the rock is formed and cools to a temperature where the loss path of
daughter isotopes is negligible compared to the accumulation amount after radioactive timing
begins [73,78]. The temperature of medium-grade metamorphism is above 550 ◦C, which is
often higher than the apatite U-Pb closure temperature of 350–550 ◦C, and is easily to lead the
isotopic resetting [3,79–82]. Therefore, we present Muniushan apatite with a magmatic origin
that is affected by the metamorphism later.
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5.2. Implications of the Timing of Paleozoic Metamorphism in the Jiaobei Terrane

The metamorphism of Muniushan apatite may be caused by the hydrothermal fluid
from the magmatic intrusion event that occurred in the Early Permian. The apatite U-Pb age
of 297 ± 8 Ma from the monzogranite samples represents the age of the magma intrusion.
However, no magmatic hydrothermal events have been reported in the late Paleozoic in the
Jiaobei Terrane so far. Geological fingerprints of the Paleozoic magmatic intrusion are also
lacking in the Jiaobei Terrane to prove this [33–35,45,48]. Therefore, we suggest that the
metamorphic age of Muniushan apatite may be explained by the northward subduction of
the Paleo-Tethys oceanic crust. In the Carboniferous to early Mesozoic, the Paleo-Tethys
oceanic crust subducted northward, and the Qinling-Tongbai-Hong’an-Dabie-Sulu (east-
central China)-Imjingang-Gyeonggi (central Korea) orogenic belt was influenced by the
subduction [85–93]. Thus, we propose that metamorphism of Muniushan apatite may be
affected by the northward subduction of the Paleo-Tethys oceanic crust and is the response
of the Jiaobei Terrane to the subduction event. Apatite’s U-Pb age of 297 ± 8 Ma represents
the age of the Early Permian subduction.

Previous studies along the Qinling-Tongbai-Hong’an-Dabie-Sulu collisional belt show
that the Hong’an-Dabie-Sulu collisional belt was influenced by the subduction of the Paleo-
Tethys oceanic crust in the Permo-Triassic [2,17,88,94,95]. The Hong’an Block situated in
the west of the Dabie-Sulu orogenic belt forms the transition between zones exposing
low-pressure and ultra-high-pressure rocks and is a coherent part of the Triassic Dabie-Sulu
HP-UHP Terranes [88,89]. The subduction of the Paleo-Tethys oceanic crust possibly starts
at ca. 320~300 Ma, as suggested by the late Paleozoic eclogite facies metamorphism in the
Huwan shear zone in the Hong’an Block [2]. Published Nd isotope studies for eclogites
in the Huwan shear zone have shown that eclogites have high Nd(t) values of −1.9 to 5.8,
indicating the protoliths were derived from oceanic basalts [96]. Previous zircon Hf isotope
analyses from the eclogite in the Huwan shear zone exhibit a large range in εHf (t) values
from −4.9 to 12.4 and young TDM age of 516 ± 48 Ma and are interpreted as the incorpora-
tion of a small quantity of older crustal materials during the protolith formation [1]. All
these studies, therefore, argue for an eclogite connection of the Late Silurian. Metamorphic
zircons from the eclogite in the Huwan shear zone are characterized by relatively flat REE
patterns, low 176Lu/177Hf ratios (0.000004–0.000075) and slightly negative Eu anomalies
(Eu/Eu * = 0.31–1.02) [2]. The early crystallization of plagioclase would reduce the Eu
contents in residual melts and then influence their concentrations in zircon crystallizing



Minerals 2022, 12, 1294 9 of 14

from such magma [64]. Thus, it is considered that zircon was formed under eclogite facies
conditions, in the presence of garnet and absence of feldspar [2]. Published 40Ar-39Ar,
U-Pb, Rb-Sr, and Sm-Nd ages to date the eclogite facies metamorphism in the Hong’an
Block span from ca. 420–220 Ma [1,13,14,97–99]. According to the in situ zircon U-Pb and
mineral Lu-Hf isochron methods, the Carboniferous metamorphic ages were documented
from the same samples in several outcrops from the Huwan shear zone [94,95,97,98]. The
Carboniferous zircon U-Pb ages range from 315± 17 to 301 ± 13 Ma with a weighted mean
of 309 ± 3 Ma, which is taken as the best estimated age of the eclogite facies metamor-
phism, starting in the Huwan shear zone [2,14]. In addition, previous simultaneous in situ
trace element and Lu-Hf and U-Pb isotope analyses of zircon grains from the Xiongdian
and Sujiahe eclogite in the Hong’an Block identify that the eclogite facies metamorphism
occurred persistently in the Late Carboniferous to Early Permian period at ca. 306 to 283
Ma [90,91,100]. Taken together, these dates provide unambiguous evidence for the Car-
boniferous eclogite facies metamorphism. Previously, it has been suggested that the oceanic
and continental subductions were a continuous process in the Hong’an orogenic belt, and
the subduction of Paleo-Tethys oceanic crust began prior to ca. 315 Ma, reaching peak HP
eclogite facies metamorphism at ca. 310 Ma, and starting exhumation at ca. 260 Ma [95].
Thus, the eclogite facies metamorphism in the Carboniferous in the Huwan shear zone is
regarded as the response to the Paleo-Tethys oceanic crust subduction. Similar evidence
was also found in the Ogcheon belt in South Korea [4,15,16,101]. The Ogcheon belt (south
of the Gyeonggi belt), located in the east of the Dabie-Sulu orogenic belt, is often seen as
the eastern continuation of the Dabie-Sulu orogenic belt [4,92]. According to the Pb-Pb
whole-rock ages of slate and uraninite electron-microprobe Th-U total Pb chemical ages, the
Ogcheon belt underwent the Early Permian (290–280 Ma) regional metamorphic event that
was synchronous to the Paleozoic Paleo-Tethys oceanic crust subduction [4,15,16,101]. This
study supplied the Early Permian metamorphic ages that are consistent with the Hong’an
Block and Ogcheon belt and are recorded by the Muniushan apatite in the Jiaobei Terrane.

The late Paleozoic has been recognized as a quiet period for the Jiaobei Terrane due to
the lack of Paleozoic geological fingerprints that record relevant geological information.
However, detrital zircon of the Early Permian age (280 Ma) with metamorphic genetic
characteristics was found in the Linsishan Formation in the Jiaolai Basin, indicating the
Jiaobei Terrane may have experienced the metamorphism during the Early Permian at
ca. 280 Ma [102]. The stratum of the Linsishan Formation consists of conglomerate and
microconglomerate, which have the properties of nearby depositions, implying the source
of metamorphic zircon is Jiaobei Terrane [103,104]. The Muniushan apatite in this study
yields the Early Permian metamorphic age (297 ± 8 Ma) that is compatible with the meta-
morphic zircon (280 Ma) and thus is interpreted as the occurrence of the Early Permian
metamorphism in the Jiaobei Terrane. The Jiaobei Terrane was in a stable uplift and de-
nudation stage in the late Paleozoic. Here, we argue that the Early Permian metamorphism
in the Jiaobei Terrane may be caused by the northward subduction of the Paleo-Tethys
oceanic crust, and the geochronological result of the Hong’an Block and Ogcheon belts is an
important response to the Paleo-Tethys oceanic crust subduction, which supports this point.
In summary, this research proves the occurrence of the Early Permian metamorphism in
the Jiaobei Terrane, which is synchronous to the northward subduction of the Paleo-Tethys
oceanic crust and may be the response to the subduction.

6. Conclusions

1. The origin of the Muniushan apatite is magmatic, the compositional characteristics
being similar to the apatite in mafic igneous rocks and I-type granitoids previously
published. Apatite was formed simultaneously with the Paleoproterozoic Muniushan
monzogranite but suffered metamorphism later.

2. The combination of the composition and U-Pb ages of apatite can be used to constrain
the younger metamorphic event that occurred in the Jiaobei Terrane in the Early
Permian. Uranium-Pb geochronology of the Muniushan apatite gives a metamorphic
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age of 297 ± 8 Ma, consistent with the metamorphic ages in the Hong’an Block and
Ogcheon belt which represent the response of the Jiaobei Terrane to the Paleo-Tethys
oceanic crust subduction in the Early Permian.
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