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Abstract: In the process of underground gasification of coal, the top rock of coal seam will experience
a certain high temperature action and be in a complex stress environment. Therefore, it is of great
theoretical and engineering significance to study the effect of cyclic unloading and loading on
mechanical properties of rocks under high temperature action. In this thesis, the stress–strain curves
of sandstone under different high-temperature treatments are obtained by conducting graded loading
and unloading tests on sandstone treated at room temperature and at 200 ◦C, 400 ◦C, 600 ◦C, and
800 ◦C, respectively. The research content of this paper is as follows: the peak stress, peak strain, elastic
modulus, Poisson’s ratio, internal friction angle, and cohesion of sandstone in the destruction stage
of sandstone. The results show that the peak strain and cohesion of sandstone show an increasing
trend with the increase of temperature from room temperature to 800 ◦C; the peak stress shows a
decreasing trend with the increase of temperature from room temperature to 800 ◦C; the modulus of
elasticity tends to increase from 200 ◦C to 400 ◦C and to decrease with temperature in the rest of the
period; the Poisson’s ratio tends to increase from 600 ◦C to 800 ◦C and to decrease with temperature
in the rest of the period; the internal friction angle increases sharply within room temperature to
200 ◦C, decreases slowly within 200–600 ◦C, and decreases sharply when the temperature exceeds
600 ◦C. The results of the study will provide important reference significance for the design and
engineering application of the gasifier of a coal-bed underground gasification project.

Keywords: mechanical characteristics; high temperature treatment; graded loading and unloading;
stress–strain curve relationship; basic physical parameters

1. Introduction

Rock engineering problems in complex stress environments in high temperature oper-
ations are a challenge for rock mechanics. In the process of underground coal gasification,
the rock around the top of the coal seam will experience certain high temperature action
and be under complex stress conditions. At this time, the strength and deformation char-
acteristics of rocks under high temperature are needed to be considered, and the basic
mechanical parameters are the basis for solving complex rock mechanics problems.

Over the years, many scholars have studied the subject of the effect of temperature on
the properties of rocks by conducting impact compression tests or uniaxial compression
tests to investigate the changes in the basic physical parameters and the energy of rocks
after different temperatures [1–5]. He et al. [6] compared the changes in volume, ultrasonic
velocity, and attenuation coefficient of rock samples before and after experiencing different
temperatures. Gu et al. [7] studied the anisotropic characteristics of laminated rocks in
terms of dynamic mechanics and fine structure. Xie [8] constructed a theoretical research
system of deep rock mechanics and mining with the aim of providing theoretical basis
and technical support for the future development of deep mineral resources in China.
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Zhu et al. [9] used the extreme value method to determine the model parameters based
on the concept of rock yielding, and compared them with the compression test results of
granite at different temperatures. Zhang et al. [10] investigated the effect of temperature
on the mechanical strength of granite by conducting compression experiments on granite
specimens under real-time high temperature; analyzed the differences of physical and
mechanical properties of granite under real-time high temperature and thermal shock
conditions, and proposed the concept of thermal shock damage coefficient to reveal the
mechanism of thermal shock damage to break the rock. Mambou et al. [11] modeled
the rate equation for sandstone specimens under uniaxial mechanical loading and high
temperatures based on Newton’s second law. It was found that, as the temperature
increased, the rigidity of the sandstone was lost, the mechanical properties of the sandstone
were significantly reduced, and the nonlinear parameters of the material slowly affected
the thermal damage to the sandstone. Deng et al. [12] studied the physical and mechanical
properties of heated sandstone and examined the factors and mechanisms that influence
them. Justo et al. [13] analyzed the main mechanical properties of four different types
of isotropic rocks at different temperatures. Tian et al. [14,15] explored the mechanical
properties of rocks at high temperatures. Zhang et al. [16] investigated the effect of envelope
pressure and envelope temperature on the mechanical properties of the rock. Dorcas S.E
Yinla [17] considered the effect of changes in the elastic properties of the material during
fault injection on the magnitude of the seismic event. Siddig et al. [18] used the rig’s sensor
recordings to create a continuous Young’s modulus curve and then used two different
data sets, one to build and test the model and the other to hide it from the algorithm
and later use it to validate the constructed model. Mao et al. [19] studied the mechanical
properties of limestone under the effect of temperature from room temperature to 800 ◦C,
such as stress–strain curves, variable properties of peak strength, and elastic modulus of
limestone. Liu et al. [20] studied the macroscopic and microscopic mechanical properties of
building sandstone under different thermal damage conditions and assessed its thermal
stability. Zhang et al. [21] obtained the macroscopic response to the progressive process of
thermal damage to sandstone, as well as its microscopic damage mechanism, by measuring
the macroscopic physical and mechanical properties of red sandstone heated at different
temperatures up to 800 degrees ◦C, deep in the rock mass.

At present, there are more studies on the physical properties and uniaxial compression
tests under high temperature operation of rocks, but there are fewer studies on the change
laws of mechanical properties of sandstone under the action of cyclic loading and unloading
after high temperature. In this paper, several groups of sandstone specimens were heated at
200 ◦C, 400 ◦C, 600 ◦C, and 800 ◦C, and a group of normal temperature sandstone specimens
were added for comparison tests, and graded loading–unloading tests were conducted on
these sandstone specimens to analyze the stress–strain relationship of sandstone at different
temperatures, and to study the change law of basic physical parameters of sandstone after
high temperature, in order to provide a better understanding of the stability and safety of
overlying rocks of coal seams during underground gasification of coal seams, as well as the
stability of rocks under complex stress environments. This study will provide a scientific
basis for the stability and safety of the overlying rocks in the process of underground coal
bed gasification and the design and research of rock engineering under high temperature
and complex stress environment.

2. High-Temperature Treatment and Mechanical Properties Test of
Sandstone Specimens
2.1. Sampling and Processing of Sandstone Specimens

The sandstone used in this study was taken from coal mine sandstone, and the rocks
with good integrity and no damage were selected for sampling. According to the “Rock
Dynamic Properties Test Procedure”, the rocks were cored, cut, ground, and polished
perpendicular to the laminae direction, and the error of non-parallelism at both ends of the
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sandstone specimen was controlled within 0.05, and then processed into a standard rock
specimen of 50 mm in diameter and 100 mm in height.

2.2. High-Temperature Treatment

High-temperature treatment of sandstone was carried out in a chamber-type high-
temperature sintering furnace as shown in Figure 1. The sandstone was divided into four
groups and heated in the furnace at a rate of 10 ◦C/min to four temperature levels of 200 ◦C,
400 ◦C, 600 ◦C, and 800 ◦C, respectively. After heated to the preheating temperature, the
sample is held at a constant preheating temperature for 2 h to ensure that the sandstone
specimen is heated more evenly inside and out, then the door is slowly opened, and
the specimen is allowed to cool naturally to room temperature. Finally, the sandstone
specimens after high-temperature treatment were sealed and stored in sample bags, and
subsequent tests were carried out after all the preparation was completed.
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Figure 1. Box-type high-temperature fritting furnace.

2.3. Mechanical Properties Test

Five sets of sandstone specimens treated at room temperature and high temperature
were subjected to conventional uniaxial compression tests and cyclic loading and unload-
ing tests using a graded loading and unloading tester. First, the unconfined compressive
strengths of the sandstone specimens were measured by uniaxial compression tests at
room temperature, 200 ◦C, 400 ◦C, 600 ◦C, and 800 ◦C to be approximately 90 MPa,
80 MPa, 70 MPa, 60 MPa, and 50 MPa, respectively, which provided the basis for the
subsequent test parameters. The uniaxial compressive strengths of the sandstone at room
temperature, 200 ◦C, 400 ◦C, 600 ◦C, and 800 ◦C were approximately 90 MPa, 80 MPa,
70 MPa, 60 MPa, and 50 MPa, respectively, so each set of specimens at different temper-
atures was tested at 7, 6, 5, 4, and 3 levels of addition and removal, respectively. The
peak load stresses were about 30, 40, 50, 60, 70, 80, 90, and 100 MPa for sandstone at
room temperature, 30, 40, 50, 60, 70, 80, and 90 MPa for sandstone at 200 ◦C, 30, 40, 50,
60, 70, and 80 MPa for sandstone at 400 ◦C, 30, 40, 50, 60, and 70 MPa for sandstone at
600 ◦C, and 30, 40, 50, and 60 MPa for sandstone at 800 ◦C. The specimens were damaged
when the sandstone was loaded at room temperature, 200 ◦C, 400 ◦C, 600 ◦C, and 800 ◦C
to the seventh, sixth, fifth, fourth, and third levels, respectively. The high-temperature
treated white sandstone specimens are shown in Figure 2, Single-axis cyclic loading and
unloading tester are shown in Figure 3.
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3. Stress–Strain Curves of Sandstone under Thermal Damage and Cyclic Loading and
Unloading Conditions

In order to analyze the evolution of axial stress and axial strain of sandstone under the
action of graded unloading after high temperature, the stress–strain curves of sandstone
under the action of graded unloading after experiencing different high temperatures are
given in Figure 4.
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In the cyclic loading and unloading curve section, the stress and strain in the unloading
section fall to the minimum value, but the curve cannot coincide with that of the loading
section, thus forming a hysteresis loop, and the position of the hysteresis loop moves along
the positive direction of strain, which is caused by the nonlinear characteristics of the rock
itself. The residual strain is generated at each level of loading and unloading, resulting in
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the accumulation of damage within the rock. As the temperature increases, the strength of
the rock decreases, the peak stress gradually decreases, the peak strain gradually increases,
and the stress–strain curve shifts along the positive direction of strain.

The temperatures corresponding to this stress–strain curve graph from left to right are
25 ◦C, 200 ◦C, 400 ◦C, 600 ◦C, and 800 ◦C. The sandstone at 25 ◦C was damaged when the
stress reached 95.6 MPa, the sandstone after 200 ◦C treatment was damaged when the stress
reached 80.9 MPa, and the sandstone after 400 ◦C treatment was damaged when the stress
reached 74.8 MPa. The sandstone treated at 600 ◦C was damaged when the stress reached
66.2 MPa, and the sandstone treated at 800 ◦C was damaged when the stress reached 49.5
MPa. It can be seen that, when the temperature is higher, the strength of the sandstone is
less, and the brittleness is greater.

4. Mechanical Properties of Sandstone under the Action of High Temperature Cyclic
Loading and Unloading
4.1. Peak Stress

The variation of peak stress with temperature in sandstone after experiencing different
temperatures and complex graded loading and unloading is shown in Figure 5.
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Figure 5. Peak stress in sandstone as a function of temperature.

From room temperature to 800 ◦C, the average peak stress of sandstone showed a
general trend of gradual decrease with increasing temperature. From room temperature to
200 ◦C, the average peak stress of sandstone decreases from 95.6 MPa to 80.9 MPa, with a
decrease of 15.4%. From 200 ◦C to 400 ◦C, the average peak stress of sandstone decreases
from 80.9 MPa to 74.8 MPa, with a decrease of 7.5%. From 400 ◦C to 600 ◦C, the average
peak stress of sandstone decreases from 74.8 MPa to 66.2 MPa, a decrease of 11.5%. From
600 ◦C to 800 ◦C, the average peak stress of sandstone decreases from 66.2 MPa to 49.5 MPa,
with a decrease of 25.2%. It can be seen that the peak stress of sandstone decreases with the
increase of temperature.

4.2. Modulus of Elasticity

The modulus of elasticity is the value of the stress required to produce unit elastic
deformation of rock material under the action of external force, and it is an indicator
of the ability of rock material to resist elastic deformation. The variation of modulus
of elasticity of sandstone with temperature at room temperature and after the action of
different temperatures is shown in Figure 6.

As can be seen from Figure 6, the average modulus of elasticity of sandstone decreases
with increasing temperature until 200 ◦C. The average modulus of elasticity of sandstone
increases from 200 ◦C to 400 ◦C, reaching 32.246 GPa, and basically decreases after 400 ◦C,
reaching an average modulus of 12.696 GPa at 800 ◦C, which is only 33.46% at room
temperature. The average modulus of elasticity at 800 ◦C is 12.696 GPa, which is only
33.46% at room temperature.
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4.3. Poisson’s Ratio

Poisson’s ratio is the ratio of transverse strain to longitudinal strain, which is the basic
mechanical parameter of rock materials. Poisson’s ratio of different rocks has its specific
range of values. In this paper, the authors study the relationship between temperature
and Poisson’s ratio of sandstone, and the variation of Poisson’s ratio of sandstone with
temperature at room temperature and after the action of different temperatures, as shown
in Figure 7.
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Figure 7. The relationship between Poisson’s ratio and temperature for sandstone.

Before 600 ◦C, the Poisson’s ratio of sandstone decreases with the increase of tempera-
ture, with the largest decrease of 47.5% before 200 ◦C. From 600 ◦C to 800 ◦C, its average
Poisson’s ratio shows an increasing trend with an increase of 34.62%.

4.4. Angle of Internal Friction

The internal friction angle refers to the friction characteristic formed by the mutual
movement and gluing action between particles in the soil, and its value is the angle
between the intensity envelope and the horizontal line. The variation of the internal friction
angle of sandstone with temperature after the action of room temperature and different
temperatures is shown in Figure 8.
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Before 200 ◦C, the internal friction angle of sandstone tends to increase with temper-
ature, with an average angle of 49.76◦ at 200 ◦C, an increase of 9.89% compared to room
temperature. The average angle of internal friction of sandstone is basically in a decreasing
trend with increasing temperature from 200 ◦C to 800 ◦C.

4.5. Cohesion

The cohesion includes the original cohesion formed by the molecular gravitational
force inside the sandstone and the solidified cohesion formed by the cementation of the
compounds in the sandstone. The variation of sandstone cohesion with temperature at
room temperature and after the action of different temperatures is shown in Figure 9.
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With the increasing temperature, the cohesion of sandstone also increases, from
15.555 at room temperature to 26.485 at 800 ◦C, an increase of 70.27%.

The reasons for different basic physical parameters of sandstone under different
temperature conditions: the temperature will cause cracks in the inner layers of sandstone
to form microcracks due to anisotropy and mismatch of thermal expansion and water
loss, increase porosity, decrease uniaxial compressive strength, decrease elastic modulus,
decrease Poisson’s ratio, and deteriorate the mechanical properties of sandstone; higher
temperature will lead to increased sliding resistance between adjacent soil layers, increased
shear strength, increased internal friction angle increase, and cohesion increase.
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5. Analysis of the Destructive Process and Characteristics of the Rock

In this test, cyclic loading–unloading tests were carried out on four groups of sandstone
experiencing high temperatures. By observing the rupture process of the rock and analyzing
Figure 4, the whole process of the last load of the rock under the cyclic loading-unloading
phase was divided into the following five stages:

(1) Initial crack closure stage: the stress–strain curve is a downward concave section,
with the increase of the load, the native microfractures inside the rock under the load
gradually close. When the stress value reaches a certain value, the strain of the cracked
body no longer increases and the fracture can be considered to be completely closed.

(2) Elastic compression stage: The stress–strain curve is a straight line, and the rock
basically does not have new cracks generated within this stage, which shows a
straight line in the stress–strain curve, and the mineral particles of the rock body
become denser with the increase of the load.

(3) Stable crack growth stage: new cracks are continuously generated and expanded
inside the rock, and axial cracks mainly start to appear, and the lateral bulging of
cracks produces a shear expansion effect.

(4) Crack accelerated growth stage: when the loading stress reaches the compressive
strength of the rock, the stress–strain curve begins to exhibit nonlinear characteristics,
and the macroscopic performance of the rock specimen shows macroscopic damage.

(5) Post-peak stage: The rock specimen is destabilized after the peak strength, and the
corresponding lateral strain increases dramatically, and the test loading ends.

By observing the statistical analysis of sandstone damage patterns after the test, as
shown in Figure 10, it was found that there were four types of fractures that led to the overall
rupture of sandstones: (1) open fractures, (2) secondary coplanar fractures, (3) secondary
inclined fractures, and (4) oblique fractures as shown in Figure 11.

Minerals 2022, 12, x FOR PEER REVIEW 8 of 11 
 

 

With the increasing temperature, the cohesion of sandstone also increases, from 
15.555 at room temperature to 26.485 at 800 °C, an increase of 70.27%. 

The reasons for different basic physical parameters of sandstone under different tem-
perature conditions: the temperature will cause cracks in the inner layers of sandstone to 
form microcracks due to anisotropy and mismatch of thermal expansion and water loss, 
increase porosity, decrease uniaxial compressive strength, decrease elastic modulus, de-
crease Poisson’s ratio, and deteriorate the mechanical properties of sandstone; higher tem-
perature will lead to increased sliding resistance between adjacent soil layers, increased 
shear strength, increased internal friction angle increase, and cohesion increase. 

5. Analysis of the Destructive Process and Characteristics of the Rock 
In this test, cyclic loading–unloading tests were carried out on four groups of sand-

stone experiencing high temperatures. By observing the rupture process of the rock and 
analyzing Figure 4, the whole process of the last load of the rock under the cyclic loading-
unloading phase was divided into the following five stages: 
(1) Initial crack closure stage: the stress–strain curve is a downward concave section, 

with the increase of the load, the native microfractures inside the rock under the load 
gradually close. When the stress value reaches a certain value, the strain of the 
cracked body no longer increases and the fracture can be considered to be completely 
closed. 

(2) Elastic compression stage: The stress–strain curve is a straight line, and the rock ba-
sically does not have new cracks generated within this stage, which shows a straight 
line in the stress–strain curve, and the mineral particles of the rock body become 
denser with the increase of the load. 

(3) Stable crack growth stage: new cracks are continuously generated and expanded in-
side the rock, and axial cracks mainly start to appear, and the lateral bulging of cracks 
produces a shear expansion effect. 

(4) Crack accelerated growth stage: when the loading stress reaches the compressive 
strength of the rock, the stress–strain curve begins to exhibit nonlinear characteristics, 
and the macroscopic performance of the rock specimen shows macroscopic damage. 

(5) Post-peak stage: The rock specimen is destabilized after the peak strength, and the 
corresponding lateral strain increases dramatically, and the test loading ends. 
By observing the statistical analysis of sandstone damage patterns after the test, as 

shown in Figure 10, it was found that there were four types of fractures that led to the 
overall rupture of sandstones: (1) open fractures, (2) secondary coplanar fractures, (3) sec-
ondary inclined fractures, and (4) oblique fractures as shown in Figure 11. 

  
Figure 10. 600 °C sandstone specimens after damage. Figure 10. 600 ◦C sandstone specimens after damage.

(1) Tension fracture: generally initiated in the middle of the specimen at the earliest, and
then gradually extended to both ends under the action of compressive stress. The
stress in the middle of the specimen will be concentrated, resulting in tensile stress.
The fracture from the middle is gradually extended.

(2) Secondary coplanar fracture: initiated at the tip of the open fracture, after starting the
fracture along with the open fracture direction coplanar or nearly coplanar direction
stable expansion; after observation of the sandstone specimen after the damage, it can
be found that the surface of secondary coplanar fracture shows a rough state.

(3) Secondary inclined fracture: initiated at the end of the open fracture or secondary
coplanar fracture, along with the open fracture into a certain angle direction expansion.
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Through the test, we can find that, around the secondary inclined fracture specimen
fragmentation phenomenon, it is most obvious.

(4) Oblique fracture: initiated in a position in the middle of the open fracture, perpendic-
ular to the direction of the open fracture, and may expand in the form of zigzag lines
after developing to a certain stage.
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6. Conclusions

(1) The peak strain and cohesion of sandstone show an increasing trend with the increase
of temperature from room temperature to 800 ◦C; the peak stress shows a decreasing
trend with the increase of temperature from room temperature to 800 ◦C; the elastic
modulus and Poisson’s ratio show an increasing trend from 200 ◦C to 400 ◦C and
600 ◦C to 800 ◦C, respectively, and a decreasing trend with the increase of temperature
in the remaining stages; the internal friction angle increases sharply from room
temperature to 200 ◦C. The internal friction angle increases sharply within room
temperature to 200 ◦C, decreases slowly within 200–600 ◦C, and decreases sharply
when the temperature exceeds 600 ◦C.

(2) Temperature will cause cracks in the inner layer of sandstone to form microcracks due
to anisotropy and mismatch of thermal expansion and water loss, increase porosity,
decrease uniaxial compressive strength, decrease modulus of elasticity, decrease Pois-
son’s ratio, and deteriorate mechanical properties of sandstone; higher temperature
will lead to increase sliding resistance between adjacent soil layers, increase shear
strength, increase internal friction angle, and increase cohesion.

(3) As the temperature increases, the strength of the rock decreases, the peak stress
gradually decreases, the peak strain gradually increases, and the stress–strain curve
moves along the positive direction of strain. When the temperature is higher, the
strength of the sandstone is less, and the brittleness is greater.

(4) There are four types of cracks that cause rock to break: open fractures, secondary
coplanar fractures, secondary inclined fractures, and oblique fractures. The whole
process of rock damage phase can be divided into five stages: initial crack closure
stage, elastic compression stage, stable crack growth stage, accelerated crack growth
stage, and post-peak stage.
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