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Abstract: Phosphatic biomineralization is unknown in modern species of Scyphozoa (Cnidaria).
However, some extinct groups of Scyphozoa, such as conulariids and Sphenothallus, were capable of
secreting phosphatic exoskeletons. Both conulariids and Sphenothallus used apatite to improve the
mechanical properties of their skeletons, which offered better protection than the non-biomineralized
periderms. The skeletons of conulariids and Sphenothallus have a lamellar microstructure. The shell
lamellae of conulariids are often pierced by tiny pores. Several apatitic mineral structures have
been described in conulariids and Sphenothallus, including plywood-like structures. Different lattice
parameters of the apatite indicate that the biomineralization mechanisms of the phosphatic cnidarians
Sphenothallus and conulariids differed from each other.
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1. Introduction

Subphylum Medusozoa (Cnidaria) comprises the classes Cubozoa, Hydrozoa, Scypho-
zoa, and Staurozoa, with Cubozoa (box jellies) and Staurozoa previously classified as orders
within Scyphozoa. The modern members of Scyphozoa do not possess biomieralized perid-
erms, but the situation was different from the Ediacaran to Triassic [1–3].

Conulariids are an extinct (Ediacaran–Triassic) group of marine invertebrates now
generally accepted as scyphozoan cnidarians [1,4–13]. They have a finely lamellar periderm
that is composed of apatite [1,2,12,14]. Many previous authors have suggested that the
conulariid periderm is an ectodermal derivative that grew by accretion of whole lamellae
to its inner surface (centripetal accretion) and/or by extension of the periderm along its
apertural margin [15].

Sphenothallus is an extinct genus of marine phosphatic tubicolous fossils known from
the early Cambrian [16,17] to the Carboniferous [18] and it has an almost global distribu-
tion. Sphenothallus has been affiliated variously with conulariids [19] and hydroids due
to their slightly conical shells. In the “Treatise on Invertebrate Paleontology”, [20] it was
placed among the conulariids. Some authors have affiliated it with annelid worms [21],
whereas others have allied with cnidarians [14,22]. The latter opinion has recently been
supported by most of the authors and there is general agreement that Sphenothallus is a
scyphozoan [9,16,17,23].

Torellella is an extinct genus of slightly conical, phosphatic tubicolous marine organ-
isms of unknown biological affinity. They have been allied either with annelids [24] or
cnidarians [25]. Based on the apatitic composition of the periderm and the microlamellar
structure, one could compare Torellella with Sphenothallus. It is likely that Torellella was a
Sphenothallus-like scyphozoan.

The aim of the present paper is to review known mineral microstructures and mineral
compositions of fossil scyphozoans, and to discuss their biomineralization.

2. Materials and Methods

All below illustrated sections of phosphatic cnidarian skeletons are natural surfaces
photographed using scanning electron microscopy (SEM). Some samples were gold sput-
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tered prior to SEM study. The specimens of Torellella from the Upper Cambrian of Estonia
were coated with gold and photographed with a Jeol SEM at the University of Technology in
Tallinn. The specimens of Sphenothallus from the Ordovician of Estonia were photographed
uncoated with a variable pressure Zeiss EVO MA15 SEM at the Department of Geology,
University of Tartu. The photos were taken using a backscattered electron detector (BSE) in
a low vacuum regime. The beam voltage was 20 kV. The specimens of Sphenothallus and
Holoconularia from the Carboniferous of Russia were coated with gold and palladium and
photographed with the scanning electronic microscopes SEM TESCAN VEGA II and III
at the Palaeontological Institute of the Russian Academy of Sciences in Moscow, where
images of the shell structure were made using two detectors (SE and BSE). The illustrated
specimens are deposited in the collections of the Natural History Museum, University of
Tartu and Palaeontological Institute of the Russian Academy of Sciences. A crystal unit cell
is characterized by its dimensions (length), which are of form a, b and c with three edges.
These edges may or may not be mutually perpendicular.

3. Fossil Scyphozoa with Mineralized Test and Phosphatic Composition

Only some fossil scyphozoans biomineralized. Phosphatic skeletons occur in all genera
of conulariids and in Sphenothallus and Torellella (Table 1). The conulariid genera are divided
into two suborders: Circoconulariina Bischoff and Conulariina Miller and Gurley. The
systematic position of Sphenothallus and Torellella within Scyphozoa remains unresolved
(Table 1). The data on microstructure and/or mineralogy are only known for Archaeoconularia,
Baccaconularia, Conularia, Conularina, Climacoconus, Ctenoconularia, Eoconularia, Exoconularia;
Holoconularia, Metaconularia, Paraconularia and Pseudoconularia [2,4,14,25–27].

Table 1. The classification of fossil Scyphozoa. Genera with phosphatic skeletons indicated with
bold font.

Classification Genera Stratigraphic Ranges

Suborder Circoconulariina
Bischoff Australoconularia Bischoff Upper Silurian (Ludlovian)

Circonularia Bischoff Lower Silurian (Llandoverian)

Garraconularia Bischoff Lower Silurian (Llandovery)-
Lower Devonian (Lockhovian)

Sinusconularia Hergarten Lower Devonian (Lower Siegenian)
Suborder Conulariina

Miller and Gurley Anaconularia Sinclair Middle Ordovician (Dapingian)-
Upper Ordovician (Katian)

Archaeoconularia Bouček Lower Ordovician (Tremadoc)-
Middle Silurian (Wenlock)

Baccaconularia Hughes, Gunderson, and Weedon Cambrian (Furongian)
Cheliconularia Waterhouse ?Upper Carboniferous

Climacoconus Sinclair Early?/Middle Ordovician-
Lower Devonian (?Middle Devonian)

Conularia Miller in Sowerby Middle Ordovician-
Upper Mississippian

Conulariella Bouček Lower Ordovician (Floian)-
Middle Ordovician (Darriwilian)

Conularina Sinclair Upper Ordovician
Ctenoconularia Sinclair Upper Ordovician-Lower Silurian

Eoconularia Sinclair Lower Ordovician-Lower Silurian
Galliconularia Van Iten and Lefebvre Lower Ordovician (Tremadocian-Floian)

Glyptoconularia Sinclair Upper Ordovician (Katian)

Metaconularia Foerste Middle Ordovician (Darriwilian)-
Upper Silurian (Pridolian)

Microconularia Percival Upper Ordovician
(late Eastonian-early Bolindian)

Notoconularia Thomas Upper Carboniferous-Permian
Paraconularia Sinclair Terminal Ediacaran-Terminal Triassic

Pseudoconularia Bouček Lower Ordovician-Upper Silurian
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Table 1. Cont.

Classification Genera Stratigraphic Ranges

Reticulaconularia Babcock and Feldmann Lower Devonian-Middle Devonian
Teresconularia Leme and others Lower Ordovician (Tremadocian)

Order Incertae sedis Byronia Matthew Lower Cambrian-Permian
Cambrorhytium Conway Morris and Robison Lower Cambrian—Middle Cambrian

Cambrovitus Mao, Zhao, Yu, and Qian Lower Middle Cambrian (Series 2)
Paiutitubulites Tynan Lower Cambrian (Terreneuvian):

Sphenothallus Hall Lower Cambrian (Series 2)-Upper
Carboniferous

Torellella Holm Lower Cambrian-upper Cambrian
Tubulella Howell Middle Cambrian

4. Skeletal Microstructures and Mineral Composition of Conulariids

The conulariid periderm is made up of phosphatic lamellae. Typical conulariid re-
sembles an ice-cream cone with fourfold symmetry and usually four prominently-grooved
corners (Figure 1).
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Figure 1. Periderm of a conulariid (Holoconularia) showing location of SEM images. The conulariid
anatomy is based on Ford et al. [14].

4.1. Skeletal Structures
4.1.1. Microlamellar Fabric

The microlamellar fabric (Figure 2) is composed of extremely thin (approximately
0.5–3 µm) microlamellae that are alternately organic poor and organic rich [4,15]. The
boundaries of microlamellae are variably distinct. Organic-rich microlamellae are intercon-
nected by slender strands of organic matter that are embedded in calcium phosphate [4,15].
Microlamellae may be organized in thicker (approximately 5–75 µm) layers, or macro-
lamellae, that have variable organic matter content [4,14]. The thickness of macrolamellae
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can vary within a single specimen. The surfaces of lamellae are smooth or pierced with
microscopic pores. The microlamellar fabric has been reported in Archaeoconularia, Bacca-
conularia, Conularia, Conularina, Climacoconus, Holoconularia, Metaconularia, Paraconularia,
and Pseudoconularia [2,4,15].
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4.1.2. Micropores

In many conulariids, shell lamellae exhibit locally abundant, microscopic circular
pores [26–28]. Owing probably to variation in the inclination of the micropores to the
microlamellae, the rim of the micropores is usually circular to subcircular, but in some cases
it may also be elliptical [29]. Micropores with circular rims are probably oriented with the
axis of the pore channel perpendicular to the surface of the microlamellae, whereas those
with elliptical rims are probably inclined, and thus represent oblique sections (Figure 3).
Both circular and elliptical rims may occur on the same surface, their arrangement is
random and shapes are transitional; that is, there are no discrete rim types [29]. The
diameters of the pores range from approximately 2 µm to approximately 12 µm. In some
specimens, the pores are relatively sparse (i.e., about eight pores per 1 mm2) whereas
in most specimens, the pores are numerous, with up to about 100 pores in an area of
only 0.1 mm2 [28]. The pores have been reported from Archaeoconularia, Baccaconularia,
Conularia, Conularina, Climacoconus, Ctenoconularia, Eoconularia, Exoconularia; Holoconularia,
Metaconularia, Paraconularia and Pseudoconularia [26–28].

4.2. Skeletal Microstructures
Homogeneous Granular Structure

The structure of the exfoliation surfaces is uniformly granular (Figure 2), with individ-
ual granules ranging from 0.3 to 1.0 µm in diameter in Holoconularia from the Carboniferous
of Russia [29]. The polished and etched and polished samples of Paraconularia and Conu-
laria periderm also show a homogeneous structure [14]. The structure has been reported
from Archaeoconularia, Baccaconularia, Conularia, Conularina, Climacoconus, Holoconularia,
Metaconularia, Paraconularia, and Pseudoconularia [2,4,15].

4.3. Mineral Composition

Vinn and Kirismäe [14] reported a conulariid (Conularia sp.) from the Upper Ordovi-
cian oil shale of Estonia, which is composed of francolite with a carbonate ion concentration
8.1 wt%. The lattice parameters of Conularia sp. apatite from the Upper Ordovician are
a = 9.315(7) Å, c = 6.888(3) Å.
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of Russia.

5. Skeletal Microstructures and Mineral Composition of Sphenothallus

The periderm of Sphenothallus is made up of phosphatic lamellae and it has a tubular
shape (Figure 4).
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indicated.

5.1. Skeletal Structures
5.1.1. Microlamellar Fabric

The structure is formed by a succession of thin apatitic lamellae (Figure 5) [14,30,31].
The development and thickness of the lamellae are variable within a single specimen. The
lamellae are 3 to 170 µm thick [14,31]. The thickest lamellae occur in the external part of
the tube wall at the lateral thickenings, whereas the thinnest lamellae are most common
in the inner parts of the tube wall away from the lateral thickenings of the tube [31]. The
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boundaries of the lamellae usually have variable sharpness, a common characteristic of
both Ordovician and Carboniferous material [14,31]. Some boundaries constitute real
gaps in the mineral structure, whereas others are artefacts caused by differences in crystal
size and appear as parallel zones in the tube wall of Sphenothallus. The sharpness of the
boundaries of individual lamella can change laterally within the tube [14,31].
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Figure 5. Microlamellar fabric and wrinkled lamella in Sphenothallus sp. from the Carboniferous
of Russia.

5.1.2. Wrinkled Lamellae

There are laminae in Sphenothallus from the Carboniferous of Russia which have a
wavy structure (Figure 5), and some lamellae are so wrinkled that they form hollow “ribs”
within the tube wall, mostly in the lateral parts of the tube, where the wall is thickest [31].

5.1.3. Cylindrical Shafts

There are 2.0–2.5 µm wide cylindrical shafts (Figure 6) visible on the surface of an
inner lamella of Shenothallus from the Carboniferous of Russia [31]. These structures are
preserved mostly in the form of shallow, slightly curved to straight grooves on the surfaces
of the lamella, but some extend to the interior of the lamella in the form of cylindrical shafts.
The lamellae with shafts have a smooth surface and are not composed of fibres. The entire
surface of the lamellae is crowded with grooves and shafts [31].
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5.2. Skeletal Microstructures
5.2.1. Homogeneous Granular Structure

The structure is composed of apatite in the form of subspherical crystallites measuring
<500 nm in maximum diameter (Figure 7). The crystal size of apatite forming the homoge-
neous microstructure is variable and can be larger near the inter-lamellar boundaries [14].
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5.2.2. Plywood Structure

This structure consists of fibres (Figure 8) which are best observed in lateral parts
of the tube wall [31]. The fibrous layers in the tube wall can be up to 70 µm thick. The
fibres are at least tens of micrometres long and 1.5–2.0 µm thick. All fibres are parallel to
the surface of the tube wall. The fibres within individual lamellae have the same, but in
successive laminae they differ in orientation by irregularly varying angles. This structure
occurs only in Sphenothallus from the Carboniferous of Russia [31].
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5.3. Mineral Composition

The tubes of Sphenothallus aff. longissimus from the Ordovician of Estonia are com-
posed of carbonate-substituted fluorapatite-francolite (Figure 9) [14]. The carbonate ion
concentrations in the Ordovician Sphenothallus varies between 9.0–10.7 wt%. The lattice
parameters of the apatite in the Ordovician Sphenothallus are [14]: Kohtla Nõmme speci-
men a = 9.319(6) Å, c = 6.903(0) Å; Kohtla specimen a = 9.320(5) Å, c = 6.904(1) Å; Kiviõli
specimen a = 9.321(7) Å, c = 6.904(1) Å.
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An EDX analysis of a Carboniferous Sphenothallus by Vinn and Mironenko (2021) [31]
detected no differences in elemental composition between smooth, fibrillar and globular
layers of the Sphenothallus tube; they are all phosphatic.

6. Skeletal Microstructures and Mineral Composition of Torellella

The periderm of Torellella is made up of phosphatic lamellae and it has a tubular shape
(Figure 10).
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6.1. Skeletal Structures
Microlamellar Fabric

The tubes of Torellella sulcata from the upper Cambrian of Estonia exhibit lamellae of
variable thickness (Figure 11). The original tube structure seems to be microlamellar with
growth laminae about 1µm thick. The surfaces of the lamellae are smooth without any
perforations and have either homogeneous granular or fibrous ultrastructure [25].
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6.2. Skeletal Microstructures
6.2.1. Homogeneous Globular Structure

This structure (Figure 12) consists of somewhat rounded phosphatic crystallites. The
crystallites are 0.20 to 0.25 µm in diameter. Lamellae which are composed of homogeneous
globular structure are often thicker than 10 µm [25].
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6.2.2. Fibrous Structure

This structure (Figure 13) consists of fibres that have same orientation within the
growth lamellae and are parallel to the surface of the tube wall. The fibres are 0.2–0.3 µm
thick and about 4–6 µm long [25]. In T. gracilenta from the lower Cambrian of Siberia, each
lamella is composed of fibres; neighboring lamellae contain variously directed fibres [24].

6.3. Mineral Composition

The X-ray structural analysis performed by Esakova and Zhegallo [32] showed that tubes
of Torellella lentiformis from the Lower Cambrian of the Siberian Platform and T. gracilenta
from the lower Cambrian of Mongolia consist of francolite (i.e., carbonate rich fluorapatite).
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7. Discussion
7.1. Biomineralization in Conulariids

The secretion of the conulariid periderm was likely cyclic. The conulariids secreted
cyclically organic-rich and organic-poor mucus, which allowed the creation of periderm
composed of alternating organic-rich and organic-poor apatitic lamellae [14]. The conulariid
started to secrete its periderm beginning with the outermost lamella. It is not known
whether the conulariids started to build their periderm with organic-rich lamellae or vice
versa with organic-poor, mostly mineral lamellae. However, one could hypothesize that
organic-rich lamellae may have served as a scaffold for the biomineralization of organic-
poor mineral lamellae. Organic matrices in skeletons in general serve as templates for
biomineralization [33–35], but they also add tensile and elastic strength to the mineral
component [15], thus forming a strong biocomposite material. There is a striking similarity
between composite materials and the conulariid periderm [15]. Composite materials
have one component with good mechanical strength, such as apatite in conulariids, and
another with good elastic properties, such as organic-rich lamellae in conulariids [15]. Such
composite materials perform much better under all kinds of stresses than shells made of
purely rigid or elastic materials [35,36]. The pores in conulariid lamellae were likely part
of the original shell structure [29]. They may have also served the function of enhancing
the mechanical properties of the mineral lamellae if they were filled with elastic organic
material. In addition, or alternatively, they may have supported the biomineralization of
mineral lamellae if they contained organic matrix. The conulariids exhibit a single, simple
homogeneous granular ultrastructure. The lack of diverse microstructures in conulariids
contrasts with the otherwise complex architecture of their periderm. It is possible that
the conulariids’ biomineralization mechanism was unable to control the orientation of the
crystallographic axis of individual crystals.

7.2. Biomineralization in Sphenothallus

Some macrolamellae form hollow ribs in Carboniferous Sphentothallus from Russia. It is
possible that lamellae with a higher organic content became wrinkled, owing to contraction
after the decay of the organic material [31]. This may indicate that the content of organic
matter varied between different macrolamellae. The wrinkled macrolamellae cannot be
directly compared to organic-rich microlamellae in conulariids due to their large differences
in thickness. However, the biomineralization system of Sphenothallus was clearly capable of
secreting lamellae with different compositions.

There are cylindrical shafts in the lamella of Sphenothallus from the Carboniferous of
Russia. The orientation of cylindrical shafts (sub-parallel to the surface of lamella) and their
morphology indicates that they presumably were not part of the original shell structure of
Sphenothallus, but are actually borings [31]. These borings are different from the pores found
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in conulariids [28] and their size corresponds to microbioerosion. It is likely that some
lamellae of Sphenothallus periderm were bored by some chemical means by microorganisms
feeding on the organic compounds of the lamella [31].

It is generally agreed that the original composition of Sphenothallus tubes was organo-
phosphatic [9,22,30]. However, it is not clear which microstructures were originally apatitic
and which might be phosphatized organic tissues. The homogenous granular microstruc-
ture of Sphenothallus is similar to that of conuilariids’ periderm microstructure and is either
an original peridermal structure or the result of diagenetic alternation of the original ap-
atitic structure. The plywood structure is more difficult to interpret, as there is no analogy
among phosphatic invertebrate skeletal microstructures [37]. There are two possibilities:
the plywood structure could be either phosphatized organic tissue, or it is an original
biomineral apatitic structure. In the latter case, the biomineralization of Sphenothallus was
extremely advanced and different from that of conulariids, being comparable only to that
of vertebrates.

7.3. Biomineralization in Torellella

Vinn [25] interpreted the fibrous structure of Torellella as an original biomineral ul-
trastructure of the tube. The plywood structure in Sphenothallus is similar to the fibrous
lamellae in Torellella and may also have a similar origin. The biomineralization of Torellella
seems to resemble more that of Sphenothallus than of conulariids. This is not surpris-
ing, considering the fact that Torellella is morphologically closer to Sphenothallus than to
conulariids.

7.4. Biomineralization in Scyphozoa

The scyphozoans possess just two types of skeletal microstructures, far fewer than the
15 types of calcareous microstructures present in anthozoans. This may indicate that cal-
careous biomineralization was better suited for the physiology of cnidarians. Medosozoans
possess the highest number of known phosphatic microstructures in Cnidaria, though still
fewer than the number of known phosphatic structures in brachiopods [37].

The skeletal microstructures, and likely also the processes of skeletogenesis, are similar
in conulariids, Sphenothallus and Torellella, but they are somewhat different from those
of other phosphatic invertebrates, such as brachiopods. The mineral composition of the
scyphozoan periderm is also similar in conulariids, Sphenothallus and Torellella, with all
three taxa being composed of francolite (i.e., carbonate rich fluorapatite) [14]. Nevertheless,
there are some differences between the lattice parameters of Conularia and Sphenothal-
lus (Figure 14), though their apatites are somewhat similar to that of fossil Lingula and
sedimentary apatites. The latter similarity is presumably due to the fossilization process.
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8. Conclusions

The skeletal microstructures, and likely also the processes of skeletogenesis, are sim-
ilar in all fossil scyphozoans. All fossil scyphozoans (i.e., conulariids, Sphenothallus and
Torellella) have a microlamellar periderm composed of francolite. The plywood structure in
Sphenothallus and the fibrous structure in Torellella could be either phosphatized organic
tissues or original biomineral apatitic structures. In the latter case, the biomineralization of
Sphenothallus and Torellella was extremely advanced compared with those of other phos-
phatic invertebrates. The lack of diverse ultrastructures in conulariids contrasts with the
otherwise complex architecture of their periderm, indicating that the biomineralization
mechanism of conulariids was incapable of controlling the crystallographic orientation of
individual crystallites.
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