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Abstract: The laboratory discrimination tests of the rockburst tendency and AE tests under the
uniaxial compression were conducted on the limestone. Three criterions were used to judge the
rockburst tendency of the limestone with a buried depth of 600–1000 m under the same borehole. The
rock damages were quantified by the AE events, ring count and energy. The fractal characteristics of
these parameters were compared and analyzed. The characterization accuracy of these parameters
on the damage process of the limestone with different rockburst tendencies was discussed. The AE
parameters of the limestone with different rockburst tendencies increase sharply when the stress
is near its peak. With the increase in the rockburst tendency, the variation of the AE event rate
and ring count of the limestone is more and more consistent with the AE energy. Based on the
characterization of the AE events and ring count, the damage process is characterized by a gradual
evolution, while based on the energy characterization, it is characterized by a stepped evolution. The
damage represented by the AE energy reveals the intensity and instantaneity of the rockburst failure.
According to the verification of the CV value, the fractal dimension D of the AE energy fluctuates
more gently with the increase in the rockburst tendency. It reflects the energy storage characteristics
of the rock with a rockburst tendency in the loading process, which is consistent with the failure
mechanism of the rockburst. Therefore, AE energy is more accurate to characterize and predict the
failure of the limestone with a rockburst tendency.

Keywords: rockburst tendency; AE parameters; rock damage; fractal characteristics

1. Introduction

With the progress of deep mining, many problems (such as a high ground stress, a
high ground temperature, a high seepage pressure and a strong excavation disturbance)
are encountered in the exploitation of mineral resources [1] and a series of deep geological
disasters can be caused in this case. Rockburst is one of the common major disasters in mine
production [2,3]. It has increasingly become an inevitable and frequent dynamic disaster in
the mining process of underground metal mines. To reduce the incidence of mine disasters,
it is of a great engineering significance to investigate the mechanism and prevention of
rockburst in deep hard rock. In the study of rock damage and failure, acoustic emission
(AE) technology can be used to reflect the internal damage evolution characteristics of rock
samples [4,5]. Rock damage is accompanied by its internal energy dissipation, and the
storage, dissipation and transformation of energy inside the rock is the fundamental cause
of rockburst [6]. Therefore, there must be a correlation between AE events, rock damage
and rockburst tendency.

Researchers have carried out studies on the AE characteristics of rock failure and the
relationship between rock damage and AE events. Shkuratnik [7] analyzed the charac-
teristics of the AE in rock salt samples during deformation under various thermobaric
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experimental conditions. Aker [8] studied the AEs which were associated with shear and
tensile failures around a horizontal borehole in a sandstone sample subjected to triaxial
stress. Liu [9] conducted the studies of the stress and displacement evolution within rock
based on AE monitoring in laboratory experiments. Wang [10] established two damage
constitutive models based on the AE ring count and energy principle. Through the unload-
ing experiment of sandstone, Hou [11] studied the acoustic emission characteristics of the
sandstone unloading failure under a high stress. Zhao [12] established rock models based
on PFC2D to study the characteristics of the quiet period of AE during the rock failure
process. Přikryl [13] carried out laboratory experiments on rock samples to understand
the relationship between the AE parameters and the rock fabric. Kim [14] used various
methods to quantify the damage evolution in the process of granite failure, including the
crack volumetric strain, b value and AE energy, and proposed that AE energy is more
appropriate. Lee [15] conducted uniaxial compression tests on very strong and weak rock
specimens to investigate the AE parameters when the failure of the specimen occurred.
Kim [16] used the normalized value of the measured AE energy with the maximum AE
energy to characterize the degree of damage. Ganne [17] studied two laboratory situations
to investigate the correlation between micro-fractures and AE. Rodríguez [18] conducted
the diametral compression tests for the characterization of the cracking pattern according
to the AE parameters. Tian [19] evaluated the damage development of deep formation rock
quantitatively by acoustic emission (AE) tests. Xue [20] studied the damage characteristics
of coal samples under five loading rates based on the cumulative ring count of acoustic
emissions. Girard [21] pointed out that AE monitoring is a common technique to charac-
terize the damage evolution of solid materials. Moradian [22] evaluated the applicability
of AEs for localizing asperity damaged zones and the damage intensity in joint surfaces.
Zhang [23] investigated the damage evolution during the cyclic loading and unloading of
coal samples by using acoustic emissions positioning technology. In the existing studies,
AE technology has been widely used to study rock instability and failure, and rock damage
models have been established based on the AE parameters. However, the applicability of
different AE parameters in studying the damage process of rock samples has been rarely
explored. Due to the different rockburst tendencies of rocks, the severity of their damage
varies greatly; the AE parameters, including the events, ring count and energy, have their
own physical meanings different from other parameters. Therefore, the effectiveness of
these parameters in reflecting the damage characteristics of rock with different rockburst
tendencies remains to be studied.

In this study, the rockburst tendency of the limestone taken from different burial depths
was comprehensively distinguished, and AE tests of the limestone were carried out under
a uniaxial compression. The characterization parameters of the AE events, ring count and
energy were implemented successively to characterize the damage process of rock samples,
and the damage characteristics of the limestone with different rockburst tendencies at
different stages were compared and analyzed. Based on the rockburst mechanism and
the change characteristics of the AE fractal dimension value D of the rock damage, the
applicability of different characterization parameters for the rock damage was discussed.
This study provides a theoretical reference for rockburst monitoring by AE technology.

2. Materials and Methods
2.1. Specimen Preparation

In this test, the rock samples were taken from a copper mine in Jiangxi Province. These
samples were collected from the same drilled rock core with a buried depth of 600–1000 m,
and the sampling interval depth was 100 m, as shown in Figure 1. The lithology of the
sample is limestone. According to the Standard for the test methods of engineering rock
mass, the standard cylindrical limestone with a size of Φ 50 × 100 mm was obtained. To
ensure the parallelism, flatness and perpendicularity of the sample and reduce the test error,
the sample surface was polished smooth. The treated sample was saturated in vacuum,
and the porosity was tested with an NM-60 magnetic resonance analyzer.
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Figure 1. Schematic diagram of the limestone rock sampling.

2.2. Test Methods and Acoustic Emission Monitoring

The RMT-150C rock mechanics test system was used to carry out the uniaxial loading–
unloading tests and uniaxial compression tests. The displacement loading mode was
adopted in the test, and the loading rate was controlled to be 0.002 mm/s. The sensors in
the test system were used to record the axial deformation, transverse deformation, uniaxial
compressive strength and other parameters of the sample during compression in real time.
The PCI-II acoustic emission system and UT1000 acoustic emission sensor were adopted.
They are all developed by PAC. The PCI II system has a frequency range of 1 KHz–3 MHz,
and the maximum sampling rate of 10 M per second was set. The response frequency of
the UT1000 sensor is 35–1000 kHz. The number and location of the channels are shown in
Figure 2. The sampling rate was set as 1 MSPS and the threshold value was 40 dB. During
the test, a layer of Vaseline antifriction agent was applied to the upper and lower ends of
the rock specimen to reduce the end effect and end noise. In order to ensure a full contact
between the sensor and the rock sample, a coupling agent was applied to the side of the
rock sample.
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Figure 3 shows the stress–strain curve of the limestone with different burial depths
under the uniaxial loading. It can be seen that the uniaxial compressive strength of the
limestone increases with the increase in the burial depth. As the buried depth ranges from
600 m to 1000 m, the average uniaxial compressive strength of the limestone increases from
70.80 MPa to 130.93 MPa. Table 1 shows some of the physical and mechanical parameters.

Table 1. Physical and mechanical parameters.

Depth/m Elastic Modulus/GPa Uniaxial Compressive Strength/MPa Porosity/%

600 24.09 70.80 1.148
700 40.52 104.18 1.096
800 40.68 116.03 1.111
900 40.83 116.95 0.940
1000 45.39 130.93 0.919
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3. Results and Discussion
3.1. Rockburst Tendency of the Limestone with Different Burial Depths

The occurrence of rockburst depends on two necessary conditions: one is the inherent
nature of the rock itself, and the other is the external environment of the rock [24]. There
are property differences in the limestone taken from different burial depths. The deeper
the burial depth, the smaller the porosity and the denser the rock. The deep rock is in a
high-stress environment, and larger energy is easily accumulated and stored in the deep
rock. Therefore, under the same conditions, deep rocks are more prone to rockburst. To
effectively discriminate the rockburst tendency, the laboratory test of the rock mechanics
was first carried out, and then the relevant evaluation indexes were calculated according to
the test data. Based on the laboratory test data, the main indexes for judging the rockburst
tendency are as follows: the strength brittleness coefficient B, deformation brittleness index
Kε, impact energy coefficient Wcf, linear elastic performance We, critical depth hcr and elastic
energy index WET. Due to the randomness of the discrimination results of the rockburst
tendency by a single criterion, we carried out many preliminary studies on the qualitative
analysis of the rockburst tendency by using multiple criteria [25,26]. In this paper, the
elastic energy index (WET) criterion, the deformation brittleness index (Kε) criterion and
the linear elastic energy (We) criterion were used to judge the rockburst tendency of the
limestone with a buried depth of 600–1000 m under the same borehole.

3.1.1. Rockburst Tendency Based on Elastic Energy Index Criterion

The elastic energy index WET is the ratio of the elastic deformation energy accumulated
in the rock to the consumed strain energy.

WET =
ΦV
ΦE

=

∫ εe
εp

f ′(ε)dε∫ εt
0 f (ε)dε−

∫ εe
εp

f ′(ε)dε
(1)

According to the σ-ε curves obtained after the uniaxial loading–unloading test of
the limestone samples with different burial depths, the elastic energy index WET of the
limestone can be calculated. Table 2 shows the discrimination results of the rockburst
tendency of the limestone based on the elastic energy index WET.
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Table 2. Rockburst tendency based on elastic energy index [25,26].

Depth/m ΦE/MJ ΦV/MJ WET Rockburst Tendency

600 84.364 62.212 1.356 None
600 55.912 50.441 1.108 None
700 54.042 24.112 2.241 Weak
700 88.145 43.141 2.043 Weak
800 85.678 37.124 2.308 Weak
800 95.854 35.240 2.436 Weak
900 96.488 25.483 3.786 Medium
900 162.314 41.258 3.910 Medium

1000 161.224 31.356 5.193 Strong
1000 324.216 63.910 5.35 Strong

3.1.2. Rockburst Tendency of the Limestone Based on Brittleness Index Criterion

The deformation brittleness index Kε is the ratio of the total deformation ε of the rock
at the stress peak to the permanent deformation εp after the unloading.

Kε =
ε

εP
(2)

Based on the σ-ε curves obtained from the uniaxial loading–unloading tests, the
deformation brittleness index Kε of the limestone with different burial depths can be
calculated. Table 3 shows the rockburst tendency of the limestone based on the deformation
brittleness index Kε.

Table 3. Rockburst tendency based on deformation brittleness index [25,26].

Depth/m Total
Deformation/10−3

Permanent
Deformation/10−3

Deformation
Brittleness Index/Kε

Rockburst
Tendency

600
7.82 4.32 1.81 None
4.65 1.85 2.43 Weak

700
3.35 0.90 3.72 Weak
6.45 2.45 2.63 Weak

800
5.08 1.64 3.10 Weak
6.00 1.48 4.05 Weak

900
5.07 1.02 4.97 Weak
6.44 1.01 6.38 Medium

1000
4.08 0.42 9.71 Strong
5.13 0.81 6.33 Medium

3.1.3. Rockburst Tendency of the Limestone Based on Linear Elastic Energy Criterion

The linear elastic property We is the ratio of the square of the uniaxial compressive
strength of the rock to twice the unloading tangent modulus. It represents the amount of
energy stored in the rock when the loading stress reaches the peak value.

We =
σ2

c
2ES

(3)

According to the average uniaxial compressive strength and average unloading tan-
gent modulus of the limestone with different burial depths, the linear elastic property
index We of the limestone can be calculated. Table 4 shows the rockburst tendency of the
limestone based on the linear elastic property index.
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Table 4. Rockburst tendency based on linear elastic energy [25,26].

Depth/m Average Unloading
Tangent Modulus/GPa

Linear Elastic
Property/kJ/m3 Rockburst Tendency

600 48.054 69.963 Weak
700 46.831 115.471 Medium
800 45.899 141.202 Medium
900 38.584 175.879 Medium
1000 38.223 222.774 Strong

3.1.4. Comprehensive Discrimination of Rockburst Tendency

Based on the discrimination results of the elastic energy index criterion, the deforma-
tion brittleness index criterion and the linear elastic energy criterion, the rockburst tendency
of the limestone with different burial depths is comprehensively distinguished. The results
are shown in Table 5. As shown in Table 5, when the buried depth of the limestone is less
than 600 m, there is not a rockburst tendency; when the buried depth is 700–800 m, there is
a weak rockburst tendency; when the buried depth is 900 m, there is a medium rockburst
tendency; and when the buried depth is more than 1000 m, the limestone presents a strong
rockburst tendency. In conclusion, with the increase in the burial depth, the rockburst
tendency of the limestone gradually increases.

Table 5. Rockburst tendencies based on multiple criteria [25,26].

Depth/m
Rockburst Tendency Criterion

Elastic Energy
Index

Deformation
Brittleness Index

Linear Elastic
Property

Comprehensive
Rockburst Tendency

600 None None Weak None
700 Weak Weak Weak Weak
800 Weak Weak Medium Weak
900 Medium Medium Medium Medium

1000 Strong Strong Strong Strong

3.2. AE Characteristics of Rocks at Different Stress Stages
3.2.1. Division of Different Stress Stages

The characteristic stress of the rock mass mainly includes the closure stress, crack
initiation stress, damage stress and peak stress. The crack initiation stress and damage
stress are the critical points of the rock failure stage and the instability stage and they are
important characteristic parameters in characterizing the stress stage of the rock mass.
The characteristic stress of the rock under a uniaxial loading can be obtained by the crack
volume strain method [27]. The stress–strain curve of the rock can be divided into five
stages: I. the crack closure stage; II. the linear elastic deformation stage; III. the stable crack
growth stage; IV. the unstable crack growth stage; and V. the post-peak failure stage, as
shown in Figure 4.

The volumetric strain of the rock can be calculated by Equation (4):

εV = ε1+2ε3 (4)

where ε1 is the axial strain of the rock in the failure process under the uniaxial compres-
sion and ε3 is the transverse strain of the rock in the failure process under the uniaxial
compression.

Based on Hooke’s law, the elastic volumetric strain of the rock can be calculated by
Equation (5):

εe
V =

1− 2µ

E
σ (5)
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where σ is the axial stress of the rock in the failure process under the uniaxial compression;
µ is the Poisson’s ratio of the rock; and E is the elastic modulus.

The volumetric strain of the rock material is the sum of the elastic volumetric strain
and the crack volumetric strain, so the calculation function of the crack volumetric strain is
expressed as follows:

εc
V = εV − εe

V (6)

where εc
V is the crack volume strain of the limestone during the rock failure under the

uniaxial compression; εV is the volume strain of the limestone during the rock failure under
the uniaxial compression; and εe

V is the elastic volume strain of the limestone during the
rock failure under the uniaxial compression.
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3.2.2. AE Characteristics of the Limestone with Different Rockburst Tendency

According to the elastic energy index criterion, the deformation brittleness index
criterion and the linear elastic energy criterion, the rockburst tendency of the limestone with
different burial depths can be comprehensively distinguished. The rockburst tendency of
the limestone at a depth of 600–1000 m can be divided into four grades: no rockburst, weak
rockburst, medium rockburst and strong rockburst. To study the AE characteristics of the
limestone with different rockburst tendencies at different stress stages, four representative
samples with different rockburst tendencies were selected.

AE monitoring technology is an effective method of monitoring that studies the failure
mechanisms in coal and rock mass in a real-time and continuous manner [28–30]. As shown
in Figure 5, the AE characteristic parameters of the limestone with different rockburst
tendencies show certain similarities in stages I and II, while there are certain differences in
stages III, IV and V.

(1) Stage I: the crack closure stage. The internal original pores and cracks of the limestone
are gradually compacted, and this stage ends with the generation of the closure stress
of the rock. The AE activities of the limestone with different rockburst tendencies at
this stage remain basically calm. The AE event rate and ring count continue to appear
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in this stage, but the AE energy is in a quiet period without an obvious change. It
indicates that the closure of the original fracture pores mainly occurs in the rock, and
no obvious damage occurs.

(2) Stage II: the linear elastic deformation stage. The stress–strain curve of the rock
tends to be linear. After the compaction of the limestone, the original pores and
fissures do not expand any further. The deformation of the rock at this stage can
be considered as an elastic deformation, and this stage ends with the generation of
the rock crack initiation stress. Due to the large in situ stress on the deep rock, the
stress level at this time is not sufficient to induce secondary cracks in the limestone,
the AE activity remains relatively stable and the AE event rate and energy do not
increase significantly.

(3) Stage III: the stable crack growth stage. This stage ends with the generation of the
rock damage stress. For rock samples with no or a weak rockburst tendency, the AE
event rate and ring count increase in this stage, while the AE energy is still in a quiet
period in this stage. It indicates that secondary cracks are gradually generated in the
limestone under this stress stage, while macro damage does not occur in the sample.
The AE event rate, ring count and energy of the limestone with a medium rockburst
tendency remain relatively stable. The AE event rate and ring count of the limestone
with a strong rockburst tendency increase slightly, which may be related to its internal
grain, joints and other microstructures. The rock with a strong rockburst tendency
has no obvious damage, and the AE energy remains calm.

(4) Stage IV: the unstable crack propagation stage. After the unstable crack propagation
stage, the secondary cracks in limestone with different rockburst tendencies are
gradually penetrated, forming a macro fracture surface, and the high strain energy
stored in the rock is released. Therefore, the high AE event rate and ring count occur
frequently in this stage, and the AE energy also increases significantly.

(5) Stage V: the post-peak stage. There are AE signals in limestone with different rockburst
tendencies in this stage. According to the characteristics of the stress–strain curve, the
limestone with no, medium and strong rockburst tendencies still has a certain residual
strength after the peak strength failure, and the rock has a secondary failure under the
stress, resulting in AE signals. The limestone with a weak rockburst tendency has a
scattered high AE event rate, but the AE energy is almost 0. Therefore, the AE activity
here is generated by the rock sliding along the macro fault surface.

For the limestone without a rockburst tendency, when the loading stress reaches the
damage stress of the rock, the high AE event rate occurs frequently, while the ring count
increases slightly; when the stress decreases significantly, the ring count increases sharply.
There are two significant growths in the AE energy during the failure process, but the low
energy AE activity is more active in the unstable crack propagation stage. For limestone
with a weak rockburst tendency, when the loading stress is close to the rock damage stress,
the AE event rate and the ring count increases first and then decreases, and then the AE
event rate increases gradually, but the ring count does not increase obviously until the
stress is close to the peak value. There are two significant growths in the AE energy during
the failure process, and the time interval between the two increases is shorter than that
of the limestone without a rockburst tendency. For limestone with a medium rockburst
tendency, the high AE event rate and ring count appear in stages. Before the peak stress,
the AE energy has a small increase and a large increase, and the time interval between
the two increases is shorter than that of limestone with a weak rockburst tendency. For
limestone with a strong rockburst tendency, the AE event rate and ring count have the
same changing trend; both of them increase gradually in the steady crack growth stage and
remain relatively stable, and then increase sharply when the stress is near the peak stress.
The AE energy is always in a quiet period and only increases sharply when the stress is
close to the peak stress.
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In conclusion, the AE event rate, ring count and energy of limestone all experience a
quiet period before a significant increase. With the increase in the rockburst tendency, the
high AE rate and ring count change from a continuous occurrence to a phased occurrence;
the longer the quiet period AE energy experiences, the shorter the time interval between
the two increases in the AE energy. The results show that with the increase in the rockburst
tendency, the energy consumed in the rock during the loading process gradually decreases
and more energy is stored, and the stored strain energy changes from a gradual dissipa-
tion to a phased release. For limestone with a strong rockburst tendency, the AE value
increases sharply only before the peak stress, and the energy release mode changes to an
instantaneous release. The storage, dissipation and transformation of energy inside the
rock is the fundamental cause of the rockburst. With the increase in the rockburst tendency,
the variation of the AE event rate and ring count of limestone is more and more consistent
with the variation in the energy. Therefore, we believe that AE energy characterization is
more representative in studying the failure characteristics of rocks with a strong rockburst
tendency in the loading process.

3.3. Comparative Analysis of Damage Process Represented by Different AE Parameters

Acoustic emission (AE) is a wave of elastic energy which is released during the rock
breakage [31,32]. The change of its parameters can characterize the damage evolution in
the rock mass [33,34]. Tang [35] assumed that the AE events and the damage developed
linearly and established the equivalent relationship between the rock damage and the
normalized AE characteristic parameters. That is, the parameters are normalized by the
cumulative count (see Equation (7)), and the normalized value is the cumulative damage in
the rock at this time.

d = N/Na (7)

where d is the rock damage; N is the AE cumulative value at a certain time; and Na is the
AE cumulative value in the whole process of the rock failure.

According to Equation (7), the AE events, ring count and energy in the failure process
of the limestone with different rockburst tendencies are normalized, and the damage
changes represented by the different AE parameters are obtained, as shown in Figure 6.
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Figure 6. Damage changes represented by different AE parameters of the limestone. (a) The limestone
without a rockburst tendency; (b) the limestone with a weak rockburst tendency; (c) the limestone
with a medium rockburst tendency; and (d) the limestone with a strong rockburst tendency.

As shown in Figure 6, the damage change characteristics represented by different AE
parameters have obvious differences. The damage change curve represented by the AE
events and ring count is relatively stable, while the damage change curve represented by
the energy presents a stepped change.

(1) The characterization of the rock damage by the AE events and ring count. In the rock
compaction stage (stage I), no damage can be observed in the limestone with no or
with a weak rockburst tendency. After reaching the closure stress, the damage begins
to accumulate at a certain rate, and the damage accumulation rate increases near
the damage stress. However, the limestone with the medium and strong rockburst
tendency has an obvious damage accumulation and maintains a relatively stable
growth rate. The damage accumulation rate of the limestone with a medium rockburst
tendency increases during the unstable crack propagation stage, and that of the
limestone with a strong rockburst tendency increases soon after the stress reaches
the crack initiation stress. The damage represented by the AE events and ring count
of the limestone with no, a medium and a strong rockburst tendency is similar, and
there is no obvious difference between them. The cumulative rate of the damage
represented by the ring count of the limestone with the weak rockburst tendency
increases before the damage stress point and decreases after the damage stress point,
while the cumulative rate of the damage represented by the AE events increases before
the damage stress point and becomes a fixed value.
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(2) The characterization of the rock damage by the energy. Before the loading stress
reaches the damage stress, the damage represented by the energy of the limestone
with different rockburst tendencies has not accumulated significantly, and it presents
a stepped change after the damage stress. The damage of limestone with no and
with a weak rockburst tendency increases abruptly near the damage stress point
and then increases steadily for a period of time; with the occurrence of the rock
failure, the damage increases rapidly to the peak. The damage of the limestone
with a medium rockburst tendency begins to accumulate speedily in the middle
of the unstable crack propagation stage, and the damage of the sample increases
slowly from the initial loading stage. This may be related to its internal grain, joints
and other microstructures. The damage of the limestone with a strong rockburst
tendency goes through a long quiet period. It only accumulates slightly near the peak
stress and accumulates speedily within a short time. The damage represented by the
AE energy of the limestone has gone through a quiet period. After the accelerated
accumulation of the damage, there is a transitional quiet period before the next
accelerated accumulation. With the increasing rockburst tendency of the limestone, the
more delayed the accelerated accumulation of the damage, the shorter the transitional
quiet period, and the limestone with the strong rockburst tendency has no transitional
quiet period.

To sum up, there are differences in the damage evolution process of rocks represented
by the different AE parameters. The rock damage represented by the AE events and ring
count tends to be gentle, and the damage initiation point appears early, which cannot better
represent the severe accelerated accumulation process of the damage caused by the sudden
release of the internal energy of rocks with a rockburst tendency. The damage represented
by the energy can better reflect the instantaneity and intensity of the rockburst damage.

3.4. AE Fractal Characteristics of the Limestone with Different Rockburst Tendencies
3.4.1. Calculation of Fractal Dimension

The evolution law of the AE characteristic parameter correlation dimension D in
the rock fracture process is closely related to the mechanical process of the rock damage,
which reflects the change in the damage of the rock’s internal structure [36,37]. Based
on different AE characteristic parameters, the corresponding correlation dimension D is
calculated. According to the fractal characteristics in the rock failure and the rockburst
failure mechanism, the applicability of each AE characteristic parameter in characterizing
the damage process of the limestone with different rockburst tendencies is discussed.

According to the G-P algorithm proposed by Grassberger [38], the correlation dimen-
sion of the AE time series of the limestone is calculated.

(1) The AE signals of a single limestone rock correspond to a sequence set with a capacity
of n [39]:

X = {x1, x2, x3, · · · , xn} (8)

The AE events, ring count and energy of the limestone are taken as the time series,
respectively.

(2) Construction of m-dimensional phase space

The first m data intercepted from the AE one-dimensional time series set X, a new
m-dimensional phase space vector, is reconstructed and then the right shift method is used
to move the τ data. Finally, the one-dimensional time series set is further expanded into
the m-dimensional vector groups.

X1 = (x1, x2, x3, · · · , xm)
X2 = (x1+τ , x2+τ , x3+τ , · · · , xm+τ)

...
Xn = (xn+τ , xn+τ , xn+τ , · · · , xn+(m−1)τ)

 (9)
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(3) Correlation function of m-dimensional phase space points:

C(r) = − lim
N→∞

1
N2

N

∑
i=1

N

∑
j=1

H(r−
∣∣Xi − Xj

∣∣) (10)

where H(x) is the Heaviside step function and r is a given scale function. When the
distribution of the phase space points approaches a straight line, it indicates that the AE
time series has obvious fractal characteristics.

(4) Correlation dimension expression calculation

The correlation dimension expression is as follows:

D(m) = − lim
r→∞

∂ ln Cm(r)
∂ ln r

(11)

The correlation dimension D of the AE events, ring count and energy of the limestone
with different rockburst tendencies is calculated by using Equation (11), and the time-series
fractal characteristics of the AE parameters are compared and analyzed. When calculating
the correlation dimension of the AE of the limestone with different rockburst tendencies,
the value of the phase space dimension m should be consistent. Taking the limestone with
a weak rockburst tendency as an example, the relationship curve is drawn with the phase
space dimension m as the abscissa and the correlation dimension D as the ordinate, as
shown in Figure 7. When the phase space dimension m is [2,4], the correlation dimension D
tends to be linear. Here, the phase space dimensions m are all taken as three.
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3.4.2. Fractal Characteristics of Acoustic Emission Parameters

The univariate linear regression is performed for the AE events, ring count and
energy parameter series of the limestone with different rockburst tendencies, as shown
in Figures 8–10. The fitting line has a strong correlation with the original curve, and the
correlation coefficients are greater than 0.95, indicating that the AE events, ring count and
energy have good fractal characteristics in the failure process of the limestone. The fractal
dimension values of the AE events, ring count and energy calculated based on the G-P
algorithm are obtained, as shown in Figure 11.
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Figure 8. Double logarithmic relationship of AE events of the limestone. (a) The limestone without
a rockburst tendency; (b) the limestone with a weak rockburst tendency; (c) the limestone with a
medium rockburst tendency; and (d) the limestone with a strong rockburst tendency.
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Figure 10. Double logarithmic relationship of AE energy of the limestone. (a) The limestone without
a rockburst tendency; (b) the limestone with a weak rockburst tendency; (c) the limestone with a
medium rockburst tendency; and (d) the limestone with a strong rockburst tendency.
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As shown in Figure 11a, the fractal dimension D of the AE events of the limestone with
a medium rockburst tendency fluctuates relatively violently, while that of the limestone
without a rockburst tendency fluctuates stably. In Figure 11b, the fluctuation degree of
the fractal dimension D of the AE ring count of the limestone with different rockburst
tendencies is similar. In Figure 11c, the fractal dimension D of the AE energy of the
limestone without a rockburst tendency fluctuates most violently, followed by limestone
with a weak rockburst tendency, and limestone with a strong rockburst tendency is the most
stable. To quantify the fluctuation degree of the fractal dimension value of each parameter,
the coefficient of variation CV (CV = σ/x) is introduced to analyze the volatility of the
data in different groups. The greater the CV value, the greater the data volatility, and vice
versa. The variation coefficients of the AE events, ring count and energy fractal dimension
value [CV(s), CV(z) and CV(n)] of the limestone with different rockburst tendencies are
calculated, respectively. The results are shown in Table 6 and they are draw into a column
diagram in Figure 12.

Table 6. Calculation results of variation coefficients.

Variation Coefficients
Limestone with Different Rockburst Tendencies

None Weak Medium Strong

CV(s) 0.263 0.372 0.483 0.296
CV(z) 0.303 0.550 0.597 0.349
CV(n) 0.911 0.521 0.294 0.263
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Figure 12. Comparison of fractal dimension fluctuation of AE parameters.

It can be seen from the rock burst failure mechanism that the limestone with a stronger
rockburst tendency mainly stores energy in its interior at the early stage of loading, and
the dissipated energy is only a small part. Only micro damage occurs to the rock, and the
macro structure remains intact. The increase or decrease in the fractal dimension can reflect
the damage and destruction of the rock. There is no obvious change rule of the acoustic
emission events and the ringing count fractal dimension D of the limestone with different
rockburst tendencies, but the change in the acoustic emission energy fractal dimension D is
more stable with the increase in the rockburst tendency. Therefore, the change in the fractal
dimension based on the AE energy is more consistent with the rockburst mechanism.

In conclusion, the rock damage represented by the AE events and ring count appears
prematurely and has prominent features of a progressive evolution. As a result, the inten-
sity and instantaneity of the rock failure with a rockburst tendency cannot be effectively
characterized. The energy characterization of the damage process of the limestone with
different rockburst tendencies not only avoids the interference of small energy events in the
compaction and elastic stages, but also characterizes the accelerated damage accumulation
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process of violent rock damage. Energy conversion is the essence of rock failure [40]. The
essence of rockburst is the instantaneous and violent release of high strain energy stored in
the rock [41,42]. Therefore, the change law of the energy fractal dimension D is more in
line with the rockburst mechanism. Additionally, with the increasing tendency of the rock-
burst, the change characteristics of the AE event rate and ring count in the process of rock
failure are gradually consistent with that of the energy. Therefore, the AE energy is more
reasonable in presenting the damage process of rocks with a stronger rockburst tendency.

4. Conclusions

1. The deeper the rock is buried, the smaller the porosity, the greater the density, the
denser the rock is and the greater the uniaxial compressive strength is. Based on
the elastic energy index criterion, the deformation brittleness index criterion and the
linear elastic energy criterion, the rockburst tendency of the limestone with different
burial depths is analyzed, and it is concluded that the rockburst tendency increases
with the increase in the burial depth. Specifically, limestone with a burial depth of
600 m does not have a rockburst tendency, while the limestone with a burial depth
of 700 and 800 m, 900 m and 1000 m have a weak, medium and strong rockburst
tendency, respectively.

2. Under the uniaxial stress state, the AE event rate and ring count have similar changing
trends, and the energy shows a sharp growth after a quiet period. With the increase
in the rockburst tendency, the change characteristics of the AE event rate and ring
count tend to be consistent with the energy. The less lower the AE event rate is, the
longer the quiet period of the energy is and the smaller the interval of the first and
last growths of the AE energy is. For the limestone with a strong rockburst tendency,
the AE energy increases suddenly only before the peak stress.

3. The normalization of the AE characteristic parameters can be used to calculate the
damage of the limestone. The damage process of the limestone represented by the AE
events and ring count shows progressive evolution characteristics, and the damage
represented by the energy shows stepped evolution characteristics. The damage rep-
resented by the energy can not only reflect the energy storage process of the rockburst
incubation, but it also reflects the instantaneity and intensity of the rockburst damage.

4. The fluctuation in the fractal dimension D of the AE energy is more gentle with the in-
crease in the rockburst tendency, and the variation coefficient CV of the mathematical-
statistical index is used for the verification. It reflects the energy storage characteristics
of rock with a rockburst tendency in the loading process, which is consistent with the
failure mechanism of the rockburst. Therefore, the AE energy is more reasonable in
characterizing the damage process of rocks with a stronger rockburst tendency.
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