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Abstract: Eudialyte-group minerals (EGMs) are typical accessory or rock-forming minerals of the
Lovozero peralkaline massif (Kola Peninsula, Russia). The EGM grains in the rocks of the massif
are often replaced by an association of various secondary minerals such as lovozerite and wöhlerite
group minerals, as well as terskite, catapleiite, elpidite, gaidonnayite, vlasovite, zircon, and loparite-
(Ce). However, EGMs in the Lovozero massif can be not only pseudomorphized, but also partially
or completely dissolved. The partial dissolution of eudialyte grains was simulated in three series
of experiments, and the results obtained were compared with natural samples. Observations in
natural samples and experimental studies have shown that the partial dissolution of eudialyte-group
minerals occurs in two stages: (1) loss of sodium and hydration; (2) loss of other cations not included
in the zirconosilicate framework. This process proceeds most intensively in acidic hydrothermal
solutions and may be responsible for the appearance of new mineral species in the eudialyte group.

Keywords: eudialyte-group minerals; Lovozero massif; hydrothermal experiments; alteration

1. Introduction

Eudialyte, a zirconosilicate of sodium, calcium, and iron, was discovered more than
200 years ago in the Ilimaussaq alkaline massif in Greenland [1,2], but to this day it is
of great scientific and economic interest. The complex zeolite-like crystal structures of
eudialyte-group minerals (EGMs) contain many crystallographic sites (both framework and
extra-framework) with different coordinational numbers and environments [3–5]. Although
there are preferred sites for many elements in the crystal structure of eudialyte, the same
element can occupy several sites. In addition, many sites may be either partially or fully
vacant. Currently, the eudialyte group combines 31 mineral species [6–9], and new ones are
constantly being discovered.

From the economic point of view, eudialyte-group minerals are a potential source of
high-field-strength elements (HFSEs), such as zirconium and rare earth elements (REEs).
Currently, many eudialyte deposits have been reported, some of which are located in
Pajarito (NM, USA) [10], Lovozero (Russia) [11], Ilimaussaq (South Greenland) [12], Mont
Saint-Hilaire (Canada) [13], and Norra Kärr (Sweden) [14]. Due to the significant amounts
of eudialyte and its low radioactive content, this mineral has the potential of becoming a
primary REE resource. The relative ease of extraction of eudialyte by magnetic separation
and the significant proportion of heavy rare earth elements (HREEs) makes the exploration
of eudialyte deposits economically feasible [15,16]. Although eudialyte can be easily
dissolved with acids, eudialyte processing can be very challenging as co-dissolved silica
forms an unfilterable gelatinous phase [17,18]. At present, methods have been developed
for the leaching of eudialyte concentrate, aiming at recovering rare earth elements and
suppressing silica gel formation [17,19].
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The crystal chemical formula of EGMs derived from the IMA-approved formula [20] can be
written as (Z = 3): {N(1)3N(2)3N(3)3N(4)3N(5)3}{[M(1a)3M(1b)3]3M(2)3M(3)M(4)Z3[Si24O72]Ø0–6}
X(1)X(2),

where

N(1–5) = Na, H3O+, K, Sr, REE, Y, Ba, Mn, Ca, � (vacancy);
M(1) = Ca, Mn, REE, Na, Fe;
M(2) = IV,VFe2+, V,VIFe3+, V,VIMn2+, V,VINa, IV,VZr;
M(3) and M(4) = IVSi, VINb, VITi, VIW6+, �;
Z = Zr, Ti, Nb;
Ø = O, (OH);
X = Cl, F, S2−, H2O, CO3, and SO4.

The EGMs are index minerals of agpaitic (molar (Na + K)/Al > 1) rocks and are found
during various stages of crystallization [12,21,22]. However, the majority of occurrences of
EGMs are from late- to post-magmatic origin [21] from various localities elsewhere [23–26].
In particular, in the Pilansberg alkaline complex (South Africa), a late-magmatic generation
of EGMs is replaced by two post-magmatic generations [27].

Late-stage hydrothermal alteration of EGMs is intimately linked with the agpaitic
complexes and commonly attributed to the fluid-rich nature of the melts [21,27–31]. As a
product of EGMs decomposition, micrometer-scale aggregates of secondary zirconosilicates,
aluminosilicates, and Nb and REE phases are formed. In addition, as a result of EGM
alterations, high-field-strength elements (HFSEs) can be mobilized and transported in a
hydrothermal solution [32,33]. In particular, van de Ven and colleagues [32] found that
hydrothermal alteration of EGMs from the Ilimaussaq massif produced three different asso-
ciations of the secondary minerals (with catapleiite, gittinsite, or zircon). Moreover, EGM
alteration was accompanied by the loss of HFSEs, and these elements were redeposited
nearby in the same rocks.

EGMs are one of the main minerals of the Lovozero peralkaline massif (Kola Penin-
sula, Russia), where EGMs are second only to feldspars, nepheline, and aegirine in abun-
dance [34]. In the Lovozero massif, EGMs are often replaced by an association of secondary
minerals, among which the most common are lovozerite- and wöhlerite-group minerals,
terskite, catapleiite, elpidite, gaidonnayite, vlasovite, zircon, and loparite-(Ce) [35–38].
Eudialyte-group minerals in Lovozero massif can be not only pseudomorphized, but also
partly to completely dissolved. The dissolution of EGM crystals, followed by crystallization
of various Zr-bearing minerals on the walls of the dissolution cavities or in the immediate
vicinity, is described in detail in pegmatites of the Lovozero massif [35,39]. According to
Pekov [35], accompanied local geochemical anomalies (in this case, zirconium) are usually
formed in this case.

In fact, EGM grains in the Lovozero rocks often contain numerous microcracks and
are surrounded by a loose rim of the undiagnosed Zr-Si phases. We have established
that the “porous” (with numerous microcracks) EGMs contain an order of magnitude less
sodium than the “fresh” (homogeneous, uncracked) ones. We assumed that such changes
in the morphology and composition of EGMs are associated with the initial stage of their
dissolution and modeled this process in a series of experiments. In this paper, we present the
results of a study of EGM-bearing samples from the Lovozero massif, which were natural
prototypes for our experiments. Based on the obtained results from our experiments, we
discuss (1) the natural conditions under which EGMs may dissolve and (2) changes in the
composition of the hydrothermal solution during the dissolution of EGMs.

2. Geological and Petrography Backgrounds

The Lovozero peralkaline massif (Figure 1a) is located on the Kola Peninsula (NW
Russia) and covers an area of 650 km2. This layered laccolith-type intrusion was emplaced
360–370 million years ago [40–42] into Archean granite gneisses covered by Devonian
volcaniclastic rocks [43,44]. Lovozero massif [45–48] is composed of three major units:
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(1) Layered complex (77% massif’s volume; thickness about 1700 m). This complex
consists of numerous sub-horizontal layers or “rhythms” (Figure 1). Each rhythm is a
sequence of rocks (from top to bottom): lujavrite–foyaite–urtite or lujavrite–foyaite.
Lujavrite is meso- to melanocratic nepheline syenite with a trachytoid texture; foyaite
is leucocratic nepheline syenite, and urtite is an almost monomineral nepheline rock.
The transitions between different rocks within the same rhythm are gradual, and the
boundaries between the rhythms are sharp and are often marked by pegmatites.

(2) Eudialyte complex (18% massif’s volume; thickness varies from 100 to 800 m). This
complex overlies the layered complex (Figure 1) and mainly consists of lujavrite
enriched in eudialyte-group minerals, co-called eudialyte lujavrite. Lenses and sheet-
like bodies of foyaite, as well as fine-grained/porphyritic nepheline syenites, are
irregularly located among eudialyte lujavrite.

(3) Poikilitic complex (5% massif’s volume) consists of leucocratic feldspathoid syenites,
in which grains of feldspathoids are poikilitically incorporated into large crystals
of alkali feldspar. These rocks form lenses, or irregularly shaped bodies, which are
located in both the layered and eudialyte complexes.
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Figure 1. Geological and petrography backgrounds. (a) Simplified geological map of the Lovozero
peralkaline massif [46], where sampling points of eudialyte-bearing rock samples are marked by flags;
(b) satellite image of the northwestern part of the Lovozero massif (sampling point 1); individual rhythms
of the layered complex are clearly visible due to the fact that melanocratic nepheline syenites (the top
of each rhythm) are more resistant to weathering; (c) EGM grains in eudialyte lujavrite (sample LV-500,
sampling point 1); (d) EGM grain in poikilitic nepheline syenite (sample LV-604/2, sampling point 3).
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A large number of studies have been devoted to the chemical composition, crystal
chemistry, and secondary alterations of EGMs from the Lovozero massif [5,34,49–56]. The
EGMs (Figure 1c,d) are typical accessory or rock-forming minerals of the rocks of the
Lovozero massif [37,45]. In all rock types of the layered complex, EGMs occur exclusively
as anhedral grains in interstices of rock-forming minerals. In the urtite and foyaite, the
content of the EGMs reaches 20 and 25 mod. %, respectively (the average content is 2.4 and
2.7 mod. %, respectively), while the EGM content in lujavrite is lower than that in urtite
and foyaite (on average 2%, maximum 10%). In eudialyte lujavrite, EGMs form rounded
grains, located mainly in close association with mafic minerals (alkaline pyroxenes and
amphiboles). The content of EGMs in eudialyte lujavrite can reach 90 mod. %. In the rocks
of the poikilitic complex, EGMs usually occur in close association with mafic minerals and
form anhedral grains or poikilitic crystals. The EGM content in the rocks of the poikilitic
complex does not exceed 5 mod. %.

3. Materials and Methods
3.1. Materials and Design of the Experimental Study

For this study, 24 samples of EGM-bearing rocks were selected. Samples were taken
from both boreholes (sampling point 1; Figure 1) and outcrops (sampling points 2 and
3; Figure 1). The study of natural samples was necessary in order to characterize the
composition of fresh EGMs, select samples for experiments, and also characterize the
changes (decomposition/dissolution) that occur with EGMs in nature and compare them
with the experimental results.

The general scheme of the study is shown in Figure 2.
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3.2. Chemical Composition of Minerals

The determinations of chemical compositions of EGMs and products of their trans-
formation, as well as the studies of grain morphology, were performed at the Geological
Institute, Kola Science Center of the Russian Academy of Sciences (GI KSC RAS, Ap-
atity, Russia) using the scanning electron microscope LEO-1450 (Carl Zeiss Microscopy,
Oberkochen, Germany) with the energy-dispersive system (EDS) Aztec Ultimmax 100
(Oxford Instruments, Abingdon, UK).
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Mineral abbreviations (Table 1) are given in accordance with International Mineralogi-
cal Association (IMA)-approved mineral symbols [57], with the exception of the eudialyte-
and lovozerite-group minerals.

Table 1. Abbreviations, names, and formulas of minerals mentioned in this article.

Abbreviation [57] Mineral IMA Formula

Ab albite Na(AlSi3O8)
Aeg aegirine NaFe3+Si2O6
Ctp catapleiite Na2Zr(Si3O9)·2H2O

EGM eudialyte-group mineral [20]
Epd elpidite Na2ZrSi6O15·3H2O
Gdn gaidonnayite Na2ZrSi3O9·2H2O
LGM lovozerite-group mineral [58]

Lop-Ce loparite-(Ce) (Na,Ce,Sr)(Ce,Th)(Ti,Nb)2O6
Lvz lovozerite Na3CaZrSi6O15(OH)3
Marf magnesio-arfvedsonite NaNa2(Mg4Fe3+)Si8O22(OH)2
Mcc microcline K(AlSi3O8)
Nph nepheline Na3K(Al4Si4O16)
Ntr natrolite Na2(Si3Al2)O10·2H2O

Rha-Ca rhabdophane-(Ce) Ce(PO4)·H2O
Ter terskite Na4ZrSi6O16·2H2O
Vsv vlasovite Na2ZrSi4O11
Wöh wöhlerite Na2Ca4Zr(Nb,Ti)(Si2O7)2(O,F)4
Zrn zircon Zr(SiO4)
Zsl zirsinalite Na6CaZrSi6O18

3.3. Experimental Conditions

Three series of hydrothermal experiments were carried out, differing in the composi-
tion of the initial solution. The experimental conditions are summarized in Table 2. For the
experiments, deionized water and 0.5 mol/L NaCl and 0.1 mol/L HCl of reagent-grade
quality (Neva reactive) were used. EGM grains (about 0.4000 g) were kept in solution
(15 mL) at 230 ◦C for 10/20/30/40 days without periodic shaking in the PTFE-lined hermet-
ically sealed autoclaves for hydrothermal synthesis (TOPH, South Korea). The ratio of the
volume of the autoclave to the volume of the solution was 1.6. An ED224S-RCE Sartorius
analytical scale (Göttingen, Germany) was used for weighing. After each experiment, the
grains of eudialyte were washed twice with deionized water (30 mL) and then once with
5 mL of ethanol solution and dried in air for 1 h.

Table 2. Experimental conditions.

Series
of Experiments Solution Experiment Volume of

Solution, mL
Mass of EGM

Grains, g Temperature, ◦C Time, Days

1
H2O

pH = 5.6

Aks. 5 15 0.4000 230 10
Aks. 6 15 0.4009 230 20
Aks. 7 15 0.4072 230 30
Aks. 8 15 0.4000 230 40

2
0.5 mol/L NaCl

pH = 3.4

Aks. 1 15 0.4012 230 10
Aks. 2 15 0.4014 230 20
Aks. 3 15 0.4010 230 30
Aks. 4 15 0.4000 230 40

3
0.1 mol/L HCl

pH = 1.8

Aks. 9 15 0.4052 230 10
Aks. 10 15 0.4000 230 20
Aks. 11 15 0.4005 230 30
Aks. 12 15 0.4000 230 40
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3.4. Powder X-ray Diffraction

The X-ray diffraction (XRD) measurements were performed at the Kola Science Center
of the Russian Academy of Sciences using a MiniFlex-600 powder diffractometer (Rigaku
Corporation, Tokyo, Japan). The X-ray source was Cu Kα radiation. The tube current and
the tube voltage were set at 15 mA and 40 kV, respectively. A one-dimensional detector
(D/teX Ultra2, Rigaku Corporation, Tokyo, Japan) was used with a Kβ filter.

3.5. Compositions of the Solutions

The concentration of the elements in solutions after experiments were determined
using inductively coupled plasma mass spectrometry (ICP-MS) on an ELAN 9000 DRC-e
(Perkin Elmer, Waltham, MA, USA) in the Institute of North Industrial Ecology Problems
KSC RAS. The pH values of the solutions were measured using an AMT28F pH meter
(Amtast, FL, USA); the admissible error of this instrument was +/−0.1 pH. This type of pH
meter was used to measure pH due to the small volumes of analyzed solutions.

4. Results

The studied rock samples contain both unaltered (fresh) and partially dissolved EGM
grains. We believe that the term “partially dissolved” is more suitable in this case because
such EGM is surrounded by a loose and porous rim of undiagnosed Si-Zr phases. It should
be stated that partially dissolved and fresh EGM grains can occur in the same hand sample
and even in the same thin polished section.

4.1. Fresh EGMs from Rocks of the Lovozero Massif

Fresh EGM grains contain almost no cracks and have smooth boundaries (Figure 3a,b).
The EGM grains are usually zoned in chemical composition. Generally, the rims are
enriched in Sr, REE, Mn, and Cl. The sodium content varies from 14.73 to 15.60 atoms per
formula unit (apfu) (Figure 3c).
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Figure 3. Fresh EGMs. (a) EGM grains in eudialyte lujavrite (sample LV-222/177, sampling point 1 in
Figure 1), BSE image; (b) detailed BSE image of a fragment of Figure 3a; EGM grains contain almost no
cracks and has smooth boundaries; yellow dots are microprobe analysis points; (c) chemical composition
of EGM grain shown in Figure 3b (point 1 = grain core; point 2 = grain rim). apfu—atoms per formula unit.
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4.2. Partially Dissolved EGMs from the Rocks of the Lovozero Massif (Natural Prototype for
the Experiments)

In the same thin section, along with fresh EGM grains, partially dissolved ones occur.
Sometimes a grain of EGM is dissolved on only one side, as shown in Figure 4a,b. Par-
tially dissolved grains are surrounded by a porous reticulate rim consisting of the Si-Zr
phases and rhabdophane-(Ce) (Figure 4b–f), as well as natrolite and goethite. Commonly,
rhabdophane-(Ce) forms clusters of very small grains, which can be located at a small
distance from the partially dissolved EGM.

Table 3. Representative chemical analyses of partially dissolved EGMs (wt. %).

Sample LV-230/210 LV-32/128 LV-309 LV-156/36

Analysis point point 3,
Figure 4a,b

point 4,
Figure 4c,d

point 5,
Figure 4e

point 6,
Figure 4f

Rock eudialyte
lujavrite

eudialyte
lujavrite foyaite eudialyte

lujavrite

Nb2O5 0.96 0.75 0.73 0.60
SiO2 49.52 51.84 52.81 52.60
TiO2 0.65 0.43 0.46 0.59
ZrO2 12.21 12.43 12.77 14.04
Al2O3 0.17 0.19 0.19 0.35
La2O3 0.30 0.55 0.66 0.26
Ce2O3 0.86 1.21 1.52 0.59
Nd2O3 0.40 0.37 0.50 0.30

FeO 1.58 1.66 1.29 2.96
MnO 2.44 3.09 3.40 2.42
MgO b.d.l. b.d.l. b.d.l. 0.10
CaO 8.10 8.15 6.99 7.33
SrO 2.20 2.19 1.43 2.04
BaO 0.33 0.23 0.37 0.13

Na2O 16.39 7.87 6.19 5.43
K2O 0.30 0.49 1.07 0.59
Cl 1.40 1.14 0.77 1.41

–O=Cl 0.32 0.26 0.17 0.30
sum 97.49 92.33 90.98 91.44

Formula based on (Si + Al + Zr + Ti + Hf + Nb + Ta + W) = 29 apfu
Nb 0.22 0.17 0.16 0.13
Si 25.37 25.57 25.55 25.18
Ti 0.25 0.16 0.17 0.21
Zr 3.05 2.99 3.01 3.28
Al 0.10 0.11 0.11 0.20
La 0.06 0.10 0.12 0.04
Ce 0.16 0.22 0.27 0.10
Nd 0.07 0.06 0.09 0.05
Fe 0.68 0.68 0.52 1.19
Mn 1.06 1.29 1.39 0.98
Mg – – – 0.07
Ca 4.45 4.31 3.62 3.76
Sr 0.65 0.63 0.40 0.57
Ba 0.06 0.04 0.07 0.02
Na 16.28 7.53 5.81 5.04
K 0.20 0.31 0.66 0.36
Cl 1.22 0.95 0.63 1.15

b.d.l.—below detection limit. Note the decrease in the sum of analysis as the sodium content decreases (highlighted
in bold).
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Figure 4. BSE images of partially dissolved EGMs. (a,b) EGM grain in eudialyte lujavrite (sample
LV-230/210, sampling point 1 in Figure 1); EGM grain partially dissolved on one side only (lower
right); (c,d) EGM grain in eudialyte lujavrite (sample LV-32/128, sampling point 1 in Figure 1);
there are numerous expanding cracks, partially filled with Si-Zr phases; in addition, the grain is
surrounded by a wide rim of the Si-Zr phases + rhabdophane-(Ce), where rhabdophane-(Ce) forms
clusters of small grains at a distance from the dissolving EGMs; (e) EGM grain in foyaite (sample
LV-309, sampling point 2 in Figure 1); there are numerous expanding cracks, partially filled with Si-Zr
phases; in addition, the grain is surrounded by a wide rim of the Si-Zr phases + rhabdophane-(Ce);
(f) EGM grain in eudialyte lujavrite (sample LV-156/36, sampling point 1 in Figure 1); the grains are
fractured and surrounded by a thin rim of the Si-Zr phase+ rhabdophane-(Ce). Yellow dots (3–6)
with numbers are microprobe analysis points (see Table 3).
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The Si-Zr phases are X-ray amorphous. The chemical compositions of these phases
are quite variable. According to a rough estimate of the composition, the Si:Zr ratio varies
from 3:1 to 6:1. Insignificant amounts of Na, K, Mn, Ca, Fe, and Ti have also been found in
the composition of the Si-Zr phases.

When the intensity of dissolution increases, the width of the loose rim around EGM
grains also increases. At the same time, the EGM grain itself becomes porous due to the
appearance of a large number of microcracks. In addition, the chemical composition of
EGM changes. If the dissolution is insignificant, then the chemical composition of EGMs
corresponds to the composition of fresh eudialyte (Table 3, Figure 4a,b, analysis point 3).
Intensively dissolved EGMs contain significantly less sodium (Table 3, Figure 4c–f, analysis
points 4–6). The low sum of analysis of intensely dissolved EGM grains should also be
noted (see Table 3, samples LV-32/128, LV-309, LV-156/36).

4.3. Results of Experiments (Fresh→ Partially Dissolved EGM)

Sample LV-604/2 (sampling point 3 in Figure 1a) was chosen for the experiments.
In this sample, fresh EGM forms relatively large and chemically homogeneous grains.
Figure 5 shows the representative morphology and chemical compositions of EGM grains
separated from the sample LV-604/2 for experiments. Powder X-ray diffraction data for
sample LV-604/2 are shown in Supplementary Materials (Figure S1).
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Figure 5. The morphology and representative chemical analysis of EGM grains separated from the
sample LV-604/2 (sampling point 3 in Figure 1a) for the experiments. (a,b) Grain morphology; BSE
images; yellow dots are microprobe analysis points; (c) chemical compositions of EGM grains shown
in Figure 5a,b; apfu—atoms per formula unit; b.d.l.—below detection limit.
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After experiments with deionized water and 0.5 mol/L NaCl solution, no changes in
the morphology of EGM grains were observed (Figure 6a, b). Regardless of the time of the
experiment, the EGM grains remained homogeneous with smooth boundaries, without any
signs of dissolution. The chemical composition of EGM also remained unchanged. Table 4
shows the representative chemical analyses of EGM after experiments with deionized water
and 0.5 mol/L NaCl solution.

Table 4. Representative chemical analyses of EGM after experiments with both water and NaCl (wt%).

Experiment Deionized H2O 0.5 mol/L NaCl

Sample Aks. 5 Aks. 6 Aks. 7
Aks. 8,

Point 9 in
Figure 6a

Aks. 1 Aks. 2 Aks. 3
Aks. 4,

Point 10 in
Figure 6b

Nb2O5 0.82 0.58 0.79 0.64 0.73 0.72 0.73 0.78
SiO2 49.10 49.21 49.17 49.39 48.90 49.13 48.94 49.02
TiO2 0.74 0.79 0.78 0.69 0.75 0.68 0.76 0.89
ZrO2 14.17 14.65 13.36 14.03 14.22 14.01 14.66 15.28
HfO2 0.44 0.40 0.30 0.44 0.34 0.37 0.42 0.44
Al2O3 0.26 0.24 0.17 0.24 0.24 0.24 0.27 0.29
La2O3 0.36 0.30 0.56 0.27 0.29 0.21 0.29 0.18
Ce2O3 0.71 0.54 0.45 0.55 0.63 0.59 0.69 0.53
Nd2O3 0.38 0.34 0.51 0.30 0.32 0.27 0.20 0.26

FeO 4.07 3.84 3.97 4.27 3.92 4.21 3.90 3.59
MnO 1.89 1.85 1.95 1.82 1.86 1.86 1.75 1.83
MgO 0.15 0.18 0.17 0.13 0.11 0.12 0.14 0.13
CaO 5.85 5.53 6.07 5.97 5.81 5.96 5.46 5.10
SrO 1.13 0.89 0.90 1.25 1.15 1.20 1.05 0.85
BaO 0.02 0.06 b.d.l. b.d.l. 0.01 0.07 0.02 0.01

Na2O 15.31 14.72 15.60 15.00 15.17 15.21 14.81 14.20
K2O 0.58 0.53 0.67 0.63 0.61 0.59 0.50 0.57
SO3 0.37 0.40 0.42 0.29 0.33 0.30 0.40 0.37
Cl 0.68 0.72 0.80 0.75 0.70 0.69 0.82 0.74

–O=Cl 0.16 0.16 0.18 0.17 0.16 0.15 0.18 0.17
Sum 96.87 95.61 96.46 96.49 95.93 96.28 95.63 94.89

Formula based on (Si + Al + Zr + Ti + Hf + Nb + Ta + W) = 29 apfu
Nb 0.19 0.13 0.18 0.15 0.17 0.17 0.17 0.18
Si 24.82 24.77 25.05 24.93 24.83 24.91 24.71 24.53
Ti 0.28 0.30 0.30 0.26 0.29 0.26 0.29 0.33
Zr 3.49 3.60 3.32 3.45 3.52 3.46 3.61 3.73
Hf 0.06 0.06 0.04 0.06 0.05 0.05 0.06 0.06
Al 0.15 0.14 0.10 0.14 0.14 0.14 0.16 0.17
La 0.07 0.06 0.11 0.05 0.05 0.04 0.05 0.03
Ce 0.13 0.10 0.08 0.10 0.12 0.11 0.13 0.10
Nd 0.07 0.06 0.09 0.05 0.06 0.05 0.04 0.05
Fe 1.72 1.62 1.69 1.80 1.66 1.79 1.65 1.50
Mn 0.81 0.79 0.84 0.78 0.80 0.80 0.75 0.78
Mg 0.11 0.14 0.13 0.10 0.08 0.09 0.11 0.10
Ca 3.17 2.98 3.31 3.23 3.16 3.24 2.95 2.73
Sr 0.33 0.26 0.27 0.37 0.34 0.35 0.31 0.25
Ba – 0.01 – – – 0.01 – –
Na 15.01 14.37 15.41 14.68 14.94 14.95 14.50 13.78
K 0.37 0.34 0.44 0.41 0.40 0.38 0.32 0.36
Cl 0.58 0.61 0.69 0.64 0.60 0.59 0.70 0.63
S 0.14 0.15 0.16 0.11 0.13 0.11 0.15 0.14

b.d.l.—below detection limit; apfu—atoms per formula unit.
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Figure 6. BSE images of the morphology of EGM grains after experiments. (a) EGM grain after
experiment with deionized water (experiment time = 40 days); (b) after experiment with 0.5 mol/L
NaCl solution (experiment time = 40 days); (c) after experiment with 0.1 mol/L HCl solution
(experiment time = 10 days); grain is surrounded by a zonal rim consisting of Si-Zr phases and
sodium-depleted EGM. Detailed image of the fragments: (d) shown in Figure 6c; (e) shown in
Figure 6d. The fragments of EGM grain: (f) after experiment with 0.1 mol/L HCl solution (experiment
time = 20 days); zonal rim about 100 µm across surrounding the EGM grain is clearly visible; (g) after
experiment with 0.1 mol/L HCl solution (experiment time = 30 days); (h) after experiment with
0.1 mol/L HCl solution (experiment time = 30 days). Yellow dots (9–17) are microprobe analysis
points (see Tables 4 and 5).
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Table 5. Representative chemical analyses of EGM after experiments with 0.1 mol/L HCl solution (wt%).

Sample

Aks. 9
Point 12

Figure 6d

Aks. 9
Point 13

Figure 6d
Aks. 9 Aks. 9

Aks. 10
Point 14
Figure 6f

Aks. 10
Point 15
Figure 6f

Aks. 11 Aks. 11
Aks. 12
Point 16

Figure 6g

Aks. 12
Point 17

Figure 6g

Rim Core Rim Core Rim Core Rim Core Rim Core

Nb2O5 0.71 0.70 0.72 0.60 0.84 0.68 0.87 0.65 0.65 0.69
SiO2 50.92 49.08 51.20 49.30 51.05 48.64 54.40 49.15 50.13 48.94
TiO2 0.94 0.88 0.66 0.62 0.93 0.92 0.89 0.79 0.85 0.75
ZrO2 16.49 15.20 14.35 13.41 16.00 14.86 16.21 14.76 15.43 14.28
HfO2 0.44 0.38 0.39 0.43 0.55 0.39 0.51 0.38 0.36 0.45
Al2O3 0.33 0.22 0.25 0.27 0.32 0.24 0.33 0.28 0.29 0.27
La2O3 0.28 0.39 0.30 0.28 0.28 0.27 0.33 0.25 0.24 0.34
Ce2O3 0.71 0.54 0.63 0.50 0.55 0.61 0.78 0.56 0.60 0.58
Nd2O3 0.27 0.30 0.31 0.32 0.35 0.24 0.32 0.32 0.27 0.32

FeO 3.88 3.63 4.44 4.27 3.59 3.48 3.89 3.59 3.66 3.63
MnO 1.97 1.75 1.87 1.87 2.11 1.99 2.29 2.09 2.07 1.99
MgO 0.12 0.13 0.13 0.12 0.11 0.15 0.14 0.14 0.17 0.17
CaO 6.32 5.27 6.92 6.40 5.72 5.09 6.15 5.43 6.31 5.69
SrO 0.96 0.93 1.18 1.21 0.89 0.81 0.99 0.74 0.89 0.86
BaO b.d.l. 0.12 0.13 0.07 0.02 b.d.l. 0.03 0.03 b.d.l. 0.08

Na2O 2.66 14.32 3.31 15.23 3.31 13.91 2.20 14.42 2.75 14.92
K2O 0.26 0.57 0.24 0.62 0.32 0.50 0.30 0.55 0.32 0.53
SO3 0.39 0.37 0.24 0.32 0.38 0.42 0.42 0.34 0.34 0.35
Cl 0.70 0.62 0.72 0.63 0.66 0.70 0.73 0.75 0.69 0.60

–O=Cl 0.16 0.14 0.16 0.14 0.15 0.16 0.16 0.17 0.16 0.14
Sum 88.17 95.26 87.83 96.33 87.83 93.70 91.62 95.05 85.82 95.30

Formula based on (Si + Al + Zr + Ti + Hf + Nb + Ta + W) = 29 apfu
Nb 0.15 0.16 0.16 0.14 0.18 0.16 0.18 0.15 0.14 0.16
Si 24.41 24.61 24.99 25.07 24.48 24.63 24.69 24.71 24.63 24.80
Ti 0.34 0.33 0.24 0.24 0.34 0.35 0.30 0.30 0.31 0.29
Zr 3.85 3.72 3.41 3.33 3.74 3.67 3.59 3.62 3.70 3.53
Hf 0.06 0.05 0.05 0.06 0.08 0.06 0.07 0.05 0.05 0.07
Al 0.19 0.13 0.14 0.16 0.18 0.14 0.18 0.17 0.17 0.16
La 0.05 0.07 0.05 0.05 0.05 0.05 0.06 0.05 0.04 0.06
Ce 0.12 0.10 0.11 0.09 0.10 0.11 0.13 0.10 0.11 0.11
Nd 0.05 0.05 0.05 0.06 0.06 0.04 0.05 0.06 0.05 0.06
Fe 1.56 1.52 1.81 1.82 1.44 1.47 1.48 1.51 1.50 1.54
Mn 0.80 0.74 0.77 0.81 0.86 0.85 0.88 0.89 0.86 0.85
Mg 0.09 0.10 0.09 0.09 0.08 0.11 0.09 0.10 0.12 0.13
Ca 3.25 2.83 3.62 3.49 2.94 2.76 2.99 2.93 3.32 3.09
Sr 0.27 0.27 0.33 0.36 0.25 0.24 0.26 0.22 0.25 0.25
Ba – 0.02 0.02 0.01 – – 0.01 0.01 – 0.02
Na 2.47 13.92 3.13 15.02 3.08 13.65 1.94 14.06 2.62 14.66
K 0.16 0.36 0.15 0.40 0.20 0.32 0.17 0.35 0.20 0.34
S 0.14 0.14 0.09 0.12 0.14 0.16 0.14 0.13 0.13 0.13
Cl 0.57 0.53 0.60 0.54 0.54 0.60 0.56 0.64 0.57 0.52

b.d.l.—below detection limit; apfu—atoms per formula unit. Note the decrease in the sum of analysis as the
sodium content decreases (highlighted in bold).

After the experiments with a 0.1 mol/L solution of HCl were carried out, a zonal rim
around the EGM grains appeared (Figure 6c–h). The outer zone (up to 150 µm across) of
this rim consists of undiagnosed Si-Zr phases, while the intermediate zone (up to 300 µm
across) is represented by EGM with an extremely low sodium content in comparison
with the grain center. The widths of both outer and intermediate zones increase with the
duration of the experiment. Table 5 shows representative chemical compositions of EGM
grains after experiments with 0.1 mol/L HCl solution (Figure 6, points 12–17). Note that
the sum of the analysis of EGM with low sodium content does not exceed 90%, which is
much lower than the sum of the analysis of unaltered EGM. Powder X-ray diffraction data
for Na-depleted EGM after the experiment with a 0.1 mol/L solution of HCl (Aks. 12) are
shown in Supplementary Materials.

The Si-Zr phase obtained in experiments is X-ray amorphous. According to a rough
estimate of the composition, the Si:Zr ratio is about 6:1. Insignificant amounts of Na, K, Mn,
Ca, Fe, and Ti were also found.
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During the experiments, a change in the compositions of solutions was observed.
Tables 6–8 show the chemical composition and pH of both initial solutions and solutions
after experiments.

Table 6. Chemical composition (mg/L) and pH of both deionized H2O and solutions after experiments.

Component,
mg/L

Initial
Deionized

H2O
Aks. 5 Aks. 6 Aks. 7 Aks. 8

Ca <0.004 0.146 0.129 0.106 2.176
Mn 0.00048 0.0058 0.011 0.011 0.014
Fe <0.001 0.141 0.239 0.307 0.251
La 0.00019 0.00029 0.00046 0.00064 0.00020
Ce <0.004 <0.004 <0.004 <0.004 <0.004
Ti 0.0001 0.0030 0.0081 0.0042 0.0036
Zr <0.0006 0.0365 0.0043 0.0009 <0.0006
Na 1.519 95.00 108.33 132.26 122.89

pH 5.6 9.3 9.2 10.5 10.5

Table 7. Chemical composition (mg/L) and pH of both initial solution and solutions after experiments
with 0.5 mol/L NaCl solution.

Component,
mg/L

Initial 0.5
mol/L NaCl

Solution
Aks. 1 Aks. 2 Aks. 3 Aks. 4

Ca 0.131 8.120 8.383 7.380 7.618
Mn 0.0048 0.0053 0.0061 0.0091 0.0050
Fe <0.001 <0.001 <0.001 0.042 <0.001
La <0.00015 0.00015 0.00015 0.00015 0.00015
Ce <0.004 <0.004 <0.004 <0.004 <0.004
Ti 0.0004 0.0038 0.0049 0.0053 0.0055
Zr <0.0006 0.0240 <0.0006 <0.0006 <0.0006
Na 9441.77 9718.88 9518.07 9444.44 12239.38

pH 3.4 6.6 7.5 7.3 7.2

Table 8. Chemical composition (mg/L) and pH of both initial solution and solutions after experiments
with 0.1 mol/L HCl solution.

Component,
mg/L

Initial
0.1 mol/L

HCl
Solution

Aks. 9 Aks. 10 Aks. 11 Aks. 12

Ca 0.153 46.244 14.243 84.232 40.362
Mn 0.0015 0.0075 0.010 0.016 0.017
Fe 0.0075 0.059 0.042 0.040 0.125
La <0.00015 <0.00015 0.00037 <0.00015 0.00175
Ce <0.004 <0.004 0.00746 <0.004 0.00940
Ti 0.0001 0.0004 0.00173 0.0004 0.00146
Zr <0.0006 <0.0006 0.00267 <0.0006 <0.0006
Na 0.267 336.6 406.81 475.00 372.52

pH 1.8 6.4 7.6 7.2 7.7

When an experiment with deionized water was conducted for 10 days, the calcium
content in the solution increased more than 30 times, and in an experiment that lasted
40 days, the calcium content in the solution increased more than 500 times. The sodium
concentration in the solution in the experiment lasting 10 days increased almost 60 times,
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and in the experiment lasting 40 days, the sodium content in the solution was 80 times
higher than that in the initial solution. The concentrations of other elements (Fe, Mn, Ti,
La) in the solutions also increased. After the experiments, the concentration of Fe in the
solutions became 100 to 300 times higher than that in the initial solutions. The content of
Mn increased almost 30 times; the concentrations of Ti in solutions after the experiments
are from 30 to 80 times higher than those in the initial solutions. As a result of experiments,
the pH increased up to 10.5, while the pH of the initial solution was 5.6.

When experiments with 0.5 mol/L NaCl solutions were conducted, the calcium content
increased more than 60 times, regardless of the duration of the experiment. The Na
concentration increased to the maximum (1.3 times) in the experiment lasting 40 days.
Regardless of the duration of the experiment, the content of Ti in the solutions increased
in about 13 times, while the content of zirconium in the solution increased only in an
experiment lasting 10 days. An increase in the iron content was also recorded in only one
experiment (30 days). The concentrations of La and Ce in solutions during experiments
almost did not change. As a result of experiments, the pH increased up to 7.5, while the pH
of the initial solution was 3.4.

The composition of solutions changed most significantly during experiments with
0.1 mol/L HCl solution. The Ca content in the solutions increased up to 550 times (maximal
in the experiment lasting 30 days). The concentration of Mn in solutions increased from
5 to 11 times. The concentration of iron in the experiment lasting 40 days increased 17 times,
and in other experiments, the concentrations of this element increased from 5 to 8 times.
The Na concentrations in the solutions after the experiments became 1200–1800 times
higher compared to the concentration of this element in the initial solutions. As a result of
the experiments, the pH increased up to 7.7, while the pH of the initial solution was 1.8.
After carrying out experiments with a 0.1 mol/L HCl solution, the inner walls of autoclaves
with a PTFE lining turned out to be covered with a very thin film of iron hydroxide.

5. Discussion

In the rocks of the Lovozero massif, pseudomorphic replacement of eudialyte-group
minerals by various secondary minerals is often observed. The minerals and mineral associa-
tions replacing EGMs are very diverse and include lovozerite- and wöhlerite-group minerals,
terskite, catapleiite, elpidite, gaidonnayite, vlasovite, zircon, and loparite-(Ce) [35–38]. For
example, A.P. Khomyakov [38,59] and I.V. Pekov [35] described in detail the development
of zirsinalite after EGMs, followed by the replacement of zirsinalite with lovozerite.

However, in addition to pseudomorphized EGMs, the rocks of the Lovozero massif
contain partially dissolved grains of this mineral. In our opinion, the signs of partial dissolution
of EGMs are as follows: Firstly, the grains are surrounded by a porous rim of undiagnosed
Si-Zr phases. In association with this phase, there are clusters of small grains of rhabdophane-
(Ce), and goethite. Secondly, the EGM grains themselves contain many microcracks. Thirdly,
such microfractured grains contain extremely little sodium, and the sum of the analysis does
not exceed 90 wt%, which indicates the presence of a significant amount of water.

The decrease in the sodium content in the composition of EGMs is probably the result
of their hydration. This process is widespread in agpaitic rocks and pegmatites. Thus,
according to Pekov [35], Na deficiency in EGMs is directly related to the intensity of alteration
of rocks by post-magmatic hydrothermal solutions. Different compensation schemes of
the alkaline cation (A+) deficiency such as A+ = (H3O)+, A+ = H+, A+ = (H2O)0 + H+,
and A+ + O2– = � + (OH)− have been discussed in the literature concerning the charge
balance of hydrated EGM formulas [5,60–64]. As a result of hydration, new minerals of the
eudialyte group can be formed. In particular, aqualite [61] differs from typical eudialyte
by the extremely low contents of Na and Fe, with more than 50% Na being replaced
with the (H3O)+ group [65]. The presence of oxonium ions in aqualite is confirmed by IR
spectroscopic and X-ray single-crystal diffraction analysis. Khomyakov and colleagues [61]
stated that hydrated EGMs were formed at a relatively low temperature through the
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ion-exchange transformation of “protoeudialytes”; the successor minerals inherited the
principal structural and compositional features of the precursor minerals [66].

Indeed, in experiments with a 0.1 mol/L HCl solution, we observed the process of
sodium loss from “protoeudialyte” with the formation of hydrated eudialyte. For example, in
Figure 6c,d, the grain center is “protoeudialyte” (see Table 5, point 13), and the surrounding
rim is hydrated eudialyte (see Table 5, point 12). In this case, indeed, the successor minerals
inherited the principal structural and compositional features of the precursor minerals.

We assume that the loss of sodium may be followed by the loss of other cations, mainly
calcium, iron, and manganese. In fact, as a result, only the zirconosilicate “framework” of
EGM remains. In experiments and natural samples, we can observe this “framework” in the
form of an undiagnosed Si-Zr phase. Carried-out cations can be deposited in the immediate
vicinity of the dissolving EGM grain. For example, in natural samples, REEs are included in
rhabdophane-(Ce), whose small grains are located either among the Si-Zr phase (Figure 4e)
or in close proximity to it (Figure 4c,d). It is also likely that, under natural conditions,
cations removed from the structure of EGM can be transported by hydrothermal solutions.

Thus, the partial dissolution of EGM begins with the loss of sodium and hydration,
followed by the loss of other cations such as Ca, Fe, and Mn. This process is most intensive in an
acidic environment. Let us compare the change in the composition of solutions in experiments
with deionized water and 0.5 mol/L NaCl solution. The morphology of EGM grains did not
change in these experiments, but changes in the composition of the solution indicate that a slight
dissolution of EGM did occur. It is possible that only the thinnest surface layer of EGM grains
was dissolved, and therefore we do not observe changes in their morphology.

In experiments with a solution of sodium chloride (pH = 3.4), intense loss of sodium
from the crystal structure of EGM does not occur due to the high concentration of sodium
in the initial solution. Therefore, the difference between the sodium content in the initial
solutions and the content of this element in the solutions after the experiments is very small
(Figure 7a). At the same time, the differences in the concentrations of other cations (Ca, Fe,
Mn) between the initial solutions and solutions after experiments are minimal (Figure 7b–d).
In experiments with deionized water, the difference between the sodium content in the
initial solutions and solutions after the experiments is much higher. At the same time, the
difference between the Ca, Fe, and Mn concentrations in the initial solutions and those in
the solutions after the experiments is significant. Thus, it can be assumed that the loss of
sodium from EGM is the first step and a prerequisite for the (partial) dissolution of EGM.
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(a) Change in sodium content from the initial solutions; (b) change in iron content from the initial
solutions; (c) change in calcium content from the initial solutions; (d) change in manganese content
from the initial solutions.
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In experiments with a 0.1 mol/L HCl solution, it is likely that part of the iron was
oxidized and precipitated on the walls of the autoclave in the form of iron hydroxide.
Therefore, in experiments with HCl, a strong increase in the concentration of iron in the
solution is not observed, compared with deionized water (Figure 7b). With the partial
dissolution of EGMs in nature, iron oxidation also occurs, since iron hydroxides are present
in association with the Si-Zr phases and rhabdophane-(Ce).

6. Conclusions

Observations in natural samples and experimental studies have shown that the partial
dissolution of EGMs occurs in two stages: (1) loss of sodium and hydration; (2) loss of other
cations not included in the zirconosilicate framework. A generalized scheme of partial
dissolution of EGM is shown in Figure 8. The process proceeds most intensively in acidic
hydrothermal solutions and may be responsible for the appearance of new mineral species
in the eudialyte group.
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