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Abstract: Self-Potential data have been widely used in numerous applications. The interpretation of
SP data from subsurface bodies is quite challenging. The advantages of geophysical inversion for
interpreting non-linear geophysical problems have gained a great deal of attention over conventional
interpretation. The efficiency of the present inversion approach in interpreting SP anomalies from a
thin dipping layer/bed is presented in the study. The inversion approach was applied to interpret
synthetic model parameters such as the self-potential of the layer (k), depth to the body top (h),
location of the body (x0), dip angle (θ), and the upper and lower end of the sheet (δ1 and δ2). The
interpretation of the results showed that the parameters ∆h, δ1, and δ2 exhibited a wide range of
results. The estimated parameter values lay within the limit of uncertainty. The inversion approach
was also applied to two field datasets obtained from polymetallic deposits in Russia and Azerbaijan
for mineral exploration purposes and one from a buried ancient Roman limestone construction in
Halutza, Israel, for the purposes of archaeological study. The field investigation results demonstrate
a good agreement with previous works of literature. The efficiency of the present approach for
interpreting SP anomalies from thin layer/bed-like structures is shown in this study.

Keywords: self-potential; 2D thin/thick dipping bed; VFSA; exploration

1. Introduction

The Self-Potential (SP) method is one of the oldest geoelectrical methods for measuring
the natural electric potentials formed on the surface of the earth as a result of different
mechanisms. The SP method was initially used for metalliferous sulfide deposits [1], and
then in different branches of exploration and applied geophysics, such as the fields of
mining [2,3] and archaeological investigation [4–6]. SP methods have also been applied in
numerous other applications, such as hydrology, engineering, environmental monitoring,
volcanology, and the identification of shear zones [7–13].

Many qualitative and quantitative methods have been developed for the interpretation
of SP anomalies, from simple geometrical shapes to 2D and 3D geological structures [12,14].
SP data interpretation is based on field SP anomalies or the computed models from ide-
alized structures or 2D or 3D geological structures with irregular shapes and sizes [13].
Many interpretation techniques have been established to interpret SP data by identifying
simple geometric source bodies. Such bodies may be embedded in a homogeneous and
isotropic half-space or in layered or faulted geometries [15]. Subsurface structures charac-
terized by spheres or vertical and horizontal cylinders have been interpreted using various
techniques [16–30]. Interpretation of SP anomalies from 2D thin and thick sheets has also
been performed using different interpretation techniques [13,19,31–48]. In fact, 2D inclined
plate-type structures from SP anomalies have also been interpreted using a number of
techniques [14,49–51]. Detailed techniques for the interpretation of SP anomalies have been
reported [7,13,51]. However, the interpretation of SP anomalies from a 2D thin dipping
layer/bed has not been well studied in most of the literature, as mentioned above.
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Self-Potential interpretation can be performed either based on an analysis of the
signal or using various inversion approaches. Various interpretation techniques, such
as characteristic points, logarithmic curve matching, and nomograms, have been devel-
oped previously [16,17,19,31,52,53]. These qualitative interpretation methods were mostly
trial-and-error methods, which have a higher error with respect to interpretation. The
interpretation of SP anomalies has subsequently been performed using practical techniques
and inversion methods [14,24,32,36,38,54,55]. However, while these techniques also give
efficient results, only a few parameters can be estimated, leading to incorrect interpretations
of all of the model parameters. Since SP anomalies are generally non-linear, many new
techniques have been established based on the non-linear inversion of SP anomalies. It is
well known that the inversions of SP anomalies are also ill-posed, and non-uniqueness is
inherent in the interpretation; therefore, superior approaches and competent algorithms are
required to invert all the model parameters [13]. In recent decades, non-derivative nature-
inspired global optimization and metaheuristics have become prevalent, rather than using
derivative-based local-search optimization to resolve geophysical inverse problems [56,57].
SP data have been interpreted using various global optimization algorithms, including
genetic algorithms [23], neural network [28], particle swarm optimization [39,58], differen-
tial evolution [59,60], ant colony optimization [61], black-hole algorithm [62], genetic-price
algorithm [27], and micro differential evolution algorithm [63]. These optimization algo-
rithms have been well applied in the interpretation of idealized bodies such as spheres,
horizontal and vertical cylinders, and thin and thick sheets for SP data. However, in none
of the above literature has the interpretation of 2D dipping layers been studied using a
non-linear inversion approach to interpret all model parameters.

Hence, in this work, we employ the forward modeling approach of [41] for the inter-
pretation of SP anomalies produced from a 2D thin dipping layer. The 2D thin dipping
layers and bed-type structures are very important in locating the different geological layers
associated with mineralization or any specific structures associated with it. Moreover, the
work in [41] is based on a combination of automatic linear and non-linear approaches to
interpreting all of the model parameters, but the uncertainty in the interpretation of such
models has not been studied at all. In every geophysical optimization, the estimation of the
uncertainty of the model parameters is very important for achieving precise interpretation
results. This also determines the relationship among the model parameters and how each
parameter influences the others in the final interpretation. Hence, the current work focuses
on the interpretation of all model parameters associated with thin dipping layers and the
uncertainty associated with the interpretation of all model parameters, which has not been
studied for such types of structures. Here, we used the non-linear global optimization
of a very fast simulated annealing (VFSA) technique for the elucidation of SP anomalies.
The VFSA approach does not involve a priori evidence for the understanding of SP data.
The advantage of this method is that it is able to effectively interpret both small and large
profile data, for solitary as well as multiple structures, and it is able to accurately interpret
the parameters of near-surface as well as deeper structures. This approach is illustrated
and evaluated on synthetic and noisy models, as well as on three field anomalies for poly-
metallic deposits from Russia and Azerbaijan, in addition to archaeological investigations
from Israel.

2. Methodology
2.1. Self-Potential Data

A high-impedance voltmeter with 0.01 mV precision is often used to collect SP data
from the field utilizing a pair of an array of non-polarizing electrodes [64,65]. Depending on
the objective of the study, SP data can be acquired from the field using potential difference
or potential gradient methods with varying potential electrode separation [44]. The SP
data were interpreted based on the assumption of various geological targets reflected by
structures of the simplest or most complex shapes. The details of the geological-geophysical
relationship and the target estimate for subsurface structures are presented in Table 1 [66].
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The SP field data were taken from published data [66] for mineral exploration and archaeo-
logical investigation. The target bodies may likely be 2D thin-sheet, 2D thick-sheet, or 2D
thin/thick bed-like dipping layers to interpret the field data. Interpretation of thin sheet
and thick sheet-like bodies are well analyzed in numerous literature [7]. However, the
interpretation and uncertainty estimation of the 2D dipping bed are less studied. Hence,
this work interprets the SP data in the context of 2D thin to thick dipping layers/beds.

Table 1. Geological-Geophysical relationship and the target estimate for subsurface structures
(modified after [66]).

Geological Targets Geophysical Targets

Target Approximation of
Subsurface Structures

Objects Outcropping onto
the Earth’s Surface and

Overburden

Buried or Cropping out
When Aerial/Ground

Geophysical Surveying Is
Carried Out

Tectonic-magmatic zones,
sill-shaped intrusions, thick

dikes, large fault zones, thick
sheet-like ore deposits,

salt bodies

Tectonic-magmatic zones,
thick sheet intrusion, and

zones of
hydrothermal alteration

2D Dyke/fault/thick
bed/sheet

Thin dykes, zones of
disjunctive dislocations and

hydrothermal alterations,
sheet-like ore deposits, veins

Sheet intrusion, dykes,
disjunctive dislocations,
sheet-like ore deposits

2D thin dyke/thin bed/sheet

Lens and string-like deposits
Folded structure, elongated

morphostructure, large
mineral lenses

Horizontal circular cylinder

Pipes, vents of eruption,
ore shoots

Intrusion (isometric in the
plane), pipes, vents of a

volcano, large ore shoots,

Vertical and (inclined) circular
cylinder or pivot

Karst cavities, ore bodies

Short anticline, short-syncline,
isometric morphostructure,

karst terranes, hysterogenetic
ore bodies,

Sphere

Traps, thin basaltic layers,
salt layers Intrusions, evaporites Thick/thin horizontal plate

2.2. Forward Modeling

The forward modeling produced from SP anomaly by a 2D thin sheet and 2D thick
sheet is well studied and presented in various literature [7,67]. The SP anomaly produced
due to a 2D thin/thick sheet-like dipping layer/dipping bed [41] at any point on the surface
of the earth (Figure 1) can be written as

V(x) =
k
π


(

arctan x0−x+δ1 cos θ
h+δ1 sin α − arctan x0−x

h

)
+(

arctan x0−x+δ2 cos θ
(h+∆h)δ2 sin θ

− arctan x0−x
(h+∆h)

)
 (1)

The parameters mentioned in the Equation (1) are defined as follows:
k is the self-potential of the layer (negative in case of negative anomalies); h is the

depth to the body top; x0 is the location of the body; x corresponds to the point M along the
x-axis for which the potential is calculated; θ is the dip angle; δ1, and δ2, are the upper and
lower end of the sheet [41].

When the bottom of the polarized layer is taken into account, the depth in Equation (1)
is determined to be h + ∆h, where ∆h = m/cos θ, and m represents the actual layer thickness.
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Figure 1. The source geometry for the 2D dipping layer/bed.

2.3. Inversion of Self-Potential Data

Various interpretation techniques have been used to interpret self-potential data. Prior
work included curve matching, nomograms, and qualitative and quantitative interpreta-
tions. However, these methods have some limitations, and to overcome those problems,
global optimization techniques such as simulated annealing (SA), genetic algorithm (GA),
neural network (NN), particle swarm optimization (PSO), differential evolution (DE), and
genetic price algorithm (GPO) have been effectively employed to interpret SP data ([13] and
reference therein). The present interpretation of Self-Potential data employs a simulated
annealing variation known as very fast simulated annealing (VFSA) to interpret the SP
data generated by a 2D thin/thick sheet-like dipping layer/dipping bed. VFSA is a global
optimization technique that derives from the fundaments of chemical thermodynamics and
is an imitator of the analogy of the heat bath algorithm [68]. VFSA is a directed random
search algorithm that searches out the globally optimum result within several local optima.
The technique has proven beneficial in multiple geophysical data applications [44,68–70].
The methodology is thoroughly explained in numerous literature and is not discussed here
for brevity. An abridged flowchart of VFSA is shown in Figure 2 [51]. The error estimation
is very crucial to effectively interpret the SP data and hence following [42], it is taken as:

ϕ =
1
N ∑N

i=1

(
M0

i − Mc
i∣∣M0

i

∣∣+(M0
max − M0

min
)
/2

)2

(2)

where N = number of data points, M0
i and Mc

i = ith observed and model responses for SP
data, M0

max and M0
min = maximum and minimum value of the SP data to refute the zero

crossing value in the anomaly data.
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Figure 2. Flowchart of the VFSA algorithm to interpret SP data [51].

Moreover, to find out the globally best-fit models, the technique developed by [71,72]
is followed in this study. Next, uncertainty estimation and the probability density function
(PDF) were also elicited in the present study [73–75]. The inversion algorithm is developed
using the MS FORTRAN Developer studio (Microsoft Corporation, Redmond, WA, USA).
Each iteration takes four seconds to compute, and 10 iterations take twenty-four seconds.
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3. Results and Discussion

Theoretical modeling and inversion of a 2D thin/thick sheet-like dipping layer/dipping
bed are required prior to interpreting the SP field data. Hence, different synthetic models
were generated using the forward Equation (1), and the anomaly was derived. Moreover,
the inversion method was employed to interpret the synthetic data.

VFSA has been employed on synthetic SP data from 2D dipping layer/bed-like models,
taking noise-free and noisy gaussian data (mean = 1 and standard deviation = 0.2). A
few synthetic models have been produced to elucidate the best-fit layer/bed-like models
by altering the model parameters. VFSA optimization was achieved by defining the
search space, and an inversion process was executed by selecting the dissimilar input
parameters (see Figure 1). The convergence pattern for a single run was considered for
all the parameters (Figure 3). Once the convergence was found to be appropriate, ten
runs were performed. Subsequently, the search space is also reduced to get the optimal
mean models. Finally, the interpreted model parameters whose misfit goes below 1 × 10−4

(synthetic data) and 1 × 10−2 (field data) are considered for a statistical calculation to find
the optimum resolutions.
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3.1. D Thin/Thick Dipping Layer/Bed
3.1.1. Synthetic Models

Two synthetic models were taken to interpret SP anomalies caused by a 2D thin
dipping layer/bed. The first synthetic model (Model 1) was produced using different
model parameters (Table 2).
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Table 2. Inverted model parameters (Model 1) of synthetic data from 2D dipping layer/bed.

Parameters True
Value Search Limit

Inversion Results

Noise-Free Noisy

k (mV) 500 0–600 502.4 ± 9.2 466.2 ± 12.1
x0 (m) 500 0–1000 500.0 ± 0.1 490.1 ± 0.2
h (m) 10 0–20 10.1 ± 0.2 8.8 ± 0.3

∆h (m) 1 0–2 0.8 ± 0.6 1.9 ± 0.3
δ1 (m) 10 0–15 9.7 ± 0.6 11.3 ± 0.8
δ2 (m) 10 0–20 10.2 ± 0.2 10.7 ± 0.5
θ (◦) 45 0–60 44.5 ± 0.9 45.9 ± 1.4
error 9.6 × 10−8 2.2 × 10−4

The current inversion approach was then applied to the synthetic models in order
to optimize the error. Following that, the histogram for this model is prepared from the
elucidated parameters to determine whether the inversion approach can well delineate all
the model parameters (Figure 4a). The histogram illustrates that the inversion approach
can effectively interpret all the model parameters. However, there is a broad solution for
∆h, and other parameters such as k, x0, h, δ1, δ2, and θ show well-resolved results. The
interpreted results for this synthetic model are shown in Table 2. To test the efficacy of the
noisy SP data, 10% Gaussian noise was added to the data, and the inversion technique
was executed. The histogram analysis for noisy data also shows similar for noise-free data
(Figure 4b). The interpreted parameters are also shown in Table 2; Figure 5a,b depict the
synthetic data and calculated noise-free and noise-corrupted data.
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To see the variation of the different model parameters, we have taken another model
(Model 2) by changing the parameter values (Table 3). The inversion technique was also
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applied to the synthetic data and data with 20% Gaussian noise. The histogram study
from noise-free and noisy data found that ∆h shows a wide solution (Figure 6a,b). The
concluding interpreted parameters are given in Table 3, and the synthetic and calculated
data are shown in Figure 7a,b.

Table 3. Inverted model parameters (Model 2) of synthetic data from 2D dipping layer/bed.

Parameters True Value Search Limit
Inversion Results

Noise-Free Noisy

k (mV) 1000 0–2000 998.8 ± 7.1 930.0 ± 8.7
x0 (m) 500 0–1000 499.9 ± 0.1 491.9 ± 0.3
h (m) 20 0–30 20.0 ± 0.2 18.3 ± 0.3

∆h (m) 5 0–6 4.9 ± 0.3 4.2 ± 0.3
δ1 (m) 20 0–30 20.1 ± 0.8 19.8 ± 0.6
δ2 (m) 20 0–30 20.1 ± 0.3 29.4 ± 0.9
θ (◦) 60 0–90 60.2 ± 0.9 49.2 ± 1.3
error 1.0 × 10−8 1.7 × 10−3
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3.1.2. Uncertainty Analysis of Synthetic Models

Uncertainty investigation is always necessary for any geophysical modeling [76]. As a
result, a 2D cross-plot was generated for this study to determine the effect of each parameter
on the final improved solution, and cross-plots between all the parameters are depicted
in Figure 8a. Here, it has been perceived that apart from the parameter ∆h; δ1, δ2, also
indicates a broad solution, and other parameters were well resolved. Still, the parameters
for the noise-free data are closer to the actual value (Blue), and the mean model parameters
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are inside the uncertainty range, which lies in the peak PDF (Red). Figure 8b shows an
identical situation from the cross-plots for noise-corrupted data.
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Since the cross-plots from the study show that the three parameters ∆h, δ1, and δ2,
depict uncertainty in the interpretation, hence, a 3D cross-plot was also prepared for this
investigation (Figure 9). It was found that these three parameters (∆h, δ1, δ2) show a diverse
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solution (yellow) with similar models with smaller errors. The concluding mean model
parameter was observed within the well-defined uncertainty margins in the high PDF (Red)
region. Figure 9a,b demonstrate the 3D scatter plot for noise-free and noise-corrupted data.
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3.2. Self-Potential Anomaly from Real Field Data

To see the robustness of the inversion technique, we have taken three field examples
from the published literature [77]. In order to evaluate the accuracy of our inversion results
using synthetic data, we have used SP field data for mineral exploration and archaeological
investigations. The field data was exactly digitized from the published literature based on
the distance (x-axis) and SP anomaly values (y-axis).

3.2.1. Mineral Exploration

The first field example [77] was taken from the polymetallic deposit, Rudnyi Altai,
Russia (Figure 10) which is one of the world’s significant volcanogenic massive sulfide
deposits [78]. The region is known for its polymetallic sulphide deposits, and the primary
components are copper and zinc [79]. Earlier, this field example was analyzed using
characteristic points and the tangent method [78], and the interpretation results indicate
that the subsurface structure is a thin bed. However, the field example was also taken in this
study to decipher the anomaly and the model parameters. It has been seen that the present
inversion approach can be able to delineate the SP data. The interpreted parameters, k, x0,
h, ∆h, δ1, δ2, and θ were found to be 1089.7 mV, 214.8 m, 24.4 m, 61.4 m, 4.2 m, 3.2 m, and
160.6◦, respectively. The error estimation for this field data is within the uncertainty limits.
Table 4 shows the inversion results, and Figure 10 shows the field and calculated data.
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Table 4. Interpretation of the polymetallic deposit, Rudnyi Altai, Russia.

Parameters Search Limit Present Study

k (mV) 0–2000 1089.7 ± 144.5
x0 (m) 180–240 214.8 ± 0.9
h (m) 0–30 24.4 ± 2.4

∆h (m) 0–100 61.4 ± 8.7
δ1 (m) 0–10 4.2 ± 0.9
δ2 (m) 0–10 3.2 ± 0.7
θ (◦) 0–180 160.6 ± 4.3
error 1.5 × 10−3

The second field example [77] was taken from the highly complex terrain of Filizchai
polymetallic deposit, Southern Greater Caucasus, Azerbaijan (Figure 11). In fact, ref. [77]
also interpreted the field data using the improved characteristic points and the tangent
method and inferred it to be a thin bed-type structure. The current technique was also
used to analyze the field data, which revealed a thin bed-type structure. The elucidated
parameters such as k, x0, h, ∆h, δ1, δ2, and θ were found to be 13,261.2 mV, 297.7 m, 40.7 m,
273.4 m, 3.9 m, 11.8 m, and 175◦, respectively. The estimated error is found to be low and
within uncertainty limits. Table 5 displays the inversion findings, while Figure 11 illustrates
the field and computed data.

Table 5. Interpretation of Filizchai polymetallic deposit, Southern Greater Caucasus, Azerbaijan.

Parameters Search Limit Present Study

k (mV) 0–20,000 13,261.2 ± 1550.9
x0 (m) 200–400 297.7 ± 1.7
h (m) 0–100 40.7 ± 3.8

∆h (m) 0–1000 274.3 ± 66.9
δ1 (m) 0–10 3.9 ± 0.8
δ2 (m) 0–20 11.8 ± 2.4
θ (◦) 0–180 175.0 ± 1.3
error 9.3 × 10−3
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Figure 11. Fits for field data of Filizchai polymetallic deposit, Southern Greater Caucasus, Azerbaijan.

3.2.2. Archaeological Investigation

The field data was taken from the buried ancient Roman limestone constructions from
Halutza, Southern Israel [77], to comprehend the use of SP anomalies from archaeological
research (Figure 12). It is renowned for its archaeological strata from different periods [80].
The field data was interpreted by [77] considering thin beds using the quantitative interpre-
tation. The model parameters such as k, x0, h, ∆h, δ1, δ2, and θ were found to be 277.6 mV,
4.3 m, 0.7 m, 5.3 m, 1.0 m, 0.5 m, and 110◦, respectively. Moreover, ref. [77] estimates the
depth and angle to be 0.85 m and 70◦ (calculated from the opposite side), which closely
matches our findings. The error was found to be significantly less and within the uncer-
tainty limits. Table 6 shows the interpreted results from the inversion, and Figure 12 shows
the field and calculated data.
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Table 6. Interpretation of Archaeological investigation, Halutza, Southern Israel.

Parameters Search Limit Present Study Eppelbaum [78]

k (mV) 0–500 277.6 ± 31.2 -
x0 (m) 0–6 4.3 ± 0.0 -
h (m) 0–10 0.7 ± 0.0 0.85

∆h (m) 0–10 5.3 ± 1.6 -
δ1 (m) 0–5 1.0 ± 0.2 -
δ2 (m) 0–5 0.5 ± 0.1 -
θ (◦) 0–180 109.9 ± 3.3 110
error 2.3 × 10−3 -

4. Conclusions

The interpretation of Self-Potential anomaly for locating subsurface structures/bodies
associated with mineralized zones and its application for archaeological prospection is
of enormous importance. SP data have been interpreted considering various subsurface
idealized bodies which resemble the subsurface structures. Identifying a dipping layer
or a bed is of enormous importance for tracing such bodies. Based on these structures, a
very fast simulated annealing (VFSA) global optimization algorithm is used to perform
inverse modeling of the Self-Potential (SP) anomalies formed by a two-dimensional dipping
layer-like body. Following the objective, model parameters such as amplitude coefficient,
depth from the top, origin, vertical sheet thickness, dip angle, and the upper and lower end
of the sheet layer of the bodies were interpreted. The inversion technique was then applied
to the noise-free synthetic, noisy data in the three field examples of known SP anomalies
from Polymetallic deposits of Russia and Azerbaijan, and buried Ancient Roman limestone
construction from Halutza, Israel. The results show that it can proficiently interpret all the
model parameters with the lowest uncertainty. However, model parameters such as vertical
sheet thickness and the upper and lower end of the sheet layer show a large solution. Also,
the parameters were found to be within the smallest misfits, and are close to the accurate
models with the least uncertainty. Uncertainty analysis from 2D and 3D cross-plot analysis
also unveils the same. The present inversion methodology demonstrates that it can provide
a reasonable result that is consistent with real field data and previous findings from other
interpretation techniques. Hence, it is clear that the inversion algorithm is effective for
elucidation of the SP anomalies resulting from the 2D dipping layer with or without a
priori geological information.
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