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Abstract: Acoustic emission (AE) monitoring is an effective tool to quantify the dynamic damage
that may cause heavy casualties and huge property losses in rock engineering. Instead of traditional
failure evaluation methods, in this paper, the coal failure mechanism is evaluated in a complicated
geological environment under uniaxial compression tests by employing machine learning (ML) and
automatic speech recognition (ASR). Taking advantage of the ASR technology, the Mel-frequency
cepstrum coefficients (MFCC) were extracted as sample features, while ML was used to paradigm the
artificial intelligent evaluation of the failure probability of coal (AIEFPC). Additionally, the five-fold
cross-validation method was used to assess the AIEFPC predictive effect incorporating cumulative
hits number, cumulative ring count, and amplitude as sample features. The influence of category
weight on the prediction effect of AIEFPC on a different category of sample sets has been discussed
and analyzed. The results show that AIEFPC has the potential to use the MFCC of the 40 ms AE
segment at any time to predict the dangerous state of the coal sample with a prediction accuracy of
>85%. The probability value of the hazardous samples is computed through AIEFPC that further
helped in evaluating the reliability of the prediction results. It is inferred from the obtained results
that a larger category weight value of the hazardous samples can improve the prediction accuracy of
AIEFPC than the safe sample. This research provides a new way of effectively predicting the coal
failure probability before the damage and failure that can be applied to worldwide case-studies.

Keywords: probability of coal failure; acoustic emission; automatic speech recognition; machine
learning; category weight of the sample

1. Introduction

Coal and rock damage problems have been major concerns in various engineering
fields, such as the extraction and storage of oil and gas resources, the excavation of large
underground caverns, and the prediction of coal and rock dynamic disasters. Effectively
predicting the coal and rock instability before the failure is highly desirable in engineering
fields [1]. Acoustic emission (AE) monitoring technology is an effective method for the
monitoring and early warning of dynamic coal and rock disasters [2]. Before the occurrence
of such disasters, the total number of events, large energy events, signal spectrum, etc., will
show a significant change in their patterns [3,4].

AE is an elastic wave generated by sudden release during the crack propagation of
rock, which provides real-time characteristic information of the internal rock deforma-
tion [5,6]. Based on AE signal characteristics, the change of internal rock cracks can be
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predicted [7–9]. Zhang et al. [10] studied the thermal damage assessment of rocks and estab-
lished a thermal damage evolution model considering both heating and cooling processes
based on AE monitoring technology. Zhao et al. [11] studied the relationship between the
load stress and the peak stress corresponding to the minimum average frequency centroid
of the AE during the deformation and failure of the red sandstone specimen. Statisti-
cally, they analyzed the distribution characteristics of the AE in different frequency bands.
Events [12], energy [13], amplitude [14,15], and counts [16] are commonly used traditional
AE characteristic parameters. Large energy signals are generally released during the coal
and rock mass failure state, significantly altering the AE parameters [17]. Li [18] studied
the AE characteristics of four different rock uniaxial compression failure and on-site rock
mass failure processes. They concluded that the AE signal of low-stress-level rock is quite
rare. AE activities increase when the stress reaches more than 80% of the peak strength.
Based on acoustic emission signal strength, the rock mass failure process is divided into
four stages: initial, severe, descending, and silent. Ganne [19], Liu [8], Jiang [20], and the
references therein have also obtained the same conclusions. Many research results have
been obtained by using the traditional AE feature parameters to analyze the coal rock
failure process. They promote the application of AE monitoring technology in coal and
rock dynamic disaster monitoring and early warning, and make great contributions to
coal mines’ safe production. AE and coal damage have strong nonlinear characteristics. It
is difficult to quantitatively analyze the damage and failure of coal using traditional AE
characteristic parameters.

In the field of automatic speech recognition (ASR), the Mel-frequency cepstrum coeffi-
cient (MFCC) is the coefficient of the Mel-scale nonlinear transformation that composes the
logarithmic energy spectrum. MFCC has always been the most widely used sound signal
feature extraction technology [21] and is also commonly used in waveform recognition
technical fields [22,23]. AE and sound signals are essentially the same: both are mechanical
waves, but may exhibit different characteristics. Therefore, the ASR feature extraction
technology is theoretically applicable to the analysis of the AE characteristics of coal and
rock. Wang et al. [24] defined the ratio of coal sample stress to strength as the stress state,
and studied the change law of the MFCC of AE during the uniaxial compression failure
process of 55 coal samples, and found that the MFCC of AE and the stress state of the coal
satisfy a linear relationship. The MFCC can be used to evaluate the damage state of the coal
sample. The MFCC of AE comprises high-dimensional data composed of several coefficient
values. Hence, analyzing the high-dimensional MFCC of AE is comparatively complex
compared to traditional analysis methods.

Machine learning (ML) can take historical data as a training set and use an optimization
algorithm to establish a feature and label relationship model, which can analyze high-
dimensional data. ML, such as logistic regression (LR), classification regression tree (CART),
and support vector machine (SVM), have been applied to study AE and the microseismic
signal characteristics of the coal and rock failure process [25]. The MFCC of AE and the
stress state of the coal satisfy a linear relationship; therefore, LR has been chosen as a basis
for the ML algorithm. LR is a generalized linear model that uses the logarithmic probability
function as the connection function. It has the characteristics of simple form, fast training
speed, and strong generalization ability [26]. Compared with the traditional statistical
methods, LR is capable of solving at higher dimensions, possesses a faster training speed
and has a more vital generalization ability to handle larger data volumes [17,22], and has
been widely used in disaster prediction [27], slope stability evaluation, and coal and gas
outburst prediction [28]. The MFCC of AE and the coal sample’s stress state satisfy a linear
relationship [29]. Better constraints can be obtained on evaluating coal and rock damage
state by comprehensively using the MFCC of the AE and the logistic regression model.
Consequently, the purpose of this article is to construct an artificially intelligent evaluation
of the failure probability of coal (AIEFPC) based on AE data by the coupled use of ML and
ASR.
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In order to realize the purpose of using AE data to evaluate the failure possibility
of coal samples, the AE waveform data of the uniaxial compression failure of 10 coal
samples were collected, of which eight coal samples were used as the training set, and
another two coal samples were used as the test set. The AE data were divided into AE
segments with a length of 40 ms, and each segment was taken as an AE sample for AIEFPC.
We used the MFCC approach in the ASR methodology to extract the MFCC of AE as
the sample features and set the AE sample label corresponding to the stress state of the
coal sample. The AIEFPC was constructed using the LR of machine learning. A five-fold
cross-validation method was used to evaluate the prediction effect of the AIEFPC model.
The prediction effect of the AIEFPC was compared with the traditional AE parameters
such as cumulative hits, cumulative ring count, and amplitude; it was also compared
when different combinations of MFCC were used as sample features. The influence of the
category weight of the sample on the prediction effect of the AIEFPC on various sample sets
is discussed. The research results can be used to identify the precursory information of AE
for coal failure and can effectively predict the coal failure probability before the occurrence
of damage and failure. The work provides a new analysis method for the application of AE
monitoring technology in coal and rock dynamic disaster monitoring and early warning.

2. Data and Methods
2.1. Dataset

To realize the purpose of using AE data for the evaluation of the failure possibility for
the coal sample, AE waveform data during the uniaxial compression loading of 10 coal
samples were collected, of which eight coal samples were used as the training set, and
another two coal samples were used as the test set.

2.2. Generalized Procedure for AIEFPC Model

The stepwise procedure of creating and applying AIEFPC based on ASR and ML is
presented in Figure 1, while the process of AE framing, AE sample feature extraction, and
sample label production of AIEFPC is shown in Figure 2.
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The specific required methodological procedure for the construction and application
of AIEFPC is as follows.

2.2.1. AE Sample Segmentation

The historical AE waveform data of the coal uniaxial compression loading process are
set as the training set, and the AE data of the training set are divided into segments of equal
length. One AE segment is taken as a sample. The experimental AE data collection and
the uniaxial compression experiment are carried out synchronously, and the AE sampling
rate is 1 MHz. The length of each frame of the AE signal is set to be 2 ms, which contains
2000 data points, i.e., the Window Length is 2000. The overlap of adjacent frames is set
to be 0.5 ms, i.e., the Overlap Length is 500. Hence, the actual time interval between two
adjacent frames is 1.5 ms. In other words, every 1.5 ms corresponds to a set of MFCC. In the
experiment, the collection rate of the stress and strain data is 25 Hz, i.e., the time interval
between adjacent stress and strain data points is 40 ms, and the 40 ms period contains
40,000 AE data points, corresponding to 26 sets of MFCC. So, we take an average of the 26
sets of MFCC in 40 ms to obtain a set of mean values of MFCC, which correspond to one
stress data point. In this way, the MFCC and stress points are correlated one-to-one. The
AE data segmentation is shown in Figure 3.
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2.2.2. Sample Feature Extraction and Labeling

The feature extraction technology of sound features in ASR is employed to extract
the MFCC of AE as the sample feature. The ratio of the coal sample’s stress state to its
compressive strength is defined as the stress state of the coal sample. The dividing point
is taken as the stress state exceeds the critical value for the first time. As shown in area A
in Figure 2, the AE sample corresponding to the stress state less than the critical value is
taken as the safe sample, and the sample label y = 0. As shown in area B in Figure 2, the AE
sample corresponding to the stress state greater than or equal to the critical value is taken
as a hazardous sample and the sample label y = 1.
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The training artificial intelligence model uses an artificial intelligence algorithm to
train and establish an artificial intelligence model describing the relationship between
sample feature X and sample label y. The artificial intelligence algorithm used in this article
is the LR. Based on the AE samples of the training set, the artificial intelligence model’s
parameters are solved by the optimization algorithm, and the artificial intelligence model
obtained is AIEFPC.

2.2.3. Applying AIEFPC

After calculating the estimated value of parameter θ of the AIEFPC, the extracted
MFCC of AE is used as the sample feature X input into Equation (3) to calculate p(y =
1|X), the probability value of AIEFPC predicted sample label y = 1. When the p(y = 1|X)
is less than 0.5, the AIEFPC output sample label is y = 0, and the AE sample is evaluated
as a safe sample, the probability value is greater than or equal to 0.5, the AIEFPC output
sample label y = 1, and the acoustic emission sample is evaluated as a hazardous sample.
According to the probability value p(y = 1|X) of the output sample as the hazardous sample,
the reliability of the model’s prediction results is judged.

2.3. Automatic Speech Recognition for AE Feature Extraction

As a useful feature, MFCC offers the advantages of a high success rate and a stable
recognition effect. Since the AE and sound signals essentially exhibit the same charac-
teristics and both are mechanical waves, the feature extraction technology in the ASR is
theoretically applicable to the analysis of the AE characteristics of the coal and rock. MFCC
is obtained by nonlinear transformation and has a strong correlation with the coal sample
stress state [24]. The ASR’s MFCC approach is used as the AE feature extraction method,
and the first 12 coefficients of the Mel-frequency cepstrum of the AE segments are taken as
the sample feature X. The AE data collected during uniaxial compression loading of the
coal samples is divided into equal length AE segments. Each AE segment is taken as an AE
sample of the AIEFPC, as presented in Figure 4.
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The scheme for the extraction of MFCC of the AE of coal is shown in Figure 4. The
MFCC of the AE of coal involves three calculation steps. First, the AE data are divided
according to the stationary characteristics of the AE signal to complete the framing of the
AE data; then, the MFCC of each frame of the AE data are calculated, and finally, the
average value of the MFCC is calculated as the key characteristic parameter of AE. Solving
the MFCC of each AE data frame mainly includes five steps: windowing, fast Fourier
transform (FFT), triangular window band-pass filter application, logarithm, and discrete
cosine transform (DCT). A detailed description of AE feature extraction using MFCC can
be found in reference [30].

2.4. Machine Learning for AIEFPC Model Training

The artificial intelligence algorithm for building AIEFPC selects a linear model with a
simple form, fast training speed, and strong generalization ability. The generalized linear
model expression is given in [31] as follows:

y = g−1

(
N

∑
n=1

wnxn + b

)
(1)

where g (·) is the link function, wn is the coefficient of the sample feature xn of the linear
model, b is the intercept of the linear model, and N is the number of sample features.

Binary classification is generally used for predicting whether the stress state of the coal
is greater than the critical value, and to evaluate whether the coal sample will be a failure.
The LR is a generalized linear model that uses the logarithmic probability function as the
link function and is a binary classification model with excellent performance. The posterior
probability estimation p(y = 1|[x1, x2, . . . , xN, 1]) of the AE sample is the safe sample, and
the posterior probability estimation p(y = 1|[x1, x2, . . . , xN, 1]) of the AE sample is the safe
sample, satisfying the following expressions, respectively [32]:

ln
p(y = 1|[x1, x2, · · · , xN , 1] )
p(y = 0|[x1, x2, · · · , xN , 1] )

=
N

∑
n=1

wnxn + b (2)

Order θ= [w1, w2, · · · , wN , b], X = [x1, x2, · · · , xN , 1] , take it into Equation (2), and
we obtain:

p(y = 1|X ) =
eθT X

1 + eθT X
(3)

p(y = 0|X ) =
1

1 + eθT X
(4)

Use the maximum likelihood method to estimate the parameter θ value, for the training
set {Xi, yi} containing M samples, where yi ∈ {0,1}, I = 1, 2, . . . , M, the likelihood of the
logistic regression model function is [32]:

M

∏
i=1

p(y = 1|Xi)
yi p(y = 0|Xi)

1−yi (5)

The log-likelihood function is [32]:

L(θ) =
m

∑
i=1

(
−yiθ

TXi + ln(1 + eθT Xi )
)

(6)

When L(θ) is the maximum value, the estimated value of parameter θ is obtained.
The training process of AIEFPC is transformed into an optimization problem with log-
likelihood as the objective function. The high-order derivable continuous convex function
of θ is described in Equation (6). According to the convex optimization theory, numerical
optimization algorithms such as the gradient descent method and the Newton method can
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be used to obtain the optimal solution. The limited-memory Broyden–Fletcher–Goldfarb–
Shanno (L-BFGS) is the optimized algorithm used in this article, which belongs to quasi-
Newton methods [33]. It approximates the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
algorithm using limited computer memory. It can often achieve a better solution than the
two methods mentioned above with fewer iterations [34,35].

2.5. Parameter Setting

As described in Section 3, the uniaxial compression experiment uses two control
methods, namely, axial stroke control and axial stress control, with five coal samples for
each control method. The AE waveform data of a total of 10 coal samples during uniaxial
compression failure are used in this paper. Among them, eight coal samples were used
as the training set and two coal samples were used as the test set. The frequency of AE
data acquisition is 1 MHz. A 40 ms AE segment is used as an AE sample of the AIEFPC;
one AE sample contains 40,000 waveform data, and the first 12 coefficient values of the
Mel-frequency cepstrum of the AE are used as the sample feature. A computer program for
solving the MFCC of AE samples is developed based on MATLAB’s mfcc function. The
parameters for solving MFCC are shown in reference [24]. Set the critical value of the stress
state to 0.8, and the corresponding AE sample with the stress state less than 0.8 is set as a
safe sample, marked as a positive sample, and the sample label y = 0; when the stress state
is greater than or equal to 0.8, the corresponding AE sample is set as a hazardous sample,
marked as a negative sample, sample label y = 1.

The training and use of AIEFPC are implemented through Python language program-
ming, and the LR is implemented using the Logistic Regression class in scikit-learn 0.23.2 [33].
Setting the class weight parameter class_weight = {0:1,1:1} and the regularization parameter
penalty = ‘none’ obtains a Logistic Regression object that does not use regularization and class
weight balance. The fit method of the Logistic Regression object was used to train AIEFPC.
Using the coef _ of the Logistic Regression object obtains the value of the AIEFPC parameter
θ. The predict and predict_proba methods of the Logistic Regression object are used to obtain
the sample label and the probability value of the sample as a hazardous sample. Other
parameters of the AIEFPC construction, use, and testing process use the default parameters
of scikit-learn 0.23.2.

2.6. Evaluation of Model Performance

To scrutinize and evaluate the hazardousness of the coal sample, AIEFPC has been
constructed. It belongs to a machine learning model that solves binary classification.
Accuracy (ACC), true positive rate (TPR), and true negative rate (TNR) are three commonly
used indicators to evaluate the prediction performance of the binary classification [36]. In
this paper, ACC is the prediction accuracy of all of the AE samples in the test set. The TPR
is the prediction accuracy of the safe sample, and the TNR is the prediction accuracy of the
hazardous sample. The ACC, TPR, and TNR are calculated based on the confusion matrix
shown in Table 1. The ACC, TPR, and TNR were calculated as follows:

ACC =
TP + TN

TP + TN + FP + FN
(7)

TPR =
TP

TP + FN
(8)

TNR =
TN

TN + FP
(9)
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Table 1. Confusion matrix for a binary classification problem [37].

Actual Situation
Predicted Result

Positive Negative

Positive TP FN
Negative FP TN

Note: TP is true positive and means the number of positives predicted as positive; FN is false negative and
indicates the number of positives predicted as negative classes; FP is false positive and represents the number of
negatives predicted as positive, and TN is true negative and means the number of negatives predicted as negative
classes.

3. Experiment and Samples
3.1. Experiment Facilities

The experimental loading system used the RMT-159 universal testing machine pro-
duced by the Wuhan Geotechnical Institute of the Chinese Academy of Sciences. The device
offers multiple control methods such as axial stress control, axial stroke control, and axial
strain control. To achieve the objectives of this study, we used axial stroke control and axial
stress control in the experiment. For the loading rate of 0.010 mm/s, 0.5 kN/s, the stress
and strain data collection frequency was set to 25 Hz.

The AE acquisition instrument adopts the DS2 AE acquisition system produced by
Soft Island Company, Beijing, China, which enables the continuous real-time detection and
acquisition of AE data. The AE sensor RS2-A was used at a frequency range of 50–400 kHz,
a centre frequency of 150 kHz, and an amplifier gain of 20 dB. In this paper, the AE sensor
was coated with petroleum jelly and attached to the test machine’s pressure head. The
trigger mode of the AE acquisition instrument was set to manual trigger and the sampling
frequency was set to 1 MHz. After the acquisition instrument had been triggered, the AE’s
full-waveform data were saved until the end of the experiment. A schematic diagram of
the experimental device is shown in Figure 5.
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3.2. Specimen and AE Samples

The test coal samples were collected from the #8 coal seam of Dongqu Mine, of the
Xi’shan Coal Sample Electricity Group, at Taiyuan, Shanxi province, China. The coal
samples were processed into 50 mm × 50 mm × 100 mm square standard coal samples in
the laboratory; then, 10 coal samples with few cracks and good integrity were divided into
two groups for uniaxial compression testing with loading rates of 0.010 mm/s, 0.5 kN/s
(see Table 2).
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Table 2. Coal sample numbering grouping.

Coal Mine Sample Length/mm Width/mm Height/mm Strength/MPa Load Rate

Dongqu mine

aD8-1 50.5 50.4 100.6 8.56 0.005 mm/s
aD8-2 50.1 50.4 95.9 14.78 0.005 mm/s
aD8-3 52.1 52.6 99.7 10.18 0.005 mm/s
aD8-4 50.7 51 97.7 14.35 0.005 mm/s
aD8-5 50.8 50.6 100.4 12.67 0.005 mm/s
bD8-1 54.3 51.1 100.6 8.36 0.50 kN/s
bD8-2 50.1 50.4 95.9 13.17 0.50 kN/s
bD8-3 49.2 51.2 99.8 11.50 0.50 kN/s
bD8-4 52.2 52 100.3 12.95 0.50 kN/s
bD8-5 52.5 51.6 100.1 19.02 0.50 kN/s

The collected AE data were divided into 40 ms segments, and each AE segment was
taken as an AE sample. The sample label is made based on the stress state of the coal. The
AE samples with stress states less than 0.8 are marked as safe samples, and those with
stress states greater than or equal to 0.8 are marked as hazardous samples. The statistics of
the safe samples and hazardous samples in AE samples of each coal sample are shown in
Table 3.

Table 3. Statistics of the safe and hazardous samples in AE segments of each coal sample.

Coal Specimen
AE Segments

Coal Specimen
AE Segments

Safe Hazardous Total Safe Hazardous Total

aD8-1 3128 1122 4250 bD8-1 1510 440 1950
aD8-2 3029 889 3918 bD8-2 694 281 975
aD8-3 3526 874 4400 bD8-3 388 587 975
aD8-4 6681 1494 8175 bD8-4 1366 434 1800
aD8-5 5319 1675 3994 bD8-5 2306 593 2899

4. Results and Interpretation
4.1. Correlation of Mel-Frequency Cepstrum Coefficients for Acoustic Emissions and Coal
Specimen Stress State

As described in Section 2.5, the AE data were divided into segments of 40,000 data
points in length. The corresponding values of the MFCC of AE under different stress states
were calculated using MATLAB. Changes of the AE during the deformation and failure of
coal with varying rates of loading remained the same. Limited by space, the coal sample of
the #8 coal seam of Dongqu mine (numbered aD8-1) is used as an example to present the
application effect of the MFCC approach on the AE signal’s features over the whole coal
failure process. MFCC-n is used to represent the n-th parameter value of the Mel-frequency
cepstrum of AE. Figure 6 shows the variation of the MFCC of AE and stress state with the
time uniaxial compression experiment of the coal sample aD8-5.

MFCC-1, MFCC-2, MFCC-3, MFCC-5, MFCC-6, MFCC-7, MFCC-8, MFCC-9, MFCC-
11, etc., are compared with the stress state strong correlation as shown in Figure 6. Through
visual observation, it is evident that among these, MFCC-6 has the strongest correlation
with the stress state. MFCC-1, MFCC-6, MFCC-7, and MFCC-11 increase with the increase
in the coal sample stress state, and MFCC-6 increases linearly with the increase in the stress
state. MFCC-2, MFCC-3, MFCC-5, MFCC-8, and MFCC-9 decrease with the increase in the
coal sample stress state. When the stress state is less than 0.8, MFCC-2 generally remains
unchanged, while MFCC-2 decreases rapidly when the stress state is greater than 0.8.
MFCC-4, MFCC-10, and MFCC-12 have poor correlation with the stress state. Among them,
MFCC-4 and MFCC-10 first decrease and then increase as the stress increases, and MFCC-12
first increases and then increases as the stress increases. The general characteristics of the
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change of MFCC with stress state can be obtained by visual observation. However, it is
difficult to quantitatively describe the failure state of the coal samples using MFCC.
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Figure 6. Variation of MFCC of AE with respect to stress state of the coal specimen No. aD8-5
subjected to uniaxial compression.

4.2. Prediction of Failure Probability of Coal Using AIEFPC
4.2.1. Characteristics of AIEFPC

In this paper, aD8-1, aD8-2, aD8-3, aD8-4, bD8-1, bD8-2, bD8-3, and bD8-4 have been
taken as training coal samples, the AE waveform data in the process of coal failure are
divided into 40 ms AE segments, and each AE segment is considered a training set sample.
By taking the first 12 coefficient values of the extracted Mel cepstrum as the sample feature,
MFCC-n is the n-th feature xn in the sample feature X. Through the Logistic Regression class
in scikit-learn 0.23.2, the Python language program is compiled, and the AIEFPC is trained
by the AE samples of the training set. Using the coef_ attribute of Logistic Regression object
extraction, the coefficient wn corresponds to the feature MFCC-n in AIEFPC. The coefficient
can be used to describe the characteristics of AIEFPC. Figure 7 is the absolute value of the
coefficient wn corresponding to the feature MFCC-n in AIEFPC. Blue indicates that wn is a
positive number, and red shows that wn is a negative number.

MFCC-5, MFCC-6, MFCC-7, MFCC-8, MFCC-9, etc., present a good correlation with
the stress state. As shown in Figure 7, these have relatively large coefficients in AIEFPC;
however, MFCC-4 and MFCC-10, with a poor correlation with the stress state, are also
larger. As described in Section 2.1, AIEFPC predicts the sample label based on the posterior
estimated probability value p(y = 1|X) of the sample label y = 1. The logistic regression
model is linear: the larger the product of θT*X, the greater the probability that the sample
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is hazardous. The larger the absolute value of the parameter wn, the more sensitive the
AIEFPC prediction result is to the change of the feature MFCC-n.

Figure 7. Absolute value of the coefficient wn corresponding to MFCC-n in AIEFPC. The blue bars
indicate wn is positive while red indicates wn is negative.

The coefficient w8 corresponding to the MFCC-8 has the largest absolute value, and the
coefficient w1 corresponding to the MFCC-1 has the smallest absolute value. However, the
contribution of the feature MFCC-8 to the AIEFPC prediction result is not as significantly
important as the feature MFCC-1; when other parameters are unchanged, the larger the
product xn*wn of the n-th feature xn of the sample and the corresponding coefficient wn,
the larger the posterior estimated probability value p(y = 1|X) of the sample label y = 1.
The probability value is simultaneously affected by the value of the sample feature xn and
the value of the sample feature corresponding coefficient wn. It can be seen from Figure 6
that as the stress state increases, the value of MFCC-1 gradually increases from −17 to −5,
the value of MFCC-8 decreases from 0.1 to −0.3, and the variation range of MFCC itself is
inconsistent, so the absolute value of the sample feature coefficient wn in AIEFPC does not
truly reflect the importance of the sample feature. The significance of the sample feature
will be analyzed in detail in Section 5.1.1.

4.2.2. Validation of Prediction Effect of AIEFPC

Five-fold cross-validation is a commonly used model evaluation method in verifying
machine learning [31]. This paper uses the five-fold cross-validation method to evaluate
the prediction effect of AIEFPC and verify the generalization ability of AIEFPC. Five-fold
cross-validation is to divide the initial sampling set into five sub-samples. A single sub-
sample is retained as the data for the verification model. The other four sub-samples are
used for training [36]. This paper uses the uniaxial compression experiment results of 10
coal samples in the #8 coal seam of Dongqu Mine as the initial sample set. The coal samples
of the train set and test set of the five-fold cross-validation are shown in Figure 8.
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Through the Logistic Regression class in scikit-learn 0.23.2, the Python language pro-
gram is compiled and the AIEFPC is trained by the AE samples of the training set. The AE
waveform data of the test coal samples were divided into 40 ms AE segments. The first 12
coefficients of the Mel cepstrum extracted as sample feature X were input into AIEFPC to
calculate the prediction results of the AE sample label. Compare the predicted AE sample
label with the real label to obtain the confusion matrix of AIEFPC on the test set. The
calculated ACC, TPR, and TNR results are shown in Table 4.

Table 4. Confusion matrix, ACC, TPR, and TNR of five-fold cross-validation for evaluating AIEFPC
performance.

Fold TP FN FP TN ACC TNR TPR

Fold-1 3546 177 367 803 88.9% 68.6% 95.2%
Fold-2 3331 583 219 1248 85.2% 85.4% 85.1%
Fold-3 7060 987 471 1457 85.4% 75.6% 87.7%
Fold-4 4372 266 536 1026 87.1% 65.7% 94.3%
Fold-5 9671 654 135 2133 92.0% 94.0% 91.4%

The maximum prediction ACC of AIEFPC is 92.0%; the minimum value is 5.2%, as
evident in Table 4. For predicting dangerous states of the coal sample, the AIEFPC displays
strong generalization ability and can achieve satisfactory results. Using AIEFPC to evaluate
the failure probability, the arbitrary continuous 40 ms AE waveform data in the process
of coal rock uniaxial compression failure are used and the trend and historical data of the
AE signal in the coal sample failure process are not used. AIEFPC can be used to predict
the failure possibility of coal. The prediction accuracy is high, and the effect is stable, only
based on more than 40 ms of AE data.

The maximum value of TPR is 95.2%, while the minimum value of TPR is 85.1%.
AIEFPC has high accuracy and a stable effect in the safe sample set. The false alarm rate of
the AIEFPC model in coal and rock dynamic disaster monitoring and early warning is low.
However, the maximum value of TNR is 94% and the minimum value of TNR is 65.7%;
thus, the accuracy of AIEFPC on the dangerous sample set is not ideal. In the application
of dynamic disaster monitoring and early warning, the wrong classification of hazardous
samples leads to a failure to raise the alarm, leading to serious consequences. Methods to
improve the accuracy of AIEFPC in the hazardous set and reduce the occurrence of missing
model alarms are analyzed in detail in Section 5.2.

4.3. Probability of AE Samples Predicted as Dangerous Samples by AIEFPC

The training set and the test set are divided using Fold-5 in Figure 8. After the
estimated value of the AIEFPC parameter θ is obtained by training, the MFCC of the AE
fragment of an aD8-5 coal sample is taken as the sample feature X and entered into Equation
(3) to calculate how AIEFPC predicts the probability that the AE sample is a hazardous
sample. We use the predict_proba method of Logistic Regression class in scikit-learn 0.23.2
to calculate the AE sample’s probability value as a hazardous sample. Figure 9 shows the
probability value that AIEFPC predicts the AE sample is a hazardous sample at the aD8-5
coal sample during uniaxial compression.
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sample during uniaxial compression.

Figure 9 shows that as the stress state increases, the probability value that AIEFPC
predicts that the AE sample is a hazard sample gradually increases, and the acoustic
emission samples predicted as dangerous samples increase progressively. The larger the
probability value, the closer the coal sample state is to the failure state. According to the
stress state’s magnitude, the test set samples are divided into six categories of less than 0.5,
0.5–0.6, 0.6–0.7, 0.7–0.8, 0.8–0.9, and 0.9–1.0. The distribution of probability that AIEFPC
predicts the hazardousness of the AE sample corresponding to different stress states is
statistically analyzed, and the results are shown in Figure 10.
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As shown in Figure 10, the average probability values of the six types of samples
predicted by AIEFPC are 0.01, 0.12, 0.27, 0.47, 0.63, and 0.76, respectively. The average
value of the probability that AIEFPC predicts that the AE sample is subjected to hazard that
corresponds to different stress states increases linearly with the increase in the stress state.
The linear fitting correlation coefficient is 0.994. The greater the probability of AIEFPC’s
prediction ability for sample hazardousness, the lower the reliability of AIEFPC’s prediction
that the AE sample is a safe sample and the higher the reliability of AIEFPC’s prediction that
the AE sample is a hazardous sample. The prediction result’s reliability can be evaluated
by calculating the probability that AIEFPC predicts the hazardous AE sample.



Minerals 2022, 12, 1548 14 of 22

5. Discussion
5.1. Influence of Sample Feature Selection on the Prediction Accuracy of AIEFPC
5.1.1. Accuracy of AIEFPC with Different Combinations of MFCC as Sample Feature

To construct different combinations of Mel cepstrum coefficients, we first analyze
the importance of the sample features in the prediction process of AIEFPC. According to
Equation (2), when N features are selected as sample features, the posterior probability
p(y = 1|X) of the AE sample label in AIEFPC is obtained:

ln
p(y = 1|X )

1− p(y = 1|X )
=

N

∑
n=1

wnxn + bN (10)

where bN is the intercept value of AIPEFC.
During the process of analyzing the importance of the features of AIEFPC, for sim-

plification purposes, it is assumed that the sample features and the stress state satisfy a
monotonic relationship. There exists a probability value p(y = 1|X) of 0.5 at the critical
value, which is the right side of Equation (12), and is equal to zero, so bN satisfies:

bN = −
N

∑
n=1

wnxc
n (11)

where xc
n is the n-th sample feature MFCC-n of the sample when the stress state is the

critical value.
Substituting Equation (11) into Equation (10), the posterior estimated probability value

p(y = 1|X) of the sample label y = 1 is:

ln
p(y = 1|X )

1− p(y = 1|X )
=

N

∑
n=1

wn(xn − xc
n) (12)

The importance In of the sample feature xn on the training set with M samples is:

In =
1
M

M

∑
m=1
|wn(xm

n − xc
n)| (13)

where xm
n is the n-th sample feature value of the m-th sample on the training set.

We use the average value of MFCC-n of all samples on the training set as xc
n. The

importance In of the sample feature xn is:

In =
∣∣wn

(
x1n − x0n − xn

)∣∣ (14)

where x0n, x1n and xn are the average of the MFCC-n of the safe samples, hazardous
samples, and all samples in the training set.

The division method of the training set and the test set use the Fold-5 in Figure 7,
using the training set samples to obtain the AIEFPC parameter wn. The statistics result in
in the average value of the sample feature MFCC-n on the safe sample set, the hazardous
sample set, and all of the sample sets. The importance of the sample feature of AIEFPC
when the first 12 coefficient values of the Mel frequency cepstrum as the sample feature are
calculated by employing Equation (14), and the absolute importance of the sample features
of AIEFPC is shown in Figure 11.
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Figure 11. Absolute importance of sample features of AIEFPC.

Figure 11 clearly depicts the importance of MFCC-6, MFCC-2, MFCC-1, MFCC-10,
MFCC-4, and MFCC-8 in descending order, which is a feature of greater importance in the
sample. The feature importance of MFCC-5, MFCC-7, MFCC-9, and MFCC-11 are all 0.9.
MFCC-12 and MFCC-3 are the two features with the least importance in the sample.

In order to study the influence of different combinations of MFCC as sample features
on the AIEFPC prediction effect, firstly, according to Figure 11, the sample features are
arranged based on priority and importance. The combination of MFCC is obtained by
sequentially adding a feature, starting from the most important feature, MFCC-6, until all
12 Mel cepstral coefficients are added. Then, the most important features in the sample are
sequentially subtracted from the 12 Mel cepstral coefficients to obtain a combination of Mel
cepstral coefficients, starting from the most important features. The most important features
in the sample are subtracted for obtaining a combination of MFCC, also starting from the
most important MFCC-6. We obtained 23 different combinations of MFCC, respectively.
Various combinations of MFCC were used as sample feature training to obtain 23 AIEFPCs.
By analyzing the ACC, TPR, and TNR of each AIEFPC on the test set, using different
combinations of MFCC as sample features in the AIEFPC prediction effect is studied. The
combination of MFCC and combination number are shown in Table 5.

Table 5. Mel cepstrum coefficient combination and combination number.

Number of
Feature Combination MFCC Combine Number of Feature

Combination MFCC Combine

1 MFCC-[6] 13 MFCC-
[2,1,10,4,8,5,7,9,11,3,12]

2 MFCC-[6,2] 14 MFCC-[1,10,4,8,5,7,9,11,3,12]
3 MFCC-[6,2,1] 15 MFCC-[10,4,8,5,7,9,11,3,12]
4 MFCC-[6,2,1,10] 16 MFCC-[4,8,5,7,9,11,3,12]
5 MFCC-[6,2,1,10,4] 17 MFCC-[8,5,7,9,11,3,12]
6 MFCC-[6,2,1,10,4,8] 18 MFCC-[5,7,9,11,3,12]
7 MFCC-[6,2,1,10,4,8,5] 19 MFCC-[7,9,11,3,12]
8 MFCC-[6,2,1,10,4,8,5,7] 20 MFCC-[9,11,3,12]
9 MFCC-[6,2,1,10,4,8,5,7,9] 21 MFCC-[11,3,12]
10 MFCC-[6,2,1,10,4,8,5,7,9,11] 22 MFCC-[3,12]
11 MFCC-[6,2,1,10,4,8,5,7,9,11,3] 23 MFCC-[12]
12 MFCC-[6,2,1,10,4,8,5,7,9,11,3,12] 24

Note: MFCC-[6,2,10,4] indicates that MFCC-6, MFCC-2, MFCC-10, and MFCC-4 are used as sample characteristics.

The number in brackets indicates the number of the selected MFCC. For example,
MFCC-[6,2] indicates that the sixth and second coefficients of the Mel cepstrum coefficient
are used as a sample feature. The results of ACC, TNR, and TPR of AIEFPC on the test set
of ad8-5 and bd8-5 are shown in Figure 12.
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Figure 12. ACC, TNR, and TPR of 23 AIEFPC models obtained by different combinations of MFCC
are selected as the AE sample feature on the sample set of coal samples ad8-5 and bd8-5.

Figure 12 illustrates that from combination 2 to combination 12, the ACC, TNR,
and TPR show no significant change and they are relatively stable, and the accuracy of
the three is high. From combination 12 to combination 22, the ACC decreased slowly;
however, the decline is not significant. From combination 12 to combination 13, the TNR
decreased suddenly, and from combination 16, the TNR significantly decreased; however,
TPR and TNR have the opposite trend, and increase in the transition from combination 12
to combination 22. For combination 23, the ACC, TNR, and TPR were significantly lower.
The above rules show that increasing the number of MFCC as sample features can make
the trained model have a better prediction effect. When the sample lacks high-importance
MFCC, the model impact will be seriously affected. This phenomenon is discussed in
further detail below.

In combination 1, only MFCC-6 is used as the sample feature. The accuracy of AIEFPC
is 90.4%; however, the accuracy of the dangerous sample set is only 60.4%. It can be seen
from Figure 5 that MFCC-6 is the MFCC with a preeminent correlation with the stress state.
Nevertheless, only using MFCC-6 as a sample feature has a lower prediction accuracy on
the hazardous sample set. Compared with combination 1 and combinations 2 to 12, it is
evident that the AIEFPC, which combines ASR and ML, uses multiple MFCC of AE as a
sample feature and the LR to predict the failure probability of the coal samples, which is
better than employing a single MFCC.

As mentioned in Section 4.1, MFCC-4 and MFCC-10 first decrease and then increase
with stress and have a low correlation with stress. It can be seen from Table 5 that the
sample feature combination 15 has more MFCC-4 and MFCC-10 than the sample feature
combination 17. When the sample uses the combination 15 to become the feature combi-
nation 17, the TNR of AIEFPC is reduced from 87.6% to 54.9%, and MFCC-4. MFCC-10
plays an essential role in AIEFPC in improving the prediction accuracy of AIEFPC on the
hazardous set. It can be seen from Figure 10 that the feature importance of MFCC-4 and
MFCC-10 is second only to MFCC-6, MFCC-2, and MFCC-1 among the 12 Mel cepstral
coefficient values. The sample feature importance of AIEFPC cannot be judged solely based
on the correlation between MFCC and the stress state.

Figure 11 depicts that the sample feature combination 2 selects MFCC-2 and MFCC-
6. The ACC, TPR, and TNR of AIEFPC on the test set are 93.4%, 94.4%, and 89.9%,
respectively; using MFCC-2 and MFCC-6 as a sample feature has an ideal prediction
effect. When sample feature combination 3 to sample feature combination 12 are used
as sample features, the minimum values of ACC, TPR, and TNR of AIEFPC are 88.0%,
85.4%, and 89.7%, respectively. AIEFPC has a high predictive ability. Sample feature
combination 16, MFCC-6, MFCC-2, MFCC-1, and MFCC-10 are removed from the sample,
and MFCC-4, MFCC-8, MFCC-5, MFCC-6, MFCC-7, MFCC-8, and MFCC-9 are the sample
features. Although 8 MFCC is selected, the TNR of AIEFPC is only 78.8%, which shows low
prediction accuracy on the hazardous sample set. The accuracy of the sample combination
17 to sample combination 23 on the hazardous sample set did not exceed 70%, and the
AIEFPC prediction effect was poor. As mentioned in Section 4.1, MFCC-2, MFCC-6, and
MFCC-1 are the three most important MFCC in Figure 10. They are also the first 12 values
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of Mel cepstrum coefficients that are more relevant to the stress state. In constructing
AIEFPC by using LR, the feature with high feature importance in the samples is the key
factor in determining the prediction effect of AIEFPC.

It can be seen from Figure 11 that when the sample contains features MFCC-2 and
MFCC-6, adding other features to the sample, AIEFPC has an excellent predictive effect,
and the predictive ability is relatively stable. To study the impact of adding features with
a low correlation with the stress state to the AIEFPC prediction results when the sample
contains features with high importance and good correlation with the stress state of the coal
sample, we add a random noise feature that is not related to the stress state and satisfies
the normal distribution in the samples composed of the first 12 Mel cepstrum coefficients
to train the model. The average value of the noise feature is 10, and the standard deviation
is 10. When the MFCC and noise feature are used together as the sample feature, the noise
feature coefficient w value is 3.6 × 10−5 in the AIEFPC, far less than that of MFCC. That
is to say, the noise feature hardly plays a role in the model and can be ignored. The ACC,
TNR, and TPR of AIEFPC on the sample set are shown in Figure 13 when the MFCC and
noise feature are used as sample features.
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Figure 13. ACC, TNR, and TPR of AIEFPC on the sample set when using MFCC and noise features
as sample features.

It can be seen from Figure 13 that when MFCC is used as a sample feature, the
prediction effect of AIEFPC on the sample set has little change after adding the noise
feature and adding noise features has little impact on AIEFPC’s prediction ability. When
the sample contains features with high importance and a good correlation with the stress
state, adding features with a low correlation with the stress state has little impact on the
prediction results of AIEFPC. Suppose the predicted effect of AIEFPC is not ideal. In such a
case, the sample features with high importance are not included in the sample. The sample
features with a strong correlation with the stress state should be obtained by optimizing
the parameter extraction process. It is difficult to improve the prediction effect of the
model using feature selection. In this paper, all of the first 12 AE Mel-frequency cepstrum
coefficients are selected as sample features.

5.1.2. AIEFPC Prediction Results with Traditional Acoustic Emission Parameters as
Sample Features

The training set and test set coal sample division, sample label making, training, and
prediction AIEFPC process are the same as in Section 5.1.1. The AE wave data are divided
into 40 ms segments, and the cumulative hits, cumulative count, and amplitude in the AE
segment are used as sample features. The change of the AIEFPC prediction effect is studied
when the cumulative hits number, cumulative ring count, and maximum amplitude are
used as the sample feature. MFCC is used as the sample feature. The ACC, TPR, and TNR
of AIEFPC on the AE sample set of ad8-5 and bd8-5 using cumulative hits, cumulative
count, and amplitude as sample features and MFCC-6 as sample features are shown in
Figure 14.
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C1 and C0 are the category weight values of the hazardous sample and the safe sam-
ple. Use the class_weight of the Logistic Regression class in sklearn to set the category 
weight of the sample. 

The training set uses the training set and test set division method in Fold-5 in Figure 
7, the category weight of the safe sample is set to 1, and 30 logarithmic distribution values 
between 0.125 and 16 are taken as the category weight of the hazardous sample. Thirty 
AIEFPC with the category weight of hazardous samples are trained. Figure 15 is the cloud 
chart of the probability value of AIEFPC prediction coal sample aD8-5 in the uniaxial com-
pression failure process. 
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Figure 14. ACC, TPR, and TNR of AIEFPC on the AE sample set of ad8-5 and bd8-5, using cumulative
hits, cumulative count, and amplitude as sample features and MFCC-6 as sample features.

According to Figure 14, the cumulative hits, the cumulative count, and the ampli-
tude can be used as the sample features. Compared with using all 12 AE Mel cepstrum
coefficients as the sample features, the TPR prediction accuracy on the safe sample set is
increased from 91.4% to 99.1%. However, the prediction accuracy is reduced from 92.0% to
88.7%, and the TNR prediction accuracy on the dangerous sample set is reduced from 94%
to 53.9%. In practical applications, AIEFPC misinterprets the hazardous samples as safe
samples, which may lead to severe consequences, such as disastrous accidents and massive
losses, which is unacceptable. Therefore, MFCC, as a sample feature, is more suitable than
a cumulative hits, cumulative count, and amplitude.

5.2. Influence of Category Weight of Sample on AIEFPC Prediction Effect on the Different Category
Sample Set

If AIEFPC mistakenly judges a safe sample with a small stress state as a hazardous
sample, it is a false alarm that will issue incorrect waring information. However, if it
mistakenly judges a high-stress state sample as safe, it is omitted, causing disasterous
accidents and huge losses. Improving the prediction accuracy of the AIEFPC on the
hazardous samples set will help improve the application values of the AIRFPC in coal and
rock failure monitoring. The LR can improve the accuracy of the high-cost category by
increasing the category weight value with higher cost and solving the binary classification
problem with different category loss costs. The log-likelihood function of LR considering
the category weight is:

L(β) =
m

∑
i=1

[C1·yi log[p(y = 1|xi )] + C0(1− yi) log(1− p(y = 1|xi ))] (15)

C1 and C0 are the category weight values of the hazardous sample and the safe sample.
Use the class_weight of the Logistic Regression class in sklearn to set the category weight of
the sample.

The training set uses the training set and test set division method in Fold-5 in Figure 7,
the category weight of the safe sample is set to 1, and 30 logarithmic distribution values
between 0.125 and 16 are taken as the category weight of the hazardous sample. Thirty
AIEFPC with the category weight of hazardous samples are trained. Figure 15 is the cloud
chart of the probability value of AIEFPC prediction coal sample aD8-5 in the uniaxial
compression failure process.
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Figure 15. Cloud chart of the probability value of AIEFPC with different category weights of
hazardous sample on the test set aD8-5 samples at different time.

It can be seen from Figure 15 that the probability values of AIEFPC prediction samples
with different weight values of hazardous samples are dangerous samples, and the proba-
bility values increase with the increase in the stress state. The greater the category weight
of the hazardous sample, the greater the probability value of AIEFPC predicting samples
being hazardous samples, so more samples will be predicted as hazardous samples. The
prediction accuracy of AIEFPC on the hazardous sample set will be increased, and the
accuracy of the safe sample set will be reduced.

It can be seen from Table 3 that the TNR of Fold-4 is 65.7%, which is the lowest group
in the five-fold cross-validation. We use the Fold-4 training set and test set coal sample
division method by setting different category weight values of the hazardous sample to
study the impact of the sample category weight values on AIEFPC’s prediction results on
different category sample sets. When the category weight value of the safe sample is set to
1, and the category weight values of the hazardous sample are 1, 5, and 15, respectively,
AIEFPC predicts the results of ACC, TNR, and TPR on the test set aD8-4 and bD8-4 samples,
as shown in Figure 16.
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As shown in Figure 16, when the category weights of the hazardous sample are 1,
5, and 15, respectively, the ACC of AIEFPC on the test set is 87.1%, 88.0%, and 86.8%,
the prediction accuracy for the hazardous sample set is 65.7%, 87.3%, and 92.6%, and the
accuracy for the safe sample set is 94.3%, 88.2%, and 94.8%, respectively. As the category
weight of the hazardous samples increases, the ACC of AIEFPC first increases and then
decreases. The accuracy of the safe sample set of the AIEFPC decreases as the category
weight of the hazardous samples increases. The prediction accuracy for the hazardous
sample increases when the category weight of the hazardous samples increases.

6. Conclusions

This paper presents unique applications of machine learning (ML) and automatic
speech recognition (ASR) for evaluating the failure possibility of coal samples by em-
ploying acoustic emission (AE) as the core technology. The Mel-frequency cepstrum
coefficient (MFCC) approach in the ASR methodology was used to extract the MFCC of
AE as the sample features. The logistic regression (LR) of ML was employed to construct
the artificial intelligence evaluation of the failure probability of coal (AIEFPC). A five-fold
cross-validation method was used to evaluate the AIEFPC prediction effect and compared
with the traditional AE parameters, and different combinations of MFCC were used as
sample features. The influence of the category weight of the sample on the prediction effect
of AIEFPC on various sample set was discussed. The following conclusions were drawn:

• AIEFPC based on ASR and ML can predict the AE sample label based on the MFCC of
the 40 ms AE segment at any time. The maximum prediction accuracy is 92.0%, while
the minimum value is 85.2%.

• The mean value of MFCC-n of non-hazardous samples, hazardous samples, and all
samples and the feature parameters wn of AIEFPC can be used to calculate the sample
feature importance.

• In the process of using the ML to construct AIEFPC, the sample contains multiple
sample features with high importance, which is a critical factor in determining the
predictive effect of the AIEFPC.

• When the sample contains the features with high importance, adding features with
a low correlation with the stress state has little impact on the prediction results of
AIEFPC constructed by ML and ASR. In this paper, all of the first 12 Mel-frequency
cepstrum coefficients were selected as sample features.

• When using cumulative hits, cumulative count, and amplitude as sample features,
AIEFPC has low prediction accuracy on the hazardous sample set. The MFCC is better
than cumulative hits, cumulative count, and amplitude as sample features.

• As the category weight of the hazardous samples increases, the ACC of AIEFPC first
increases, followed by a decrease. The accuracy of the safe sample set of AIEFPC
decreases as the category weight of the hazardous samples increases.
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