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Abstract: Revealing prospective locations of hydrothermal alteration zones (HAZs) is an important
technique for mineral prospecting. In this study, we used multiple criteria inferred from Landsat-8
OLI, Sentinel-2, and ASTER data using a GIS-based weighted overlay multi-criteria decision analysis
approach to build a model for the delineating of hydrothermal mineral deposits in the Khnaiguiyah
district, Saudi Arabia. The utilized algorithms revealed argillic, phyllic, and propylitic alteration
characteristics. The HAZs map resulted in the identification of six zones based on their mineralization
potential, providing a basis for potential hydrothermal mineral deposit assessment exploration, which
was created by the fusion of mineral bands indicators designated very low, low, moderate, good, very
good, and excellent and covers 31.36, 28.22, 20.49, 10.99, 6.35, and 2.59%. Based on their potential for
hydrothermal mineral potentiality, the discovered zones match gossans related to sulfide mineral
alteration zones, as demonstrated by previous studies.

Keywords: mineral exploration; ASTER; OLI; Sentinel-2; GIS; Khnaiguiyah; Saudi Arabia

1. Introduction

Remote sensing techniques have provided valuable tools for characterizing and delin-
eating geological, structural, and lithological features that have aided in the identification
of mineralization regions [1,2]. Because of its fine geospatial, radiometric, and spectral
resolution, remotely sensed data provides significant information for mineral exploration.
One of the main aims of remote sensing investigations is the delineation of hydrothermal
alteration zones and the identification of the mineralogical signature [1,3,4]. Hydrothermal
alteration zones (HAZs) and their grade must be characterized in order to identify possible
mineral resource locations [1,2,5,6]. This is due to the fact that such a process is frequently
linked to the economic concentration of base metals like Au, Cu, and Ag. Several studies
were conducted using multispectral remotely sensed data to characterize the extent of the
hydrothermally altered areas and to identify the minerals forming zones [3,7–15].

Data from satellites can be used to detect new prospects prior to detailed and ex-
pensive ground research [4,15]. Landsat Operational Land Imager (OLI) and Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images were used to
process and analyze remote sensing multispectral datasets. Electromagnetic (EM) radiation
reflected, transmitted, or backscattered from the Earth’s surface is sensitive to remote
sensing devices such as OLI and ASTER. With passive or active systems, remote sensing
sensors can monitor wavelengths of EM radiation in the visible near-infrared and short-
wave infrared (VIS/NIR/SWIR) to microwave. Landsat satellite image data have been
utilized for lithologic mapping using image transformation techniques [7,8,16–18].
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Although Landsat data had been widely used in characterizing hydrothermal alter-
ation zones for decades [8,9,19,20], the introduction of the Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) data in 1999 added meaningful data to the
research area of mineral deposits [5,11,12,15,21]. This is due to the fact that, as compared to
Landsat data, such data have better spectral, spatial, and radiometric resolutions, allowing
for greater information regarding mineral properties.

The capacity of ASTER (e.g., SWIR) spectral bands to distinguish the alteration zones
was tested using a variety of methodologies, including band ratios, principal component
analysis (PCA), and spectral analysis [5,13,14,21,22]. To improve the spectral disparities
across bands and eliminate topographic effects, band ratios were adopted [7,8,13,23]. Min-
eral indices [11,12,22] and relative absorption band depth (RBD; [24]) were also used.
Despite the fact that band ratios, PCA, and RBD have been successful in delineating
hydrothermal alteration zones. Many studies have used the band ratios technique to
distinguish between different rock units or minerals [4,6].

Because earlier studies did not have such data to use, little emphasis was made on
delineating alteration zones and extracting certain important hydrothermal minerals linked
with the above-mentioned deposits utilizing remote sensing data in the study area. ASTER
spectral bands are thus used in this study to identify the alteration zones associated with
Zn-Cu deposits and extract the major hydrothermal alteration zones. This is performed in
order to identify prospective mineralization sites in the study area.

Using a GIS-based process to develop mineral development capabilities based on
remote data has thus become a rapid and accurate tool for identifying target areas for
mineral exploration [4,25], particularly during the reconnaissance stage. Developments
in revealing promising areas of hydrothermal mineral resources have been made with
the emergence of GIS-based spatial analytic tools [26–29]. This is because employing a
GIS method to integrate spatially distributed remote-sensing data is a key approach to
mineral exploration since it allows for the combination of different data utilizing digital
overlay methods to optimize mineral prospection maps [30]. The GIS-based knowledge-
driven technique, for example, is effective in producing predicted maps based on expert
opinion [25] since each GIS predictive layer is given a weight that reflects its value in
the process.

Prior to the advent of high spectral resolution, multi-spectral sensors, it was challeng-
ing to detect alteration zones linked with hydrothermal deposits like those associated with
the Khnaiguiyah Zn mineralization. Three sensors’ data, e.g., ASTER, Sentinel-2, and OLI
spectral bands, are thus used in this study to identify the alteration zones associated with
sulfide deposits and extract the major hydrothermal alteration zones. This is performed in
order to identify prospective mineralization regions in the Khunayqiyah region.

2. Study Area

The present study is a part of Arabian Shield, Khnaiguiyah, Saudi Arabia. It ex-
tends between latitudes 24◦13′25.48′′ and 24◦17′43.72′′ and longitudes 45◦2′47.90′′ and
45◦6′58.37′′, covering an area of about 57 sq km.

The district of Khnaiguiyah is located at the eastern periphery of the Arabian Shield
(Figure 1), which is the exposed Precambrian basement of the Arabian Plate. The Arabian
Shield (ANS) is the northernmost extension of the East African Orogen [31,32] and consists
of a collage of tectonostratigraphic terranes with ensialic and ensimatic arc affinities [33,34].
The convergence of East and West Gondwana caused the terrane amalgamation/accretion
during the Pan-African event (780–600 Ma) [34]. The final suturing (680–610 Ma) of
the ANS coincided with the development of the Nabitah fault zone, gneiss domes, and
massive Molasse basins [35,36]. The NW–SE trending Najd fault system/Najd Orogeny
(620–540 Ma) subsequently formed due to escape tectonics concomitant with the assem-
bly of the Gondwana supercontinent [37,38]. By the Cambrian (541 Ma), the ANS was
established as a stable juvenile continental block forming the northeastern margin of Gond-
wana [39].
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Figure 1. (a) General geologic map of the Arabian Peninsula showing the location of the Khnaigu-
iyah mineralized district; (b) simplified geologic map of the Khnaiguiyah area denoting the main
mineral occurrences.

Khnaiguiyah Zn–Cu deposits represent a substantial zinc resource and attracted
considerable exploration efforts in the last three decades [40]. The four ore bodies of the
Khnaiguiyah district comprise mineable reserves of up to 11 Mt averaging 7.41% Zn and
0.82% Cu [41]. Khnaiguiyah-type deposit features are consistent with metamorphism and
deformation of volcanogenic massive sulfide (VMS) mineralization; the related stratiform
Mn-rich units are mainly suggestive of a seafloor hydrothermal setting.

The Khnaiguiyah ores are hosted by the Shalahib Formation (1500 m thick), which
is made up of felsic volcano-sedimentary rocks interlayered with carbonates [42]. The
Shalahib formation predominantly comprises andesite and rhyolite volcanic rocks and asso-
ciated pyroclastics and ignimbrites, and the whole sequence is affected by low-temperature
greenschist-facies regional metamorphism. The Khnaiguiyah deposit lies within an area
of 3 × 3 km. Four mineralized orebodies are interpreted hydrothermal mineral deposits
containing Zinc and Copper that are hosted by strongly sheared and folded late Proterozoic
medium to felsic volcanics/volcaniclastics. The shear zones, which are tens of meters
thick, are oriented NS and dip 10 to 70 to the west. The hydrothermally altered rocks
occur within discontinuous anastomosed bands 50 to 100 m wide and several Kilometers
long and are regionally oriented along with the north–south regional foliation. Detailed
analysis of surface and drill-core samples shows that the hydrothermal alteration zones
and associated Zn-Cu-Fe-Mn mineralization are controlled by a shearing deformation
phase that post-dated the first phase of regional folding. The hydrothermal alteration zone
contains illite, kaolinite, quartz, albite, hematite, and calcite.

At this locality, the Precambrian basement is overlain by the basal conglomerates
and cross-bedded red sandstone of the middle Cambrian Saq formation, which is in turn
overlain by the Permo-Triassic shallow marine carbonates of the Khuff formation.

3. Data Used and Methods

This study used visible/infrared satellite-derived imagery to characterize mineraliza-
tion associated with hydrothermal alteration zones. Landsat 8-OLI, Sentinel-2, and ASTER
data (Figure 2) were all employed to detect altered features and structural patterns. A
comparison of these sensors is shown in Figure 2 [19].
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On 11 February 2013, the Landsat-8 (OLI) satellite was launched. Landsat-8 scene
dimension is 85-km-cross-track-by-180-km-along-track. There are nine VIS/NIR and SWIR
ranges reported, as well as two longwave thermal ranges. The pixel size of OLI channels
was stated to be 30 m; however, TIRS has a spatial resolution of 100 m. The quantization
level is 12-bit data that permits additional bits to be used to acquire optimal data, enabling
the assessment of minor surface disturbances. Landsat-OLI scene (path/row 166/43; ID:
LC08_L1TP_166043_20211209_20211215_01_T1) that was acquired on 9 December 2021.

NASA and METI (Japan’s Ministry of Economic Trade and Industry) deployed ASTER,
an advanced multispectral satellite imaging system, onboard the TERRA spacecraft in
December 1999. NASA’s Land Processes Distributed Active Archive Centre provided
the ASTER data (LP DAAC). ASTER data includes spectral ranges in the visible and
near-infrared (VNIR), shortwave infrared (SWIR), and thermal infrared (TIR): three bands
(with 15 m spatial resolution) in the VNIR, six bands (with 30 m spatial resolution) in the
SWIR, and five bands (with 90 m spatial resolution) in the TIR (TIR). In this investigation,
the ASTER SWIR spectral bands (30 m spatial resolution) are used to measure between
~1.60 and 2.45 µm to allow discriminating between Al-OH, Fe, Mg-OH, H-O-H, and CO3
absorption features [43].

Preprocessing of the obtained ASTER scene (ASTER data ID: ASTB061106074035)
included cross-talk correction and data orthorectification using the ENVI software appli-
cation. Using ENVI v.5 software, the Log-residual (LR) technique was used to calibrate,
normalize, and decrease noise from sensors and solar illumination in SWIR bands [2,14].
On ASTER data, this approach was used to remove atmospheric and topography impacts.
As a result, the data became more reflective of the target area’s composition and lithology. It
was also possible to compare the retrieved endmembers of SWIR bands to reference spectra
from the spectral library of the United States Geological Survey (USGS). This approach was
used to reveal minerals using SWIR data [14,44].

On 23 June 2015, the Sentinel-2A satellite was launched, and the first data was
taken a few days later. Sentinel-2 sensors gather data in the VIS/NIR, and SWIR, TIR
wavelength ranges. These bands have a spatial resolution of 10–60 m. Sentinel-2 cap-
tures 13 bands in the VIS/NIR and SWIR spectrum. The VIS/NIR bands: blue B2
(490 nm), green B3 (560 nm), red B4 (665 nm), and infrared B8 (842 nm) have a 10 m
pixel size, whilst the coastal band B1 (443 nm) has a 60 m pixel geometry. The pixel
sizes of the SWIR bands (B11: 1610 nm, B12: 2190 nm) are both 20 m. Sentinel-2 scene
(S2A_MSIL1C_20211221T073331_N0301_R049_T38QNM_20211221T084355) is delivered as
zip-compressed files in Sentinel’s own SAFE format. The spectral bands are stored as jpg
files in this SAFE file in three different geometric resolutions (10 m, 20 m, and 60 m. The
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jpg files of bands B2, B3, B4, and B8 with a spatial resolution of 10 m, and B11 and B12 with
20 m are stacked into a single GeoTIFF file of a uniform pixel size of 10 m. A subset of these
data was conducted during preprocessing using SNAP software in order to minimize the
computational time and the data.

To analyze multispectral data, several methods have been used, including PCA,
the utilization of band ratios, relative absorption band depth (RBD; 24), and mineral
indices [11,12,22], as well as spectral analysis. Band ratios have been employed to investi-
gate spectral differences between bands and to reduce topographic impacts [7,8,23,45]. The
intensity of the hydrothermal activity can be used to reveal hydrothermal mineral assem-
blages [13,28]. Sub-pixel spectral classifications can thus be attributed to specific important
hydrothermal minerals associated with propylitic (epidote, chlorite, calcite), phyllic (mus-
covite, sericite, illite), argillic (montmorillonite, kaolinite, dickite), and advanced argillic
(alunite–pyrophyllite) alteration zones.

The band ratio is a transformation procedure for enhancing spectral differences in
remote sensing data. It works by dividing pixels from one band by pixels from another
band [46] and sometimes dividing bands of the numerator or/and denominator after
mathematical calculation. The goal of this technique is to reveal the spectral characteristics
of material so that variables on Earth’s surface can be distinguished better [47]. Band ratios
can be used to distinguish between soils, rock types, and land use effects [48–51]. The
ENVI software and ArcGIS software packages v. 10.8 are utilized in the present study. The
PCA process has been used to transform a large number of correlated spectral bands into
a smaller number of uncorrelated spectral bands, which is a statistical approach used in
image transformation. In the mapping of hydrothermal potential alteration zones, the
selective “principal components” (PCs) technique has been frequently used [5,15]. Based on
the eigenvectors of the selected bands, statistical parameters were examined to determine
which PC image could be utilized to emphasize the particular minerals.

Spectral mapping was used to differentiate mixed pixels from unwanted pixels during
the mineral extraction process. This enabled the mapping and identification of possible
minerals based on the end member’s spectral signature in comparison to those in the spec-
tral library [5,14]. The MNF transformation [52] was used to derive a PPI that represented
the input image’s most spectrally pure pixels. This was utilized to detect endmembers
using n-D visualization for mineral identifications based on spectral classifications. Using
MNF and PPI, the n-D visualize viewer can locate, characterize, cluster (group), and pick
the purest pixels (endmembers) in n-spaces. Each class indicated a mineral with a high
absorption capacity.

Digital overlay approaches have been utilized to create integrative maps using Geo-
graphic Information System (GIS) technologies [28,29,53]. Predictive maps have also been
created using knowledge-driven systems using weighted overlay analysis of ArcGIS that
integrate multi-criteria decision-making based on expert judgment [30,54]. Each evidential
image was reclassified into five classes using the Natural Breaks method; the class of high
intensity of hydrothermal alteration is given “5” and the opposite given “1. As a result, the
final prospective map can be created by combining several evidential maps [54].

4. Results
4.1. Lithologic and Structural Characteristics

Goethite, hematite, and jarosite are examples of iron minerals that have diagnostic
spectral characteristics near 0.43 m, 0.65 m, 0.85 m, and 0.93 m, which are close to Sentinel-
2 band 1, band 4, band 8/8A, and band 9 [55]. Moreover, both hematite and jarosite
exhibit reflectance characteristics near 0.72 m and 0.74 m, which are both close to Sentinel-2
band 6. Hematite also displays a distinguishing absorbance pattern at a wavelength of
0.88 m, which corresponds to Sentinel-2A band 8A. Thus, Sentinel-2 band ratios of 6/1,
6/8A, and (6 + 7)/8A were utilized to distinguish hematite + goethite, hematite + jarosite,
and a mixture of iron-bearing minerals (see more information on iron mineral spectra in
Ge et al. [55]) from felsic or sedimentary deposits in red from basement mafic to intermediate
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variations in cyan (See Figure 3a) as they contain ferromagnesian minerals [2]. Sentinel-
2 (Figure 3b) uses 11/8A, 3/4, and (6 + 7)/8A of ferric, ferrous, and a combination of
iron-containing minerals to indicate likely areas rich in hydrothermal alteration in purple,
mafic varieties in yellow, and sedimentary deposits in the northeast in red-orange, but
vegetation in green. Images from the Sentinel-2 satellite (Figure 3c) 11/12, 11/8A, and
(6 + 7)/8A displayed white-toned patches in HAZs [2]. The study’s heights (Figure 3d) vary
from 789 to 933 m above sea level, and the majority of the structural patterns are visible at
these elevations.
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4.2. Hydrothermal Alteration Zones
4.2.1. Landsat-8

Band ratios are used to enhance hydrothermally altered zones and the oxidation zone
that reflects the abundance of certain minerals. Band ratios 6/7, 6/2, and 6/5 * 4/5 [16]
were employed to improve the identification of rocks and minerals based on content
mineralogy (Figure 4a,b). Band ratio 6/7 is susceptible to OH-bearing minerals, and band
ratio 6/2 highlights rocks rich in FeO composition, so mafic igneous rocks have lower
reflectance than other igneous rocks; and band 6/5 * 4/5 is useful to distinguish between
mafic and non-mafic rocks based on their sensitivity to high Fe-bearing aluminosilicate
concentration. Iron-bearing minerals and OH-bearing minerals are abundant in these areas.
Sultan et al. [16] demonstrated that rationing in the 6/5 * 4/5 band is possible. Sultan
et al. [16] use the sensitivity of the ratio to Fe-bearing aluminosilicates to distinguish mafic
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rocks (bluish color) from other rocks. Ramadan et al. [56] revealed the potential locations of
hydrothermal mineral deposits in 6/7, 6/5, and 5 (Figure 4c,d). Using the band ratios 6/7,
4/2, and 5/6 in R, G, and B [7], felsic rocks are colored green, mafic rocks are colored blue,
and areas of extensive hydrothermal alteration are colored light pink, yellow, and light red
(Figure 4a,c,e, respectively). The 6/7 ratio emphasizes hydrothermal alteration and surface
weathering oxides and hydroxides [23,57,58]. Clay minerals have a high Band 6 reflectance
and a strong Band 7 absorption [10,58]. The 4/2 ratio is important for detecting iron
oxide-bearing rocks (Figure 4e) due to considerable absorption in Band 2 and reflectance
characteristics in Band 4 for iron oxides [7]. The felsic rocks in 4/2 appear in green color.

1 

 
 

Figure 4. (a) Band ratios 6/7, 6/2, and 6/5 * 4/5, (b) reclassify of 6/7, 6/2, and 6/5 * 4/5, (c) 6/7,
6/5, 5 of Ramadan; (d) reclassify of 6/7, 6/5, 5; (e) Band ratios composite (6/7, 4/2, 5/6) Abrams;
(f) reclassify of (6/7, 4/2, 5/6).
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4.2.2. Sentinel-2

As shown in (Figure 5a), [59] offered three band ratios in R, G, and B: 11/12, 11/8, and
4/2. These band ratios were utilized in this research to distinguish the alteration zones.
These ratios are proportional to the occurrence of OH-bearing minerals (11/12), iron oxides
(4/2), and the band ratio 6/5, which is utilized to enhance the presence of ferrous oxides.
Metavolcanics are colored green in this ratio, indicating high ferrous oxide content. Some
wadi deposits have a purple tint due to the occurrence of clay minerals and iron-bearing
minerals in high concentrations. The locations of probable HAZs are revealed in a yellow
color due to their high presence of clay and ferrous oxides.
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To improve the identification of rock units based on mineral content, ratio bands of
11/12, 11/2, and 11/8 * 4/8 [16] were used (Figure 5b,c). Band ratio 11/12 is amenable to
OH-bearing minerals; band ratio 11/2 is associated with the content of opaque minerals
(e.g., FeO) in rocks, so mafic rock types have lesser reflectance than some other igneous
rocks; and band 11/8 * 4/8 can be used to distinguish between mafic and non-mafic rocks
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based on their sensitivity to high Fe-bearing aluminosilicate concentration. Iron-bearing
minerals and OH-bearing minerals are widespread in such regions.

4.2.3. ASTER

The OH-bearing minerals have reflectance at 1.656 µm (band 4). The argillic minerals
(montmorillonite and kaolinite) contain absorption features at 2.205 (band 6), and kaolinite
display double-shaped absorption features around 2.165 (band 5) and 2.205 (band 6), in
contrast to phyllic minerals (muscovite and illite), which have a single deep absorption
feature at 2.205 (band 6) (Figure 6; from Mars and Rowan [3]). Propylitic minerals with a
2.335 m absorption characteristic. This most likely matches minerals like calcite and chlorite
that contain CaCO3 or Mg-OH [3].
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Figure 6. Mineral spectra of minerals and ASTER bands.

The ASTER band ratios 4/6, 4/5, and 4/7 boost argillic and sericitic alteration zones,
respectively [6]. Furthermore, in these images, the ASTER– 4/5 band ratio defines the
advanced argillic alteration (e.g., alunite and dickite). As a result, the combination of band
ratios 4/6, 4/5, and 4/7 in R, G, and B of ASTER is utilized to depict HAZs. Figure 7
depicts the classification of these combined ratios into five ranks of hydrothermal alteration,
with the highest rank (0.60–0.64) in red, denoting locations with both argillic and sericitic
regions of alteration.

Figure 7c,d shows the results of merging band ratio images 4/6, 7/6, and (5 + 7)/6.
Regions richer in white mica were identified using the band ratio of 7/6. Using such ratios,
locations rich in Al-OH minerals are depicted in a white tone. The largest band ratios of
4/6 and 7/6 refer to the phyllic zone [60], and the values of (5 + 7)/6 are also true. The
green-colored area has less hydrothermal alteration than the first, but pink-colored portions
have the least amount of HAZs. Band ratios 4/6 in this composite highlight the white tone’s
alteration zones (Figure 7). Furthermore, band ratios of 7/6 were applied to determine the
areas of an abundance of Al-OH minerals as white mica (muscovite) as revealed in white
tone, which occupies the middle part of the present study area (Figure 7).
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The contrast between hydrothermally altered zones was emphasized by the combina-
tion of band ratios (5 + 7)/6, (4 + 6)/5, and (7 + 9)/8 in R, G, and B, respectively (Figure 8a).
This allowed areas richer in phyllic, argillic [6,61], and propylitic minerals to be detected,
respectively. In this combination, yellow areas revealed argillic and phyllic hydrothermal
alterations. PCA was used to map areas of argillic hydrothermal alteration using ASTER
bands 4, 5, and 6b. Table 1 shows the eigenvector values obtained using the specific bands
(B4, B5, and B6) for the PCA method (Table 1). PC2 indicates a negative loading of band 4
(−0.780) and a positive loading of bands 5 (0.605) and 6 (= 0.157) according to eigenvector
loadings. The locations of hydrothermal alteration are revealed in a white tone when
negated (multiplied by −1) PC2 is displayed in greyscale (Figure 8b).
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Figure 8. ASTER (a) band ratios composite (5 + 7)/6, (4 + 6)/5, and (7 + 9)/8 in R, G, and B;
(b) OHI, KAI, and ALI in R, G, and B; (c) Negated PC2 of selected bands 4, 5, and 6; (d) subset
of “c” image overlain by extracted interest pixels of Scattergram of the ASTER derived bands
5 + 7/6 ‘Al-OH content’ vs. bands 5/7 (outside absorption) ‘Al-OH composition’ (Cudahy et al.
2008) in “(e)”. The AL-OH area rich in minerals marked in red are consistent with the areas of high
hydrothermal alteration.
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Table 1. PCA of selected bands 4, 5, and 6.

Eigenvector Band 4 Band 5 Band 6 Eigenvalue

PC1 −0.5646 −0.57235 −0.59468 99.923

PC2 −0.7798 0.605985 0.157136 0.057

PC3 −0.27043 −0.55245 0.788457 0.021

The band ratios OHI, KAI, and ALI were integrated into R, G, and B to distinguish be-
tween potential sites of argillic and phyllic alteration. The areas of increased hydrothermal
alteration are congruent with structural features associated with granitic rocks, according
to the classifications of these combined values. Each fraction’s greatest value is denoted
by a white tone. The minerals indices OHI, KLI, and ALI were displayed in R, G, and B,
respectively (Figure 8c), and locations with abundances of the three indices of OHI, KAI,
and ALI are emphasized in white tone.

OHI bearing altered minerals Index (OHI) = [band 7/band 6] × [band 4/band 6]
Kaolinite Index (KLI) = [band 4/band 5] × [band 8/band 6],
Alunite Index (ALI) = [band 7/band 5] × [band 7/band 8]
A subset image of PC2 (Figure 6d) is overlain by extracted interest pixels derived

from the scattergram (Figure 6e). A two-dimensional (2D) scatter plot of band ratios
(5 + 7)/6 (Al-OH content) vs. 5/7 (Al-OH composition) was used to explore ASTER Al-OH
composition [62]. The diagram’s extreme far bottom right side indicated regions with no
Al-OH minerals, whereas the extreme top left side of the diagram revealed places with no
Al-OH minerals. Cudahy et al. [62] found that plotting band ratios (5 + 7)/6 (Al-OH content)
vs. 5/7 (Al-OH composition) clearly separated areas rich in Al-OH from those with no
Al-OH, confirming prior findings. Higher values, indicating higher Al-OH concentrations,
are highlighted in red and correspond to locations of significant hydrothermal alteration.
As illustrated by the green in Figure 8e, this area was clearly delimited by lower Al-OH
concentration and higher Mg-OH content.

5. XRD Analysis of Hydrothermal Alteration Zones

Samples were taken from the two main alteration zones (Figure 9), and 21 represen-
tative specimens were selected for XRD analysis at the National Research Center (Egypt).
The results of the analyses revealed the presence of silica minerals (mostly quartz), gypsum,
anhydrite, kaolinite, illite, clinochlore, and hematite, with a small percentage of microcline,
calcite, and halite (Tables 2 and 3). Clay minerals (kaolinite, illite, sericite) in these zones
are mainly the products of the decomposition of plagioclase feldspar, and the presence
of ferric iron oxides and hydroxides (hematite, goethite) is related to the weathering of
ferromagnesian minerals (mostly hornblende and clinopyroxene). The abundance of sul-
fates in the form of gypsum and anhydrite is highly indicative of the former presence of
disseminated sulfide phases, which is compatible with these zones being either mature
gossans or conduits within the feeder zones beneath massive sulfide mounds.
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Table 2. The results of XRD analysis; see Figure 9b for the location map.

Sample Name Compound Name Chemical Formula Vol %

A1

Quartz SiO2 25.8
Gypsum CaSO4·2H2O 61.9

Illite K0.5(Al,Fe,Mg)3Si,Al)4O10(OH)2 9.7
Anhydrite CaSO4 2.6

A2

Quartz SiO2 5.7
Gypsum CaSO4·2H2O 90.2
Kaolinite Al2Si2O5(OH)4/Al2O3·2SiO2·2H2O 3.0

Anhydrite CaSO4 7.1

A3

Quartz SiO2 43.1
Kaolinite Al2Si2O5(OH)4/Al2O3·2SiO2·2H2O 18.9

Illite KAl2Si3AlO10(OH)2 31.5
Anhydrite CaSO4 6.6

A4

Quartz SiO2 62.50
Gypsum CaSO4·2H2O 12.30

Illite KAl2Si3AlO10(OH)2 18.8
Hematite Fe2O3 6.4
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Table 2. Cont.

Sample Name Compound Name Chemical Formula Vol %

A5

Quartz SiO2 41.5
Gypsum CaSO4·2H2O 24.9

Illite KAl2Si3AlO10(OH)2 3.1
Kaolinite Al2Si2O5(OH)4/Al2O3·2SiO2·2H2O 17.1
Hematite Fe2O3 2.0

Clinochlore Mg5Fe0·2Al2Si3O10(OH)8 11.3

A6

Quartz SiO2 62.8
Hematite Fe2O3 3.1

Illite KAl2Si3AlO10(OH)2 24.5
Anhydrite CaSO4 9.6

A7

Quartz SiO2 47.2
Gypsum CaSO4·2H2O 21.2

Illite KAl2Si3AlO10(OH)2 10.6
Halite NaCl 3.2

Bassanite CaSO4·0.5H2O 17.7

A8
Quartz SiO2 20.0

Gypsum CaSO4·2H2O 72.5
Illite KAl2Si3AlO10(OH)2 7.6

A9
Quartz SiO2 70.8

Gypsum CaSO4·2H2O 21.2
Calcite CaCO3 8.0

A10

Quartz SiO2 38.3
Gypsum CaSO4·2H2O 35.8

Illite KAl2Si3AlO10(OH)2 20.1
Anhydrite CaSO4 5.9

A11

Quartz SiO2 48.4
Gypsum CaSO4·2H2O 18.1

Illite KAl2Si3AlO10(OH)2 15.9
Anhydrite CaSO4 4.9
Hematite Fe2O3 4.1
Kaolinite Al2Si2O5(OH)4/Al2O3·2SiO2·2H2O 8.6

A12

Quartz SiO2 57.3
Albite NaAlSi3O8 10.2
Illite KAl2Si3AlO10(OH)2 6.4

Microcline KAlSi3O8 13.6
Calcite CaCO3 12.4

Table 3. The results of XRD analysis; see Figure 8b for the location map.

Sample Name Compound Name Chemical Formula vol %

B1

Quartz SiO2 37.5
Gypsum CaSO4·2H2O 28.1
Kaolinite Al2Si2O5(OH)4/Al2O3.2SiO2·2H2O 28.1

Illite KAl2Si3AlO10(OH)2 3.4
Bassanite CaSO4.0.5H2O 2.8

B2

Quartz SiO2 11.4
Gypsum CaSO4·2H2O 73.0

Albite NaAlSi3O8 8.7
Calcite CaCO3 7.0
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Table 3. Cont.

Sample Name Compound Name Chemical Formula vol %

B3

Quartz SiO2 65.3
Kaolinite Al2Si2O5(OH)4/Al2O3·2SiO2·2H2O 9.8
Calcite CaCO3 8.2

Hematite Fe2O3 0.8
Microcline KAlSi3O8 15.9

B4
Quartz SiO2 4.3

Gypsum CaSO4·2H2O 91.8
Kaolinite Al2Si2O5(OH)4/Al2O3·2SiO2·2H2O 3.8

B5
Quartz SiO2 29.9
Albite NaAlSi3O8 70.1

B6

Quartz SiO2 3.1
Gypsum CaSO4·2H2O 77.0
Kaolinite Al2Si2O5(OH)4/Al2O3·2SiO2·2H2O 19.2
Anatase TiO2 0.6

B7

Quartz SiO2 75.3
Gypsum CaSO4·2H2O 4.5

Illite KAl2Si3AlO10(OH)2 12.8
Kaolinite Al2Si2O5(OH)4/Al2O3.2SiO2·2H2O 5.9

Anhydrite CaSO4 1.5

B8

Quartz SiO2 47.3
Gypsum CaSO4·2H2O 21.3
Kaolinite Al2Si2O5(OH)4/Al2O3.2SiO2·2H2O 2
Calcite CaCO3 3.2
Albite NaAlSi3O8 4.6

Minamite (Na,Ca)1-xAl3(SO4)2(OH)6 2.4
Halite NaCl 0.8

B9

Quartz SiO2 31.3
Gypsum CaSO4·2H2O 49.2
Kaolinite Al2Si2O5(OH)4/Al2O3·2SiO2·2H2O 6.4

Illite KAl2Si3AlO10(OH)2 4.1
Albite NaAlSi3O8 8.9

6. Mineral Potential Map

The final potential location of mineralization was created by combining multi-criteria
data. This allows for revealing the prospective areas of hydrothermal mineralization
associated with hydrothermal alteration zones; thus, we use a variety of ways to emphasize
alteration zones. The results of remote sensing analysis data were integrated using GIS
approaches (band ratio, PC, mineral indices). These images were quantified and divided
into various zones (different probability values). To obtain the prospective or promising
map of mineral exploration, a succession of evidential maps is used. The approach of
merging data in a GIS enabled the promotion and identification of the best exploration
and mining locations. This aided exploration and the prediction of new mineralized zones.
The recent innovative procedures that use recent digital technologies and creative geo-
information approaches have allowed for the detection of the optimal mineral resource
area. Multiple datasets have been aggregated and integrated since the birth of the GIS to
locate new mineralized zones [63] reliably.

Using a GIS-based overlay method, the likely locations of hydrothermal mineral
deposits were revealed by combining several evidence hydrothermal alteration maps
(Figure 9). The mineral prospective map is divided into six groups (Figure 9a) based on
their prospective for hydrothermal alteration amplitude: very low, low, moderate, good,
very good, and excellent, and covers 31.36, 28.22, 20.49, 10.99, 6.35, and 2.59 % percent
of the research region, respectively. The red color indicates the most promising mineral
deposit zone. The resulting map (Figure 9) demonstrates a pattern of coherence in the
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hydrothermal-ore deposits found in the area’s mines. Many sections of the potentially high
zone, meanwhile, were restricted to wadi deposits and areas of sedimentary cover in the
northeast of the research area.

7. Discussion

The use of various methodologies for three different sensors, including OLI, Sentinel-
2, and ASTER data, clearly shows that hydrothermal alteration processes dominate the
examined area. This is because identifying HAZs through fracture/fault zones is required
when exploring mineral deposits that originated from hydrothermal processes [2,5,8]. As a
result, the severity of the alteration can help determine where the ore body is located.

The areas of HAZs (Figure 4) were identified using band ratios generated from OLI
sensors such as 6/7, 6/2, and 6/5 * 4/5 [16], 6/7, 6/5, 5 [56], and 6/7, 4/2, 5/6 [7]. Because
hydrothermal activities alter the physical and chemical characteristics of country rocks, they
change. Band ratio 6/7 emphasized OH-bearing minerals such as kaolinite–smectite, micas,
and amphiboles [23]. Iron-bearing minerals, on the other hand, are delineated utilizing
band ratios such as 4/2, 6/5, and 6/5 * 4/5 [16,17]. Furthermore, applying Sentinel-2 band
ratio 3/4 characterizes the ferrous iron, the ferric oxides (Fe3+) represented by 11/8A, and
ferrous iron (Fe2+) represented by (3/4) [55]. In addition to Sentinel-2 band ratios, 11/12
marks the OH-bearing minerals [2]. This is because the integration of iron-bearing minerals
mixed with OH-bearing minerals from different sensors (OLI and Sentinel-2) characterized
the gossans and iron-rich zones [28,64], as displayed in Figures 3 and 4.

Following that, the SWIR ASTER data was analyzed using various band ratios to look
for areas of hydrothermal alteration, comprising 4/6, 4/5, and 4/7; 4/6, 7/6, and (5 + 7)/6;
(5 + 7)/6, PC2, MNF3; OHI, KAI, and ALI, and PC2 of PCA OHI, KAI, and ALI and Calcite.
Delineation of OH–bearing minerals was possible because of the use of a band ratio of 4/6
(λ = 1.656/2.209 m) (Figure 7). The 4/6 ratio is excellent for accentuating hydrous minerals
like kaolinite, illite, and montmorillonite because they have a high absorption signature
in band 6 and a high reflectance in band 4. Furthermore, ASTER band ratios 4/5 and 4/7
boost argillic and sericitic alteration zones, respectively [2,6]. The white tone in Figures 7
and 8 highlights areas of hydrothermal alteration, which for the most part, aligns with
structural connections.

The relative band depth (5 + 7)/6 was efficiently adopted (Figures 7c and 8a) for
excellent detection of Al–smectite, muscovite, sericite, and illite [2,62,65], and Al/Fe-OH
minerals, such as muscovite, kaolinite, and jarosite [66]. Moreover, ASTER bands 5 + 7/6
‘Al-OH content’ vs. bands 5/7 (outside absorption) ‘Al-OH composition’ [62]. This diagram
(Figure 8c) shows that the selected red pixels are rich in AL-OH, but the lowest ones are in
green. The AL-OH area rich in minerals that are marked in red is consistent with the areas
of high hydrothermal alteration.

Using GIS-based weighted overlay analysis to confirm the findings of band ratios and
mineral indices acquired from Landsat-OLI, Sentinel-2, and ASTER data that revealed iron-
containing and Al-OH-carrying minerals revealed useful information regarding places rich
in gossans. Such gossans that consist of limonite, goethite, hematite, malachite, and azurite
reveal the existence of massive sulfide; porphyry and skarn deposits [64] are consistent
with areas of high hydrothermal alteration intensity.

8. Conclusions

The Khnaiguiyah area, Saudi Arabia, is tested to delineate the area of probable mineral
resources. The ability of multispectral remote sensing data to detect and characterize
the hydrothermal alteration minerals is significant for mineral exploration. The present
study used ASTER, Sentinel-2, and Landsat-OLI to identify potential areas of HAZs. The
HAZs generated from these various multispectral sensors were combined through GIS to
highlight the potential areas of HAZs. The highest grade of HAZs, which covers about
2.59 %, is compatible with areas of significant hydrothermal changes and has been verified
with areas of gossans that revealed the presence of sulfide minerals.
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