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Abstract: The Ahetala granodiorite is located in the western section of the South Tianshan Oro-
genic Belt (STOB), which is of great significance regarding the dispute on the closing date of
the South Tianshan Ocean (STO) and the tectonic evolution of STOB. To determine the tectonic
setting and petrogenesis, the study of petrography, electron probe microanalysis (EPMA), LA-
ICP-MS zircon U–Pb geochronology, and major and trace elements analyses are carried out for
Ahetala granodiorite. Based on LA-ICP-MS U–Pb zircon dating, the granodiorite was emplaced at
282.1 ± 1.3 Ma (MSWD = 1.11). Geochemically, Ahetala granodiorite is characterized by metaluminous
(A/CNK = 0.86–0.87), rich alkali (K2O + Na2O = 6.80–7.13), which belongs to high-K calc-alkaline
I-type granite. They are enriched in LREE and depleted in HREE (LREE/HREE = 9.02–13.89) and
exhibit insignificant Eu anomalies (δEu = 0.94–0.97). Ahetala granodiorite is enriched in large ion
lithophile elements (e.g., K, Sr, Ba) and depleted in high field-strength elements (e.g., Ta, Ti, Nb, P).
The Nb/Ta values (10.97–18.10), Zr/Hf values (39.41–40.19), and Mg# (54.87–56.02) of the granodior-
ite and the MgO content of biotites (13.42–14.16), the M value (M = Mg/(Mg + Fe2+)) of amphiboles
(0.68–0.75), suggest that granodiorite originates from the crustal contamination of the mantle-derived
magmas. Combined with regional geological background, previous research, and the nature of the
Ahetala granodiorite, we suggest that Ahetala granodiorite was emplaced at a transitional stage of
the volcanic arc (syn-collision) to post-collision setting and the South Tianshan Ocean was closed in
the Early Permian.

Keywords: granodiorite; zircon U–Pb geochronology; geochemistry; electron probe microanalysis
(EPMA); Permian; South Tianshan Orogenic Belt; tectonic evolution

1. Introduction

The Central Asian Orogenic Belt (CAOB) is one of the essential metallogenic belts
in the world and was developed by the closure of the Paleo-Asian Ocean [1–5]. Based
on the evidence of ophiolite mélanges, high-ultrahigh pressure metamorphic belts, etc.,
different studies indicated that the Ancient Tianshan Ocean (Terskey Ocean), the North
Tianshan Ocean (Junggar Ocean), and the South Tianshan Ocean (STO) together constitute
the southwestern part of the Paleo-Asian Ocean [1,6,7]. The formation, evolution, and
extinction of the Paleo-Asian Ocean were accompanied by the multiple accretionary and
collisional events of many landmasses (Siberia, Tarim, etc.). The South Tianshan Orogenic
Belt (STOB) was formed after the northward subduction of the Tarim Craton underneath
the Yili-Central Tianshan plate and the closure of the STO [8–14]. The formation of the STOB
may mark the termination of the central Asian accretionary orogenesis because the Tarim
Craton is regarded as the last plate on CAOB following the final closure of the STO [15,16].
Therefore, it is critical to recognize the history of STO.
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In order to identify the petrogenesis and tectonic setting, past studies used different
methods and techniques to analyze ophiolite mélanges, high-ultrahigh pressure metamor-
phic minerals, fossils, detrital zircons, granites, etc., in STOB. It is widely accepted that the
ophiolite is the direct product of the subduction and collision of oceanic and continental
plates, so ophiolite has been used to analyze the subduction of the oceanic lithosphere and
the formation and evolution of the arc basin system at the continental margin. According to
Qiqijianake [17], Baleigong [18], Kulehu [19], Jigen [20], and Misibulake, Serikeyayibulake,
Aertengkesibulake, Changawuzibulake [21], etc., ophiolite mélanges have been discovered
in the STOB (Figure 1). It can be seen that these ophiolite mélanges are aged between
390 and 450 Ma, which implies that the Paleozoic ocean basin still existed in the STO
during the Silurian to Devonian. Eclogites from the ultra-high pressure metamorphic
belt in the southwest Tianshan confirm that the oceanic crust subducted at the Permian
(280–290 Ma) [22]. Radiolarian fossils in the Wupatarkan and Aiketike group indicate that
the ancient ocean basin may have existed in the STO during the Permian period [23,24].
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In addition, different studies have mainly focused on the granitic magmatic activ-
ity in STOB. The Chuanwulu igneous complex (286.4 ± 2.5 Ma [25]), Baleigong granite
(273 ± 2 Ma [26], 291 ± 3 Ma, 283 ± 3 Ma [27]), and Huoshibulake granite (261.5 ± 2.7 Ma [28],
276 ± 4 Ma [29]), etc., have been discovered in the STOB (Figure 1). The formation of granite
was closely related to the tectonic environment and geodynamic process. It is believed that
Late Paleozoic collisional granites in this area were formed by the collision between the
Tarim Craton and Yili-Central Tianshan plate. However, most of these granites are A-type
granites. There are few reports concerning the research of I-type granites in the STOB,
which restricts a comprehensive understanding of the tectonic evolution in the STO. The
most fundamental question regarding the closure time of the STO is still under debate. Past
studies constrain the three possible closure time of STO: prior to the Permian [25,30–35],
during the Permian [10,23,24,26,36–38], and during the Triassic [15,22,39–41].

The I-type granodiorite intrusion was discovered at the Ahetala copper deposit in
the STOB, which was related to the subduction of the Tarim plate and closure of the STO.
To add some insightful information to the above disputes and comprehensively discuss
the tectonic evolution and closing time of STO, we systematically sampled and analyzed
zircon U–Pb ages, the chemical composition of rock-forming minerals, and the major, trace
elements of the Ahetala granodiorite.

2. Geological Setting

The CAOB (i.e., the Altaid Collage [5]) is the largest Phanerozoic accretionary oro-
gen in the world. It is sandwiched between the Eastern European, Siberian, Tarim, and
North China Cratons (Figure 1a). Traditionally, the CAOB is subdivided into eastern and
western parts by taking 88◦ E as the boundary. The western CAOB comprises the Altai
Mountain, Junggar Basin, Tianshan Mountains, and Tarim Basin [25,52]. The Tianshan
Mountains are located in the southern margin of the western CAOB (Figure 1a), extending
for ca. 2500 km from the Aral Sea in Uzbekistan to north Xinjiang in China [35,48]. Tec-
tonically, the Tianshan Mountains can be divided into four geological units from south to
north: (1) northern margin of Tarim Craton, (2) STOB, (3) Central Tianshan Block (CTB),
and (4) North Tianshan Orogenic Belt (NTOB). The STOB is bounded by the Yili-Central
Tianshan Suture Belt in the north and the North Tarim Fault in the south (Figure 1b) [25].

The STOB is regarded as a collisional belt and separates the Central Tianshan plate
and the Tarim Craton [1,8,9,25,53], which is related to the closure of the STO. Many high-
ultrahigh pressure metamorphic rocks (blueschist-, eclogite-, and greenschist-facies meta-
sedimentary rocks) have been found in Paleozoic ophiolites/ophiolitic mélanges along
the STOB, which has a connection with the closure of the STO [10,27]. The emplacement
date of the basic-ultrabasic igneous rocks in ophiolite mainly from the Silurian to the
Devonian periods.

The base of the STOB in China is the metamorphic rocks of the Paleo-Proterozoic
Xingditagh Formation, which is covered by the Middle Proterozoic Akesu Formation [54].
The South Tianshan mainly includes the Cambrian to Carboniferous and Cenozoic strata [55].
Early Paleozoic limestone, clastic sedimentary rocks, and volcanic rocks are widespread
in the STOB. The Cambrian, Ordovician, and Silurian strata are mainly carbonate and
clastic rocks. The Devonian strata are mainly clastic sedimentary rocks, volcanic rock, and
carbonatite. The Carboniferous strata are mainly sandstone, shale, slate, and limestone.

Most of the outcrop of igneous rocks are granitiods that cover almost 5% of the
total STOB [25]. The emplacement age of most intrusive rocks ranges from the Late
Carboniferous to Early Permian. The STOB was uplifted by collision and orogeny. In
this period, the orogenic magmatic activity gradually decreased and the post-orogenic or
non-orogenic magmatic activity increased. From the Heiying mountain to Aheqi county,
the intrusive rocks often come into contact with surrounding rocks, thus forming skarn.
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3. Local Geology and Petrography

The study area is located about 50 km to the northwest of Aheqi County, Kirgiz
Autonomous Prefecture, Xinjiang Uygur Autonomous Region of China. The Ahetala
granodiorite is located in the south of the Kokshal anticlinorium and at the juncture of
the Toshihan fault and the Tatiertashiqiaoke inverse fault. The granodiorite is related
to the mineralization of the skarn copper deposit. The strata in the study area mainly
include: (1) the bioclastic limestone and marble of the Tuoshihan Formation. The marble
and granodiorite contact in the center of the study area, which is closely related to the
mineralization of the copper deposit; (2) the conglomerate, muddy siltstone, and silty
mudstone of the Wuqia formation [56,57].

The study area consists of a monoclinal structure with SE dip angle of 15–30◦. Several
NNW faults are developed and have a relatively significant influence on the area. The
Ahetala granodiorite is exposed as stock intrudes into the marble of the Toshihan Formation.
The east of the granodiorite is covered by the conglomerate of the Wuqia Formation [56,57]
(Figures 1c and 2).

Figure 2. Geological map of Ahetala granodiorite with its main lithologic units (modified from [56,57]).
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The outcrops define an oval shape with an area of ~0.21 km2. The skarn is observed
at the contact belt between the intrusion and surrounding rock. All specimens were sam-
pled at different locations along the strike of Ahetala granodiorite. According to field
(Figure 3a) and microscopic observations, the intrusion is granodiorite. Unweathered
samples (Figure 3b) in this study show a medium-fine-grained texture and massive
structure and are mainly composed of plagioclase (~45–50 vol.%), potassium feldspar
(~15–20 vol.%), quartz (~20–25 vol.%), hornblende (~5 vol.%), and biotite (~5 vol.%) with
accessory magnetite, zircon, apatite, and titanite (Figure 3c–f). Plagioclase grains are white,
euhedral, or hypidiomorphic, with a large diameter, and generally display oscillatory
zoning (Figure 3c–f). Potassium feldspars are colorless and have a typical polysynthetic
twin (Figure 3c,d). Biotite is brown, plate-like, and shows a clear cleavage {001} (Figure 3e,f).
Hornblende is light brown and fusiform (Figure 3d,f).
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texture. Abbreviations are as follows: Q—Quartz; Bi—Biotite; Pl—Plagioclase; An—Anorthite;
Kfs—Potassium feldspar; Hbl—Hornblende; Ap—Apatite.
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4. Analytical Techniques
4.1. Zircon U–Pb Dating

Zircons were separated from five samples of granodiorite for Laser Ablation-Inductively
Coupled Plasma-Mass Spectrometer (LA-ICP-MS) U–Pb age dating. The zircon grains were
separated through conventional density and magnetic separation techniques and carefully
picked under the binocular microscope. High quality zircons were selected, mounted in
epoxy resins, and finally, polished for analysis. All zircons were studied under transmitted
and cathodoluminescence (CL) imaging to observe the morphology and internal structures
and to select spots for U–Pb dating. The above work was completed at Beijing GeoAnalysis
Co., LTD. (Beijing, China).

The zircon U–Pb dating was tested with an X Series 2 ICP-MS, analyzed with 32 µm
laser spot diameter at a frequency of 6 Hz, and housed at the LA-ICP-MS Laboratory of the
Institute of Earth Sciences of the China University of Geosciences (Beijing, China). Zircon
91 500 was used as the reference sample for U–Pb dating and optimizing the instrument.
A standard zircon mud tank was used for the monitoring sample. The experimental data
were processed by ICPMSDataCal software [58].

4.2. Mineral Geochemistry

Fresh samples of granodiorite were selected for making thin sections without coverslip.
The surface of the thin section was coated with carbon for better conductivity in the
experiment. The chemical composition of rock-forming minerals in granodiorite was
analyzed with EPMA-1600 at the China University of Geosciences (Beijing, China). During
the electron probe microanalysis, the acceleration voltage was 15 kV and the beam current
was 1 × 10−8 A. All the standard samples conformed to the SPI standard of the USA
in the experiment.

4.3. Whole-Rock Analyses

Five fresh samples of granodiorite were selected for whole-rock analysis. Major
elements were analyzed by Leeman Prodigy ICP-OES, and trace and rare-earth elements
were analyzed by Agilent Technologies ICP-MS-7500a at the Experimental Testing Centre
of the Institute of Earth Sciences of the China University of Geosciences (Beijing, China).
The final results were processed using Agilent 7500a software.

5. Results
5.1. Zircon U–Pb Geochronology

The results of zircon U–Pb dating from the Ahetala granodiorite are shown in Table 1.
In CL images (Figure 4a), twenty zircons are colorless, euhedral, and prismatic with
clear oscillatory zoning and no inclusions. The lengths of zircon are mostly in the range
100–150 µm, and their length/width ratios are close to 2:1. AHTL-19 displays discordant older
206Pb/238U age, and it is likely to be a xenocrystal. In addition, AHTL-2, -4, -7, and -13 are all
below the concordia line of U–Pb zircon, which is caused by lead loss. The concordance
of AHTL-2, -4, -7, -13, and -19 are less than 95%. In order to improve the reliability and
accuracy of the experimental results, AHTL-2, -4, -7, -13, and -19 were not involved in
zircon U–Pb dating (Figure 4b). The zircon samples show 280.3 to 857.76 ppm (average of
500.94 ppm) for Th and 489.91 to 1270.99 ppm (average of 746.59 ppm) for U. Fifteen zircons
have high Th/U ratios (0.58~0.75) and typical oscillatory zoning, implying magmatic
origin. All spot analyses show concordant ages from 273 to 290 Ma with a weighted mean
206Pb/238U age of 282.1 ± 1.3 Ma (MSWD = 1.11), which is considered to represent the
emplacement age of the granodiorite (Figure 4c).
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Table 1. LA–ICP-MS analytical data for zircons from samples of the Ahetala granodiorite.

Sample w(Th)/10−6 w(U)/10−6 Th/U
207Pb/235U 206Pb/238U 206Pb/238U

Ratio 1σ Ratio 1σ Age/Ma Ma

AHTL-1 595.94 831.93 0.72 0.3259 0.0201 0.0458 0.0008 288.5 4.9
* AHTL-2 814.47 1018.88 0.80 0.3254 0.0190 0.0417 0.0008 263.4 4.8
AHTL-3 522.77 703.06 0.74 0.3177 0.0185 0.0437 0.0007 275.5 4.3

* AHTL-4 637.86 903.94 0.71 0.3399 0.0221 0.0434 0.0008 274.0 4.9
AHTL-5 670.53 898.12 0.75 0.3224 0.0211 0.0447 0.0009 281.7 5.5
AHTL-6 402.10 590.27 0.68 0.3306 0.0232 0.0439 0.0011 277.0 6.6

* AHTL-7 476.90 721.77 0.66 0.3396 0.0206 0.0421 0.0009 265.6 5.6
AHTL-8 597.23 860.11 0.69 0.3267 0.0169 0.0455 0.0007 286.6 4.1
AHTL-9 420.98 653.86 0.64 0.3183 0.0222 0.0444 0.0007 280.1 4.2
AHTL-10 382.11 639.10 0.60 0.3248 0.0207 0.0449 0.0008 282.8 5.0
AHTL-11 702.22 982.57 0.71 0.3240 0.0189 0.0452 0.0009 284.7 5.3
AHTL-12 280.30 481.91 0.58 0.3226 0.0195 0.0460 0.0009 289.6 5.6

*
AHTL-13 525.82 754.34 0.70 0.3386 0.0214 0.0428 0.0009 269.9 5.4

AHTL-14 444.02 699.12 0.64 0.3268 0.0188 0.0452 0.0008 284.7 5.0
AHTL-15 389.34 581.77 0.67 0.3245 0.0228 0.0454 0.0009 286.1 5.4
AHTL-16 857.76 1270.99 0.67 0.3408 0.0190 0.0454 0.0011 286.2 6.6
AHTL-17 380.83 613.47 0.62 0.3202 0.0275 0.0432 0.0009 272.5 5.3
AHTL-18 387.28 651.93 0.59 0.3379 0.0236 0.0460 0.0010 289.8 6.1

*
AHTL-19 679.26 980.13 0.69 0.3876 0.0204 0.0490 0.0012 308.3 7.1

AHTL-20 480.76 740.62 0.65 0.3274 0.0188 0.0434 0.0008 273.8 4.7

* does not include zircon U–Pb dating.
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5.2. Mineral Geochemistry
5.2.1. Plagioclase

As the main rock-forming mineral in Ahetala granodiorite, plagioclase can be used
to study petrogenesis and magmatic evolution. The plagioclase samples show 56.47 to
58.78 wt.% for SiO2; 24.69 to 26.14 wt.% for Al2O3; 6.88 to 8.43 wt.% for CaO; 7.00 to
7.82 wt.% for Na2O; 31.66 to 38.84% for the An (anorthite) end-member; 58.36 to 65.11% for
the Ab (albite) end-member; and 2.31 to 4.00% for the Or (orthoclase) end-member (Table 2).
In the plagioclase, the An end-member is decreases and Ab end-member increases from
core to rim (Figure 5a). The core is enriched in alkali, and the rim is enriched in acid.
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Table 2. EPMA of plagioclase from Ahetala granodiorite.

Sample
No. AHTL-Pl1 AHTL-Pl2 AHTL-Pl3 AHTL-Pl4 AHTL-Pl5 AHTL-Pl6 AHTL-Pl7 AHTL-Pl8

Oxides (wt.%)

Core
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Table 2. EPMA of plagioclase from Ahetala granodiorite. 

Sample 
No. 

AHTL-
Pl1 

AHTL-
Pl2 

AHTL-
Pl3 

AHTL-
Pl4 

AHTL-
Pl5 

AHTL-
Pl6 

AHTL-
Pl7 

AHTL-
Pl8 

Oxides (wt.%) 
 Core Rim 

SiO2 56.91 56.47 57.42 58.68 58.04 58.42 58.78 58.67 
TiO2 0.08 - 0.01 0.10 0.16 - - 0.20 
Al2O3 25.92 26.14 25.72 25.19 25.19 24.78 25.03 24.69 
TFeO 0.28 0.24 0.15 0.20 0.13 0.24 0.26 0.25 
MnO - 0.05 0.12 - 0.05 0.22 - - 
MgO - - - - - 0.01 - 0.06 
CaO 8.43 8.40 8.07 7.19 7.39 7.01 6.99 6.88 
Na2O 7.00 7.06 7.23 7.81 7.56 7.64 7.65 7.82 
K2O 0.51 0.42 0.47 0.55 0.55 0.73 0.70 0.59 
BaO 0.26 0.32 0.41 - - 0.12 0.17 - 
Σ 99.39 99.10 99.60 99.72 99.07 99.17 99.58 99.16 

Structural formulae (a.p.f.u.) based on 8 oxygen atoms 
Si 2.59 2.58 2.60 2.64 2.64 2.65 2.65 2.66 
Al 1.39 1.41 1.37 1.34 1.35 1.33 1.33 1.32 
Ca 0.41 0.41 0.39 0.35 0.36 0.34 0.34 0.33 
Na 0.62 0.62 0.64 0.68 0.67 0.67 0.67 0.69 
K 0.03 0.02 0.03 0.03 0.03 0.04 0.04 0.03 
Ba 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.00 

End-members (%) 
An 38.84 38.75 37.17 32.72 34.02 32.30 32.26 31.66 
Ab 58.36 58.94 60.26 64.31 62.97 63.70 63.89 65.11 

Rim

SiO2 56.91 56.47 57.42 58.68 58.04 58.42 58.78 58.67
TiO2 0.08 - 0.01 0.10 0.16 - - 0.20

Al2O3 25.92 26.14 25.72 25.19 25.19 24.78 25.03 24.69
TFeO 0.28 0.24 0.15 0.20 0.13 0.24 0.26 0.25
MnO - 0.05 0.12 - 0.05 0.22 - -
MgO - - - - - 0.01 - 0.06
CaO 8.43 8.40 8.07 7.19 7.39 7.01 6.99 6.88

Na2O 7.00 7.06 7.23 7.81 7.56 7.64 7.65 7.82
K2O 0.51 0.42 0.47 0.55 0.55 0.73 0.70 0.59
BaO 0.26 0.32 0.41 - - 0.12 0.17 -

Σ 99.39 99.10 99.60 99.72 99.07 99.17 99.58 99.16

Structural formulae (a.p.f.u.) based on 8 oxygen atoms

Si 2.59 2.58 2.60 2.64 2.64 2.65 2.65 2.66
Al 1.39 1.41 1.37 1.34 1.35 1.33 1.33 1.32
Ca 0.41 0.41 0.39 0.35 0.36 0.34 0.34 0.33
Na 0.62 0.62 0.64 0.68 0.67 0.67 0.67 0.69
K 0.03 0.02 0.03 0.03 0.03 0.04 0.04 0.03
Ba 0.01 0.01 0.01 0.00 0.00 0.00 0.01 0.00

End-members (%)

An 38.84 38.75 37.17 32.72 34.02 32.30 32.26 31.66
Ab 58.36 58.94 60.26 64.31 62.97 63.70 63.89 65.11
Or 2.80 2.31 2.58 2.98 3.01 4.00 3.85 3.23

“-” indicates that the detection limit is not reached, the same as below.
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Figure 5. (a) Microscopic photograph of plagioclase (Bar = 200µm) and classification graph of feldspar [59];
(b) back scattered electron (BSE) photograph and classification graph of biotite (Bar = 95 µm) [60];
(c) microscopic photograph and classification diagram of hornblende (Bar = 500 µm) [61]. Pl—Plagioclase;
Q—Quartz; Kfs—Potassium feldspar; Bi—Biotite; Hbl—Hornblende.

5.2.2. Potassium Feldspar

The potassium feldspar samples show 62.32 to 63.24 wt.% for SiO2; 19.05 to 19.57 wt.%
for Al2O3; 13.48 to 13.82 wt.% for K2O; 0.44 to 1.30% for An; 21.10 to 21.79% for Ab; and
77.50 to 78.43% for Or (Table 3). All potassium feldspar is orthoclase (Figure 5a).
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Table 3. EPMA of potassium feldspar from Ahetala granodiorite.

Sample No. AHTL-Kfs1 AHTL-Kfs2 AHTL-Kfs3 AHTL-Kfs4 AHTL-Kfs5

Oxides (wt.%)

SiO2 62.34 63.08 62.76 63.24 62.32
TiO2 1.19 1.07 0.64 0.83 1.02

Al2O3 19.29 19.29 19.05 19.25 19.57
TFeO 0.10 0.19 0.22 0.16 0.05
MnO 0.10 0.07 0.01 0.05 0.17
MgO - 0.03 0.04 - 0.04
CaO 0.13 0.09 0.11 0.17 0.27

Na2O 2.49 2.39 2.55 2.49 2.43
K2O 13.51 13.48 13.82 13.53 13.58

Σ 99.14 99.69 99.20 99.72 99.45

Structural formulae (a.p.f.u.) based on 8 oxygen atoms

Si 2.93 2.95 2.94 2.95 2.92
Al 1.07 1.06 1.05 1.06 1.08
Ca 0.01 0.01 0.01 0.01 0.01
Na 0.23 0.22 0.23 0.23 0.22
K 0.81 0.80 0.83 0.80 0.81

End-members (%)

An 0.63 0.44 0.52 0.82 1.30
Ab 21.74 21.13 21.79 21.68 21.10
Or 77.63 78.43 77.69 77.50 77.60

5.2.3. Biotite

The biotite samples show 35.52 to 36.25 wt.% for SiO2; 14.77 to 14.91 wt.% for Al2O3;
15.52 to 16.22 wt.% for TFeO; and 13.42 to 14.16 wt.% for MgO (Table 4). The biotite in
Ahetala granodiorite belongs to magnesium biotite (Figure 5b).

Table 4. EPMA of biotite in Ahetala granodiorite.

Sample No. AHTL-Bi1 AHTL-Bi2 AHTL-Bi3 AHTL-Bi4 AHTL-Bi5

Oxides (wt.%)

SiO2 36.08 36.25 35.80 35.52 36.03
TiO2 4.10 4.42 4.43 4.30 4.50

Al2O3 14.79 14.81 14.81 14.91 14.77
TFeO 15.77 15.62 15.69 16.22 15.52
MnO 0.23 0.33 0.31 0.04 0.21
MgO 14.16 14.12 13.97 13.71 13.42
CaO 0.13 0.04 0.02 - 0.05

Na2O 0.37 0.38 0.37 0.53 0.40
K2O 9.25 9.17 9.27 9.33 9.18

Σ 94.88 95.14 94.67 94.56 94.08

Structural formulae (a.p.f.u.) based on 11 oxygen atoms

Si 2.73 2.73 2.72 2.71 2.74
AlIV 1.27 1.27 1.28 1.29 1.26
AlVI 0.05 0.05 0.04 0.05 0.07

Ti 0.23 0.25 0.25 0.25 0.26
Fe3+ 0.15 0.17 0.16 0.13 0.19
Fe2+ 0.85 0.81 0.84 0.90 0.80
Mn 0.01 0.02 0.02 0.00 0.01
Mg 1.60 1.59 1.58 1.56 1.52
Ca 0.01 0.00 0.00 0.00 0.00
Na 0.05 0.06 0.05 0.08 0.06
K 0.89 0.88 0.90 0.91 0.89

MF 0.61 0.61 0.61 0.60 0.60
AlVI + Fe3+ + Ti 0.43 0.47 0.45 0.42 0.52

Fe2+ + Mn 0.86 0.83 0.86 0.91 0.81
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5.2.4. Hornblende

The hornblende of granodiorite samples show 46.05 to 48.63 wt.% for SiO2; 5.69 to
7.80 wt.% for Al2O3; 13.08 to 14.23 wt.% for TFeO; 13.89 to 15.49 wt.% for MgO; and 11.27
to 11.56 wt.% for CaO (Table 5). All hornblende in granodiorite belongs to the edenite
group (Figure 5c).

Table 5. EPMA of hornblende in Ahetala granodiorite.

Sample No. AHTL-Hbl1 AHTL-Hbl2 AHTL-Hbl3 AHTL-Hbl4 AHTL-Hbl5

Oxides (wt.%)

SiO2 48.63 48.15 46.99 46.18 46.05
TiO2 1.07 1.07 1.09 1.29 1.31

Al2O3 5.69 6.15 6.94 7.80 7.56
TFeO 13.08 13.22 13.41 14.23 13.84
MnO 0.30 0.28 0.49 0.44 0.37
MgO 15.49 14.91 14.75 13.89 14.25
CaO 11.56 11.52 11.33 11.43 11.27

Na2O 1.40 1.56 1.73 1.73 1.74
K2O 0.51 0.58 0.64 0.79 0.68

Σ 97.73 97.44 97.37 97.78 97.07

Structural formulae (a.p.f.u.) based on 23 oxygen atoms

Si 7.11 7.08 6.94 6.83 6.84
AlIV 0.89 0.92 1.06 1.17 1.16
AlVI 0.09 0.14 0.15 0.19 0.17

Ti 0.12 0.12 0.12 0.14 0.15
Fe3+ 0.47 0.45 0.36 0.33 0.34
Fe2+ 1.13 1.18 1.30 1.43 1.38
Mn 0.04 0.03 0.06 0.06 0.05
Mg 3.38 3.27 3.25 3.06 3.16
Ca 1.81 1.81 1.79 1.81 1.79
Na 0.40 0.44 0.50 0.50 0.50
K 0.10 0.11 0.12 0.15 0.13
Σ 15.53 15.55 15.64 15.67 15.66

SiT 7.11 7.08 6.94 6.83 6.84
AlT 0.89 0.92 1.06 1.17 1.16

AlC 0.09 0.14 0.15 0.19 0.17
Fe3+

C 0.47 0.45 0.36 0.33 0.34
TiC 0.12 0.12 0.12 0.14 0.15

MgC 3.38 3.27 3.25 3.06 3.16
Fe2+

C 0.94 1.03 1.13 1.27 1.19
MnC 0.00 0.00 0.00 0.00 0.00

Fe2+
B 0.19 0.15 0.17 0.16 0.19

MnB 0.04 0.03 0.06 0.06 0.05
CaB 1.78 1.81 1.77 1.79 1.76
NaB 0.00 0.00 0.00 0.00 0.00

CaA 0.03 0.00 0.03 0.02 0.03
NaA 0.40 0.44 0.50 0.50 0.50
KA 0.10 0.11 0.12 0.15 0.13
M 0.75 0.73 0.71 0.68 0.70

5.3. Whole-Rock Geochemistry

The results of major, trace and rare earth elements of five samples are listed in Table 6.
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Table 6. Major (in wt%), trace and rare earth element (in ppm) compositions of Ahetala granodiorite.

Sample No. AHTL-1 AHTL-2 AHTL-6 AHTL-7 AHTL-8

SiO2 62.35 63.66 61.69 62.74 62.63
TiO2 0.56 0.54 0.58 0.53 0.55

Al2O3 15.95 15.67 16.29 15.45 15.78
TFe2O3 4.78 4.75 4.84 4.59 4.89

MnO 0.05 0.07 0.06 0.06 0.07
MgO 3.26 3.30 3.39 3.28 3.42
CaO 4.64 4.65 4.88 4.70 4.79

Na2O 4.11 3.72 4.08 3.65 3.73
K2O 2.82 3.32 3.05 3.15 3.31
P2O5 0.24 0.22 0.28 0.16 0.22
LOI 0.92 0.52 0.69 0.70 0.42
total 99.68 100.42 99.83 99.01 99.81

Na2O + K2O 6.93 7.04 7.13 6.80 7.04
A/NK 1.62 1.61 1.63 1.64 1.62

A/CNK 0.87 0.86 0.86 0.86 0.86
Mg# 54.87 55.33 55.53 56.02 55.49
DI 65.83 66.41 64.85 65.85 65.29

Ti 3482 3532 3866 3472 3506
Ga 17.044 17.584 18.902 17.490 14.570
Rb 80 123 96 105 32
Sr 767 723 829 708 481
Zr 221 222 214 216 209
Nb 14 16 17 15 15
Cs 3.182 4.984 3.444 3.096 3.586
Ba 1130 1077 1362 1089 567
La 30 38 40 42 13
Ce 62 68 80 74 36
Pr 7.376 7.424 9.074 7.764 3.766
Nd 27 25 32 26 14
Sm 4.636 4.202 5.220 4.242 2.626
Eu 1.345 1.243 1.539 1.245 0.790
Gd 3.876 3.560 4.364 3.586 2.240
Tb 0.540 0.490 0.597 0.490 0.343
Dy 3.016 2.770 3.290 2.756 1.971
Ho 0.629 0.580 0.687 0.576 0.427
Er 1.752 1.616 1.917 1.603 1.218
Tm 0.256 0.244 0.286 0.241 0.184
Yb 1.721 1.622 1.843 1.613 1.242
Lu 0.267 0.263 0.285 0.261 0.198
Hf 5.612 5.611 5.362 5.369 5.274
Ta 0.798 1.260 1.277 1.397 1.006
Pb 25.200 22.860 25.060 19.826 19.358
Th 10.932 18.064 13.408 20.460 5.142
U 1.914 3.530 2.168 3.404 1.829

ΣREE 144.35 155.47 180.28 165.64 78.42
LREE 132.30 144.33 167.01 154.51 70.60
HREE 12.06 11.14 13.27 11.13 7.82

LREE/HREE 10.97 12.95 12.59 13.89 9.02
(La/Yb)N 12.68 16.82 15.54 18.60 7.53

δEu 0.94 0.96 0.96 0.95 0.97
δCe 0.98 0.94 0.98 0.93 1.26

Yb + Nb 16.16 17.52 18.36 16.94 16.49
Nb/Ta 18.10 12.62 12.93 10.97 15.16
Zr/Hf 39.41 39.64 39.95 40.19 39.59
La/Yb 17.68 23.45 21.67 25.93 10.50
Th/Nd 0.41 0.72 0.42 0.79 0.37
La/Sm 6.56 9.05 7.65 9.86 4.97
Th/U 5.71 5.12 6.18 6.01 2.81
Rb/Sr 0.10 0.17 0.12 0.15 0.07
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5.3.1. Major Elements

The Ahetala granodiorite samples show 61.69 to 63.66 wt.% for SiO2; 3.26 to 3.42 wt.%
for MgO; 0.16 to 0.28 wt.% for P2O5; 3.65 to 4.11 wt.% for Na2O; and 2.82 to 3.32 wt.% for
K2O. All the samples have a high content of K2O + Na2O (6.80–7.13 wt.%) and relatively
low A/CNK ratios (0.86–0.87) (Table 6), indicating a calc-alkaline, metaluminous affinity.
Granodiorite has low TFe2O3/MgO ratios (1.40–1.47) and high Mg# values (54.87–56.02)
(Mg# = 100 × Mg/(Mg + Fe2+)).

All the samples in the SiO2 vs. Na2O-K2O diagram belong to granodiorite (Figure 6a).
The results are consistent with the Q-A-P diagram of intrusive rocks and petrographic
observations. In A/NK vs. A/CNK diagram, all the studied samples are plotted in the
metaluminous field (Figure 6b). All the samples are plotted in the field of high-k calc-
alkaline in the SiO2 vs. K2O diagram (Figure 6c). To sum up, Ahetala granodiorite belongs
to high-K calc-alkaline granite.
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(CaO + Na2O + K2O) molar, A/NK = Al2O3/(Na2O + K2O) molar); (c) K2O vs. SiO2 diagram [64].
Data sources: Chuanwulu [25]; Baleigong [26,27]; Kezile and Halajun [29,42]; Mazhashan [43];
Xiaohaizi [44]; Yingmailai [38,45]; Boziguoer [46]; Oxidaban [47]; Djangart, Kok- kiya, Mudryum, and
Uchkoshkon [48–51]; Ahetala (this paper), as in figures in Sections 6.1.1 and 6.2.

5.3.2. Trace Elements

The primitive mantle normalized trace element diagrams show that the Ahetala
granodiorite is relatively enriched in large ionic lithophile elements (LILEs), such as K, Sr,
and Ba, and relatively depleted in high field strength elements (HFSEs), such as Nb, Ta,
and Ti (Figure 7a). Yb + Nb range from 16.16 to 18.36; Nb/Ta range from 10.97 to 18.10;
Rb/Sr range from 0.07 to 0.17; and Zr/Hf range from 39.41 to 40.19 (Table 6).
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The total rare earth elements (ΣREE) of Ahetala granodiorite concentrations range
from 78.42 to 180.28 ppm with an average of 144.83 ppm. The contents of light rare earth
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elements (LREE) are between 70.60 to 167.01 ppm with an average of 133.75 ppm. The
contents of heavy rare earth elements (HREE) are between 7.82 to 13.27 ppm with an
average of 11.08 ppm. The LREE/HREE ranging from 9.02 to 13.89. LREE are enriched
relative to HREE in the chondrite-normalized REE diagram (Figure 7b) with (La/Yb)N
ratios ranging from 7.53 to 18.60. The distribution of rare earth elements is a standard
right-leaning pattern, and HREE display a relatively flat distribution pattern. The negative
Eu anomaly is not obvious (δEu = 0.94–0.97) and is likely affected by the fractionation of
plagioclase during the magmatic evolution.

6. Discussion
6.1. Petrogenesis
6.1.1. Geochemical Affinities

All studied samples belong to granodiorite in the TAS diagram (Figure 6a), consistent
with petrographic observations. All of the samples are enriched in the K and calc-alkaline
series (Figure 6c), which are different from M-type granites that have low K (<1%) [66].
Further, the Ahetala granodiorite belongs to the high-K series (Figure 6c) and has low
Nb contents, 10,000 Ga/Al ratios (Figure 8a), TFeO/MgO ratios, Zr+Ce+Y+Nb contents
(Figure 8b), and K2O+Na2O/CaO ratios, which preclude them from A-type granite [67–69].
Ahetala granodiorite is characterized by low differentiation indices (DI = 64.85−66.41) and
is plotted in the field of unfractionated I-, S-, and M-type granites (Figure 8a,b). S-type
granites generally have aluminum-rich minerals, such as cordierite, muscovite, tourmaline,
and garnet [70]. However, mineralogical observation did not find these minerals in Ahetala
granodiorite. The MF value of biotite (MF = [Mg/(Mg + Fe + Mn)] can also be used to
distinguish S-type and I-type granite (S-type grantie < 0.5, I-type granite > 0.5 [71]). The
MF value of Ahetala granodiorite is ~0.6, thus showing the characteristics of I-type granite.
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In addition, the low A/CNK ratios, the negative correlation between P2O5 and SiO2
(Figure 9a), and the positive correlation between Rb and Th, Rb, and Y (Figure 9b,c) indicate
the petrogenesis of I-type granites and preclude Ahetala granodiorite from being S-type
granite [72,73]. In summary, our petrographic observations and geochemical evidence
suggest that Ahetala granodiorite is I-type granite.
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6.1.2. Magma Source

Geochemically, the electron probe microanalysis of rock-forming minerals is helpful
when analyzing the magmatic source. The An contents of plagioclase decreases with fluctu-
ation from the core to rim, which shows the characteristics of a normal zoning, indicating
that the plagioclase was directly formed by the crystallization of mixed magma [74]. The
MgO content of biotite from the crust is usually lower than 6 wt.%, while that from the
mantle is generally higher than 15% [75,76]. The MgO content of biotites in all the sam-
ples is 13.42–14.16 wt.%, which reflects the characteristics of a crust–mantle mixed source
(Table 4). In addition, the M value (M = Mg/(Mg + Fe2+)) of amphiboles can also be used to
distinguish the magmatic source [77]. The M value of all amphiboles ranging between 0.68
and 0.75 (0.5 < M < 0.7 for crust–mantle type granite and M > 0.7 for mantle type granite)
indicates that Ahetala granodiorite has the characteristics of the crust–mantle mixed source.
The TFeO/(TFeO + MgO) vs. MgO diagram (Figure 10a) shows that all biotites belong
to crust–mantle mixed sources [78]. In the Al2O3 vs. TiO2 diagram, all amphiboles are
plotted in the field of the crust–mantle mixed source (Figure 10b). The Nb/Ta ratios of
Ahetala granodiorite (10.97–18.10) are similar to those of the crust (~11–12) and mantle
(~17.5) [79], indicating that granodiorite is of crust–mantle mixed origin. The Zr/Hf ratios
of Ahetala granodiorite (39.41–40.19) are similar to the value of MORB (~36) [65], indicating
that mantle-derived material may indeed be involved in magmatic evolution. The Th/U
ratios of granodiorite ranging from 2.81 to 6.18 (average of 5.17), which are similar to
the lower crust (Th/U = 5.48) [80,81]. Previous studies have shown that magmas with
Mg# > 40 are related to the involvement of a mantle component [82], which is consistent
with the Mg# (54.87–56.02) of the Ahetala granodiorite. The SiO2 (61.69%–63.66%) and
Al2O3 (15.45%–16.29%) values; enriched Zr and Hf; and depleted Nb, Ta, and Ti in samples
indicate that mantle-derived materials contribute to magmatic evolution [83].
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Figure 10. (a) The w(MgO)% vs. w(TFeO)%/w(TFeO + MgO)% diagram for the biotites [78];
(b) the w(TiO2)% vs. w(Al2O3)% diagram for the amphiboles [85]; (c) the Al2O3/ (TFe2O3 +
MgO) − 3 × CaO − 5 × (K2O/Na2O) diagram for the granitoid [84]; (d) La vs. La/Sm and
(e) La vs. La/Yb [86]; (f) the Th vs. Th/Nd diagram [87].
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In addition to the above characteristics, all the plotted samples fall within the field of
high-K mafic rocks (Figure 10c), which indicates that the magma may originate from the
mafic magmas [84]. Similarly, Ahetala granodiorite shows an obvious tendency towards
partial melting (Figure 10d–f). The above geochemical features indicates that the Ahetala
granodiorite is mainly generated from the crustal contamination of the mantle-derived
mafic magmas.

6.2. Emplacement Age and Tectonic Setting

The STOB is widely accepted as a Paleozoic collision belt formed by the collision of
the Tarim Craton and Yili-Central Tianshan block. It has undergone subduction, accretion,
collision, crust thickening, and extension-thinning [10,34,35]. However, direct geological
evidence of the evolutionary process of STOB was almost eradicated in the subsequent
geological evolution. Therefore, it is difficult to infer the evolutionary process of the STO,
resulting in controversy about the closing time of the STO and the tectonic setting of
the Permian in south Tianshan. Some studies have proposed that the STO was a post-
collision setting in the Early Permian (the closure of the STO occurred before the Early
Permian) [35,54]. In contrast, others believe it is a volcanic arc setting related to subduction
(the closure of the STO occurred in or after the Early Permian) [15,23]. The formation time
of tectonic suture belt can be constrained through the youngest ophiolite and the earliest
pluton or dikes intruding into the suture belt [13]. Previous studies have shown that the
age of the south Tianshan ophiolite belt is 450 Ma to 392 Ma, and these ophiolites belong
to supra-subduction zone (SSZ) type ophiolites [17–19], which suggests that the south
Tianshan oceanic crust had existed since the Silurian. Liu Bin et al. measured the Ar–Ar age
(360 Ma) of the glaucophane in the Kumishi area, which indicates a northward subduction
of the south Tianshan oceanic crust [88].

High-pressure/ultra-high pressure (HP-UHP) metamorphic belts in the STOB were
considered to be the product of the collision between the Tarim Craton and the Yili-Central
Tianshan plate [12,89]. Previous studies on the HP metamorphism have shown that the
Late Carboniferous (320 Ma) is the initial collision and the upper age limit is 285 Ma [10].
Radiolarian fossils were discovered in the accretionary complex, which confirmed that
the relic ancient oceanic basin existed in the western part of the STO during the Early
Permian [23]. In the high-pressure metamorphic zone of the northern part of the STOB, the
zircon ages of granulite range from 290 to 280 Ma, indicating that subduction finished in
the STO during the Early Permian [90].

As shown in Figure 4, the result indicates that the age of granodiorite is 282.1 ± 1.3 Ma
(n = 15, MSWD = 1.11), which reflects that granodiorite was emplaced in the Permian. This
age is consistent with the emplacement time of granitic rocks in the Kokshal mountains
(273~283 Ma) [91]. By studying the Paleozoic granites in the STOB, a large number of
studies believe that the STOB was in a critical period of transition from the subduction to
collision during the Late Carboniferous to the Early Permian [2].

All samples of Ahetala granodiorite plotted in the field of volcanic arc granites (VAG),
syn-collision granites (syn-COLG), and post-collision granites (post-COLG) in the Y vs. Nb
and Y + Nb vs. Rb diagrams (Figure 11a,b). In the R1 vs. R2 diagram, all samples plotted on
the boundary between the pre-plate collision and post-collision uplift (Figure 11c). Three
samples are plotted in the field of VAG, while the other two are plotted in the field of the
late to post-orogenic calc-alkaline intrusions (COLG III) and within plate granites (WPG) in
the 3Ta-Rb/30-Hf diagram (Figure 11d). In the Y/15-La/10-Nb/8 diagram, four samples
are plotted on the boundary of the orogenic domains and late to post orogenic field and
one sample is plotted in the late to post orogenic field (Figure 11e). In addition, biotites
belong to calc-alkaline subduction-related biotites in the TFeO-MgO-Al2O3 discriminant
diagram (Figure 11f) [92]. The enrichment of K, LREEs, and LILEs and the depletion in
HFSE (Figure 7b) and minor Eu anomalies (δEu = 0.94–0.97) are signatures characteristi-
cally associated with subduction-related magmas [93]. Meanwhile, the negative anomalies
of Nb, Ta, and Ti can be found in the primitive mantle-normalized spidergrams, which
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also indicate that Ahetala granodiorite has the characteristics of arc granites (Figure 7a).
However, it is difficult to distinguish between tectonic settings using tectonic discrim-
ination diagrams because they often reach ambiguous conclusions. Nevertheless, it is
indisputable that the crust thickens due to the extrusion and collision in the collisional
stage. High potassium granite implies crustal thickening after collision [50,94]. In addition,
as described in Section 6.1.2, under the dynamic background of subduction and collision,
the underplating of the mantle material is considered to be the main factor of crustal thick-
ening [95]. It is only during this period that mantle-derived materials may participate in the
magmatic evolution.
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Therefore, according to the restriction of the geochemical affinities, magma source, and
the multiple tectonic discrimination diagrams, the formation setting of Ahetala granodiorite
is the transitional stage of the volcanic arc (syn-collision) and post-collision setting. This
means that the STO in this region was closed in the Early Permian (282.1 ± 1.3 Ma).

6.3. Implication for the Tectonic Evolution of the STO

Many granitic rocks of the Late Carboniferan–Early Permian have been studied in
STOB, and fruitful data have been accumulated. However, the tectonic evolution of the
STOB in the Early Permian is still in debate, because it is not possible to determine the
closing time of the STO only based on the evidence of the age and tectonic setting of such
granites (most are A-type granites). These intrusions are almost evenly distributed in the
STOB over more than 1500 km. No single granitic rock can prove the geodynamic setting
of the whole STO in the Late Paleozoic.

Regarding the evolution of the STO in the Paleozoic, most studies argue that the
south Tianshan oceanic crust subducted northward beneath the southern margin of the
Yili-Central Tianshan plate during the Silurian to Middle Devonian [35,99,100]. Some
previous studies believe that oblique collision played a vital role in the closing process
of the STO in the late Paleozoic based on studies of large displacement strike-slip faults
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and paleomagnetism data [99,101]. Other relevant studies argue that the remnant basin
of STO gradually closed from east to west in a “scissors-like” collision during the Late
Carboniferous to Early Permian [102,103]. In the late Devonian, the eastern part of the
Tarim Craton had already collided with the Yili-Central Tianshan plate, leaving a west-
facing remnant oceanic basin [99]. Only the final consumption of the remnant oceanic crust
means the end of the collision.

We have collected the data of granitic rocks from the Late Carboniferous–Early Per-
mian in the STOB (Table 7). Most are intermediate-acidic metaluminous magmatic rocks
(Figure 6), belonging to WPG (A-type granites) and formed in the post-collision (exten-
sional) setting (Figures 8 and 11). The age of these collision-related granites ranging
from 261.5 ± 2.1 Ma to 304.2 ± 11.6 Ma, with an average of about 284.4 Ma (Figure 12).
The ages of post-collision granites of the eastern part are older than the western part
in the STOB. This finding means that the eastern part of STO developed into a post-
collision setting earlier than the western part. When the Ahetala granodiorite was formed
(282.1 ± 1.3 Ma), the western segment of the STO was still in the transitional stage of the
volcanic arc (syn-collision) and post-collision setting. This conclusion also demonstrates
the possibility of a “scissors-like” collision of the STO.

Chen et al. also believe that the “scissors-like” collision of the Tarim Craton with the
Yili-Central Tianshan plate gave rise to the lithosphere-scale strike-slip and formed the
northern Tarim Early Permian magmatic arc [99]. This view is also consistent with the
conclusion that Ahetala granodiorites have the characteristics of volcanic arc granite and
were formed during the transitional stage between the volcanic arc (syn-collision) and
the post-collision setting. Combined with previous research and the nature of Ahetala
granodiorite, we believe that the western part of STO, where Ahetala granodiorite is located,
was closed in the Early Permian. The Tarim Craton and Yili-Central Tianshan plate were
fully amalgamated in the Early Permian (Figure 13).
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Table 7. Late Carboniferous to Early Permian collision-related granitic intrusions in the South
Tianshan Orogenic Belt.

Pluton Description Method Age Type Environment

Chuanwulu [25,45]
Biotite diorite

LA-ICP-MS
287.8 ± 4.3 Ma

I Post-collisionBiotite monzonite 286.4 ± 2.5 Ma

Baileigong [26,27] Biotite moyite LA-ICP-MS
273 ± 2 Ma

A2 Post-collision291 ± 3 Ma
283 ± 3 Ma

Huoshibulake [28,29,45]
Alkali-feldspar

granite
ID-TIMS 261.5 ± 2.7 Ma

A1 Post-collisionSHRIMP 276 ± 4 Ma

Kezile [42] Biotite granite LA-ICP-MS 272.4 ± 1.1 Ma A1 Post-collision

Halajun [29,42]

Granite SHRIMP 278 ± 3 Ma

A1 Post-collisionQuartz syenite LA-ICP-MS
268.6 ± 1.5 Ma
268.8 ± 1.7 Ma
271.0 ± 2.2 Ma

Mazhashan [43] Syenite SHRIMP 285.9 ± 2.6 Ma A1 Post-collision

Xiaohaizi [44] Syenite SIMS 279.7 ± 2 Ma A Post-collision

Yingmailai [38,45]
Biotite monzonite

granite LA-ICP-MS
285.0 ± 3.7 Ma

S Syn-collision-
Post-collision291.0 ± 2.6 Ma

Boziguoer [46] Granite LA-ICP-MS 290.1 ± 1.4 Ma A Post-collision

Oxidaban [47] Monzonitic granite LA-ICP-MS 273 ± 2 Ma I Pre-collision

Djangart [48–51] Granite SIMS 296.7 ± 4.2 Ma A2 Post-collision

Uchkoshkon [48–51] Granite SIMS 279 ± 8.1 Ma A2 Post-collision

Mudryum [48–51] Granite SIMS 281.4 ± 2.2 Ma A2 Post-collision

Kok-kiya [48–51] Granite SIMS 278.9 ± 2.7 Ma A2 Post-collision

Ak-Shiyrak [48–51] Granite SHRIMP 292 ± 3 Ma A2 Post-collision

Tashkoro [48–51] Granite SHRIMP 299 ± 4 Ma A Post-collision

Inylchek [48–51] Granite SHRIMP 295.3 ± 4.4 Ma A Post-collision

Maida’adir [48–51] Granite SHRIMP 288.6 ± 6.3 Ma A Post-collision

Mangqisu [32,45,104] Granodiorite

SHRIMP
296.9 ± 5.4 Ma

I Syn-collision-Post-collision
304.2 ± 11.6 Ma

LA-ICP-MS
292 ± 2 Ma
297 ± 4 Ma
294 ± 3 Ma
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7. Conclusions

Based on experimental data of Ahetala granodiorite in this paper and previous
research results on the Late Paleozoic tectonic evolution in the STOB, we reach the
following conclusions:

1. The LA–ICP-MS U–Pb dating of zircons from Ahetala granodiorite yielded a precise
crystallization age of 282.1 ± 1.3 Ma (MSWD = 1.11).

2. Ahetala granodiorite belongs to the high-K calc-alkaline series I-type granitoid.
3. Ahetala granodiorite was triggered by the crustal contamination of the mantle-derived

magmas, which involved the mixing of crust- and mantle-derived materials.
4. Ahetala granodiorite was emplaced in the transitional stage of the volcanic arc

(syn-collision) and the post-collision setting, indicating the STO was closed in the
Early Permian.
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