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Abstract: In China, cemented paste backfill (CPB) is a common treatment method after the exploita-
tion of basic energy. The homogeneity of slurry influences the performance of CPB. However, the
online monitoring and characterization of homogeneity lack relevant technologies and unified stan-
dards. This article discusses an online image analysis technique applied to the online monitoring of
cemented paste backfill mixing, which is based on the evolution of the texture of images taken at the
surface of the mixing bed. First, the grayscale distribution of the image obtained by the high-speed
camera in the CPB preparation process was analyzed by Matlab and its variance (s2) was solved, and
the texture features of the image were analyzed by the variance of grayscale distribution. Then, a
homogeneity discriminant model (cst) was established. The results show that the variance value of
the grayscale distribution of the slurry image increases rapidly at first, then gradually decreases, and
becomes stable in the final stage since it turns a constant value. When the s2 value tends to be stable,
the slurry gradually reaches homogenization, and the discriminant coefficient of paste homogeniza-
tion based on the homogenization discriminant model reaches 0.05. The homogenization prediction
of CPB proves to be consistent with the backfill performance comparison results. The evolution of the
texture allows obtaining important information on the evolution of different formulations during
mixing, which can be used for intelligent monitoring of CPB preparation process.

Keywords: cemented paste backfill; online monitoring; homogeneity; image grayscale distribution;
texture feature

1. Introduction

Mineral resources are the material basis for social and economic development. How-
ever, the exploitation of mineral resources has caused serious environmental pollution
and safety problems. According to statistics, China’s accumulation of tailings reached
22.26 billion tons by 2020, which not only seriously pollutes the environment, but also puts
the tailings storage facility (TSF) at risk of dam failure and landslide [1]. In addition to that,
a large number of goafs will be left underground, since the ore is dug away, resulting in
potential danger of subsidence on the surface. In recent years, CPB was widely researched
and applied around the world due to its advantages of environmental protection, safety,
and high efficiency [2]. CPB technology eliminates pollution such as the tailings accumula-
tion on the surface, and risks of dam failure and landslide. In addition, it can utilize solid
waste resources in mines [3], and also can realize the low-carbon mining mode, which is
in line with the “carbon neutrality and carbon emission peaking” goal proposed by the
Chinese government.

However, the high cost greatly restricts the application of CPB technology. Cost
reduction is the eternal pursuit of the development of backfilling technology. During
the application of backfilling technology, the cost of labor and gelling materials accounts
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for more than 90% of costs. Therefore, reducing the amount of cement and improving
the intelligence of backfilling are necessary for the purpose of achieving low-cost mine
backfilling. In order to reduce the amount of cement, it is meaningful to improve the
homogeneity of cement in the paste and increase the hydration rate of cement. Studies show
that fresh and hardened properties of CPB are closely related to homogeneity. Therefore,
more and more attention has been paid to the homogeneity of materials in CPB preparation
process. In this field, it is known that paste homogenization varies with mixing time and is
closely related to fluidity. The mechanical properties and fluidity of CPB can be improved by
changing parameters such as mixing speed [4,5], mixing strength [6,7], mixing time [8], and
aggregate grading [9]. Although these studies arrived at some conclusions in improving
the homogenization of slurry, no relevant studies on monitoring the homogeneity of the
slurry preparation process have been conducted, and the homogeneity of slurry in actual
production is not yet known [10].

Intelligent mining for backfilling is considered as an important technology for reduc-
ing backfilling costs. Intelligent mining for backfilling should meet the needs of three
aspects [11,12], namely, intelligent selection of mining methods, intelligent monitoring of
paste preparation, and intelligent analysis of the matching relationship between CPB and
the environment. In these three aspects, due to the high solid concentration, opaqueness,
and hydration of the CPB, it is difficult to understand the change in material homogeneity
during the mixing process, which results in many difficulties in the intelligent monitoring
of the paste preparation process [13,14]. Efficient online process monitoring has become
critical to quality and productivity within many industries. In order to understand the
homogenization of the paste, mining engineers need to take samples and test the fluidity
and mechanical properties of the CPB to analyze the homogenization changes of the paste
from batch to batch [15–17]. With the advent of new technologies, some online monitoring
equipment was applied to the homogenization monitoring of paste preparation process,
which has proven effective. For instance, focused beam reflection measurement (FBRM) [18]
technology and particle video microscopy (PVM) [19] can monitor the floccules changes in
the slurry in real time. With all these merits, they have great potential for paste homogene-
ity monitoring. The problem is that the application of these two technologies is expensive
and mining investment will increase accordingly. In the field of concrete preparation, the
homogeneity of slurry can be determined by monitoring the power consumption of the
mixing equipment [20,21]. This low-cost technology can only be used in an intermittent
agitator, while paste mixing is generally used in a continuous agitator. In addition, some
researchers tried ultrasonic [22] and infrared ray methods [23] to monitor the homogeneity
of paste, but no industrial application has been reported so far.

In summary, solving the technical problem of online monitoring of homogeneity in
the paste preparation process is of great significance to the development of intelligent
mining for backfilling and the improvement of paste homogeneity. In recent years, image
analysis technology has been widely used in various fields due to its low cost and high
accuracy [24]. For example, image texture features can be used to reflect the homogeneous
evolution of concrete during concrete preparation [25], as well as in the application of
image analysis technology to the powder granulation (pharmaceutical production) process,
enabling intelligent monitoring of granulation size [26]. Image analysis technology, which
is simple, rapid, and low-cost, uses computer software to convert image signals into digital
signals [27]. Further research on image texture features and backfilling properties of fresh
and hardened state pastes under mixing action are necessary so as to understand how this
affects the fresh and hardened state behavior of CPB. Therefore, this paper adopts image
analysis technology to carry out the monitoring research of the homogeneity in the process
of the paste preparation. According to the characteristics of CPB, the variance of grayscale
distribution was proposed as the feature value of image texture, and the homogenization
evolution law of mixing process was analyzed. Moreover, the homogeneity discriminant
model of the paste was established to contrast with the backfilling performance and verify
the reliability of the discriminant model. The image processing technology provides
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technical guidance for controlling the quality of paste preparation, which will be applicable
to various mining enterprises using cemented backfilling such as non-ferrous, ferrous,
precious metals, and rare metals.

2. Materials and Methods
2.1. Materials

Experimental materials include cement and tailings. The tailings came from a copper
mine and the cement was 42.5R ordinary Portland cement. The chemical composition of the
tailings obtained by X-ray fluorescence spectrometer (XRF) (XRF-1800 X-ray fluorescence
spectrometer, Shimadzu, Japan) is shown in Table 1. The specific gravity of the tailings is
2.71, and the main chemical components of the tailings are SiO2, CaO, Al2O3, etc.

Table 1. Mineral composition of tailings.

Compound SiO2 SO3 Cu Ag CaO MgO Al2O3 Others

content/% 67.68 1.39 2.53 1.59 9.26 4.4 6.19 6.96

The particle size of materials exerts great influence on the mixing process of CPB,
so the laser particle size analyzer (Topsizer 2000) was used to measure the particle size
distribution of the test tailings and cement. The measurement results are shown in Figure 1.
Tailings with a particle size smaller than 30 µm account for 60%, and particles smaller than
20 µm account for 52%. According to the relevant literature [28,29], the tailings could be
classified as fine tailings.
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Figure 1. Particle size distribution of tailings and cement.

According to the test report provided by the cement factory, the specific surface area of
the cement was 401 m2/kg, and the specific gravity was 3.15. XRF was used to measure the
chemical composition of the cementitious material. The results are shown in Table 2. It can
be seen from the results that the chemical composition of cement is mainly CaO and SiO2.

Table 2. Main mineral composition of cement.

Compound MgO SiO2 Na2O K2O Al2O3 SO3 Fe2O3 CaO

content (%) 1.40 20.70 0.18 0.48 4.50 2.60 3.30 65.10

2.2. Mixture Contents

In order to compare the influence of solid concentration on the mixing process, three
commonly used concentrations in engineering were set up for comparison in the experiment
(cement–sand ratio was 1:8). The solid concentrations were 68%, 70%, and 72%. It should
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be noted that the moisture content of tailings was about 7%. The mixture contents for the
experiment are shown in Table 3. Deionized water was used to mix the cement and tailings.

Table 3. Experimental ratio table.

Group Cement–Sand Ratio Solid Concentration (%) Cement (g) Water (g) Tailing (g)

A 1:8 72 2790 9765 24,000
B 1:8 70 2790 10,761 24,000
C 1:8 68 2790 11,816 24,000

2.3. Experimental Device

Continuous mixers are widely used in CPB technology of mines in China. When a
continuous mixer is in operation, cementitious material, cement, water, and admixture are
poured into the mixing tank from one section of the mixer. The materials are mixed by the
blade, and poured out the mixer from the other section of the mixer. In order to simulate
the working process of a continuous mixer, we designed the experimental device as shown
in Figure 2. The maximum capacity of the mixing tank is 0.045 m3, the motor power is
3.0 kW, and the speed adjustment range is 0–500 rpm. The cover plate can be opened so that
the materials’ state can be observed at any time during the mixing process. A high-speed
camera is installed above the mixing equipment to capture images of materials during the
preparation process, and the acquisition frequency of the camera is set to 1 Hz. In order
to make the line speed of the experimental mixer similar to that of the paste engineering
mixer, the mixer ran at a constant rate of 120 rpm/min during the test process.
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Figure 2. Laboratory mixer and its internal structure.

In most cases, the maximum linear speed of the mixer blade is set at about 1.5 m/s
when the CPB is prepared in the mine paste factory. Therefore, the rotational speed of the
laboratory mixer was 72 rpm/min and the line speed was 1.5 m/s during the preparation
of CPB in the research.

2.4. Experimental Methods
2.4.1. Image Texture Features

The experimental process is shown in Figure 3. All these operations were carried out at
room temperature. During the mixing process, images collected by the camera were stored
in the computer. At the end of the experiment, MATLAB R2021b was used to analyze the
images. According to the results, the curve of texture features of the image with mixing
time was drawn. The image analysis method was introduced in Section 3.

For each sample preparation process, cement and tailings were first poured into the
mixer for dry mixing for 50 s, and then water was added and mixed with them for the
preset mixing time (in the following discussion, we take the time point of adding water
as the 0 point of the time coordinate). It should be pointed out that the experiments on
groups with the same ratio but different mixing times were conducted separately in the
test of paste backfilling performance. Therefore, three experimental groups, A, B, and C,
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were all performed 10 times (the mixing time of each group was different), namely, a total
of 30 times. For example, in group A, a total of 10 experiments were performed from A1 to
A10. In the A1 experiment, cement and tailings were added to the mixer for dry mixing
with the whole process lasting 50 s, and then water was added to mix with them for a
consecutive 450 s. Finally, the images of the mixing process were captured by the camera.
For A2~A10, cement and tailings were poured into the mixer for dry mixing with the whole
process lasting for a consecutive 50 s, and then water was added to mix with them for
50 s, 100 s, 150 s, 200 s, 250 s, 300 s, 350 s, 400 s, and 450 s, respectively. After the paste
was prepared for each group, samples were taken to test its fluidity in fresh state and the
mechanical strength after hardening.
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2.4.2. Flow Characteristic Test

In the field, the fluidity and mechanical strength of fresh and hardened paste are often
used to determine whether the paste was homogeneously mixed. Therefore, we tested the
fluidity and mechanical strength of fresh and hardened pastes with different mixing times,
analyzed the variation of the fluidity and mechanical strength of fresh and hardened pastes
with mixing time, and compared the results with image texture features. A small slump
cone (XN-36 × 60 × 60 mm) was used for the paste fluidity test, as shown in Figure 4.
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2.4.3. Uniaxial Compressive Strength Test

After the paste was prepared, the sample was loaded into a standard test mold
(70.7 mm × 70.7 mm × 70.7 mm). All operations were performed in accordance with
ASTM-C1437. Each strength value represented an average value obtained from uniaxial
compressive strength (UCS) tests of more than five specimens. When the mold was
completed, the mold and specimen were removed after standing for 48 h, and then the
specimen was placed in the standard curing chamber for curing.

UCS test was performed after curing at a predetermined period (3, 7, 14, 28 days). A
computer-controlled mechanical press with a load capacity of 100 kN was used to test the
mechanical properties. The displacement speed of the press was controlled to be 0.5 mm/min
during the experiment.

3. Image Texture Analysis Techniques
3.1. Image Grayscale

Grayscale image processing is the process of converting the color images into the
grayscale image. The color images were converted into the two-dimensional grayscale
images by using Matlab. Its value Fg(x, y) can be calculated by the weighted average value
of the brightness of the color images of R, G, and B. There are many calculation methods
for the grayscale value of images, and the calculation method adopted in the research is
expressed as follows:

Fg(x, y) = 0.299R(x, y) + 0.587G(x, y) + 0.114B(x, y) (1)

where R, G, and B are the red, green and blue pixel value, respectively, and x and y are
coordinates on a two-dimensional image.

Gray pixels are represented by the numeric value of the function f(x, y), the value range
of which is [0, 255]. In this equation, 0 represents pure black, 255 represents pure white,
and the ascending value represents the depth of the pixel [30]. The image processing by
Matlab is the data operation process of converting the color images into a two-dimensional
grayscale image function f(x, y). Finally, the histogram of grayscale distribution of images
is output [31].

As shown in Figure 5, with enough groups and small class intervals, the grayscale
distribution approximates the normal distribution curve. On the curve, different grayscale
values represents different paste shapes. When the distribution of grayscale value is more
concentrated, it indicates that the difference in the shape of the paste slurry corresponding
to the image is small, otherwise the shape difference is large.
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3.2. Image Filtering for Denoising

In the analysis process, the difference in light, material flow, and equipment vibration
can lead to errors in the collected image pixels [32], which has a great impact on the
experimental results. Therefore, it is necessary to filter and denoise the image before texture
analysis [33]. Filtering and denoising reduction processing is to filter out some special
frequencies (noise point) of the image to make images more homogeneous and reduce
external impacts on image acquisition. The most frequently used methods to denoise are
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wiener filtering [34], mean filtering [35], median filter [36] and so on. This study focuses on
two methods, which are median filtering and mean filtering. Median filtering is to replace
noise pixels of the original image with adjacent pixels values, so as achieve the purpose
of eliminating noise points. Theoretically, it is the nonlinear smoothing function, and its
equation is expressed as follows:

g(x, y) = med{ f (α− k, α− l), (k, l ∈W)} (2)

where g(x, y) is the filtered pixels; W is the image mask, (the mask refers to the use of
a specific image to block the processed image, which can achieve the purpose of image
processing); α is the noise point pixel; and k and l are the pixels near W.

Mean filtering replaces each pixel value in the original image in the form of an average
value, that is, taking the noise point as the center and selecting a certain range of pixels as
the reference value to replace the value of noise, which reads:

g(x, y) =
1

m× n ∑ f ∈ neighbor fz (3)

where m, n represent the range of filter; fz represents the center pixel value; and neighbor is
the adjacent pixel value of fz.

After denoising, the interference of external factors can be reduced and the real pixel
value can be preserved to the greatest extent. It can be seen from Figure 6 that the image
denoised by median filter is similar to the original image, and closer to the real value after
removing the noise interference. Meanwhile, the mean filtering can destroy the edge of the
image in the process of image denoising, making the image blurred. Compared with mean
filtering, the paste slurry image, which adopted median filtering, can better reflect its real
information. Therefore, in order to ensure the continuity and accuracy of data processing,
the research used median filtering to denoise images.
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3.3. Grayscale Variance

Although the image grayscale converted the image of slurry into grayscale distribu-
tions function, it still could not achieve quantitative token of the surface texture. Therefore,
it is necessary to set up a variable to represent the image texture feature. In previous
studies [37], the image texture feature was mostly represented by standard deviation (STD),
which was prone to having extreme values in image processing, resulting in large error. In
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order to overcome the influence of extreme value, the variance value of image grayscale
distribution was used to characterize the texture feature of the image. According to the
probability and statistics theory, the calculation method of grayscale distribution frequency
is as follows:

p(Gk) =
nk

MN
(4)

where nk is the pixel occupied by the grayscale value GK in the image, P(GK) is the distribu-
tion probability of Gk, and, ∑n−1

k=0 p(GK) = 1.
Based on the probabilities P(GK), we can derive an average grayscale value of the

image, thereby drawing the variance formula of the image gray, which reads:{
m = ∑n−1

k=0 GK p(GK)

s2 = ∑n−1
k=0 (GK −m)2 p(GK)

(5)

where m is the average grayscale value and s2 is the variance value.
According to the principle of statistics, variance is the measurement of the dispersion

degree of sample data. Therefore, when the pixels are equally distributed and colors are
uniform in the image, the texture feature value is small. If the pixels are chaotic and the
grayscale difference is large, the texture feature value is large. In the research, the value
reflects the difference among different areas of the slurry. In theory, the smaller the texture
feature value is, the smaller the difference in the surface features of the slurry is, and
vice versa.

4. Results and Discussion
4.1. Image Texture Change

When the experiment was over, the image was exported from the high-speed camera
(as shown in Figure 7). This research adopted the image texture analysis method introduced
in Section 2.2 to obtain the image grayscale distribution histogram of the material at
different mixing moments. Among them, the grayscale distribution results of group A1
(mass fraction of 72%) at different times are shown in the following Figure 7.
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As shown in Figure 7, the grayscale distribution histogram is approximately normal
distribution. The range of grayscale distribution first widens and then narrows with time,
that is, the grayscale distribution curve is “fat” and then “thin”. The results show that
during the process of mixing, the surface configuration of the material changes greatly,
which reflects the difference between histograms. In order to further quantify this difference,
the denoising method and variance calculation method in Section 3.2 were used to calculate
the variance of the image grayscale distribution at different moments in three groups of
experiments (A1, B1, and C1). The relationship curve between the grayscale distribution
variance and time is shown in Figure 8.
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As show in Figures 7 and 8, the surface layer has dry tailings before mixing (Figure 7a).
As the image color and surface texture are uniform, and the image grayscale values are
concentrated, the texture feature values are relatively small. As the mixing went on, the
cement and tailings are mixed with each other, which increases the surface difference of the
material. Therefore, the texture feature value increases slightly.

With the addition of water, tailings and cement particles are bonded into agglomerates
under the action of the liquid bridge force of water, as shown in Figure 7c. At that time,
the surface texture of different size of particle clusters is more chaotic. There are even
some shadow areas in the images, where the grayscale distribution range is wider, which
means that the shape of the grayscale distribution curve becomes “short and fat”. In this
process, the curve changes rapidly. In the experiments of the three groups, the curve rapidly
becomes “fat” within 30 s after adding water, and the variance reaches its peak.

Under the further action of mixing and shearing, the agglomerated materials are
gradually sheared and dispersed. The tailings, cement, water, and agglomerated particles
that continued to adsorb water were broken and dispersed under the action of mixing and
initially homogenized, which presented a “paste-like” form (as shown in Figure 7h). Finally,
the texture feature value decreases rapidly. With further shearing, the three-dimensional
structure of the finer particle flocculation and the slurry is destroyed and it releases the
internal wrapped water. The material gradually takes the shape of a homogeneous paste
with a relatively smooth surface and a consistent image texture (as shown in Figure 7i–l).
The texture feature curve gradually reaches stability. At the same time, for the convenience
of analysis and discussion, the study defines the time that the grayscale curve reaches its
stability as the stabilization time (Ts).
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4.2. The Performance Test Results

According to the experiment results, the relationship between the liquidity of the
slurry and mixing time is shown in Figure 9a. In addition to fluidity, the mechanical
strength of the hardened paste is also of great significance. Therefore, the relationship
between mechanical properties and mixing time was analyzed by testing the UCS of three
samples with different proportions under different curing times. A representative set of
UCS curves (A group) is shown to indicate the mechanical strength of hardened paste.
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It can be seen from Figure 9 that the fluidity of CPB becomes worse as the concentration
increases. However, increasing the concentration can promote the development of the
mechanical strength of the hardened paste. Under the action of mixing, the mixture
homogenizes gradually, and the fluidity and mechanical strength of fresh and hardened
slurry are improved with the increased mixing time. They gradually tend to be stable
(between 350 s and 400 s). It is also found that the higher the sample concentration is, the
longer the mixing time we need to stabilize the fluidity and mechanical properties of the
slurry. Compared with the slurry of relatively low concentration, it is more difficult to
achieve homogenization in the slurry of relatively high concentration and requires longer
mixing time.

Compared with (a) and (b) in Figure 9, it can be seen that the changing trend of
slurry fluidity and mechanical strength with mixing time is consistent, and the mixing time
required to achieve the best fluidity and mechanical strength for the same experimental
group is almost the same. Studies show that the effect of mixing on fluidity and mechanical
strength is closely related to the homogeneity of the mixture. Therefore, for the convenience
of discussion and analysis, the mixing time required for the slurry to achieve the best
homogeneity can be defined as the homogenization time (Th).

4.3. A New Characterization Method

At present, there is no uniform standard for the homogeneity of CPB. In the field
of concrete, the homogeneity is mainly measured by testing the distribution of different
batches of coarse aggregates. For CPB, coarse aggregate is not one of the most necessary
components, so the technical standards for concrete cannot be borrowed. By referring to
the mixing efficiency calculation method [38], it proposes a discriminative model of CPB
homogeneity, which reads: 

k = σ(ct)
cst

cst =
Ci+Ci+1+···+Ci+10

10
|Ci − Ci+n| < Cq (1 ≤ n ≤ 10)

(6)
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where k is the coefficient of paste homogeneity; σ(ct) is the standard deviation of the image
texture feature. Cst is the final stability coefficient of the texture feature curve; Ci is the
texture feature value at a certain time; and Cq is the maximum permissible error. Combined
with the result in Figure 10, the value is 0.01.
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According to the model, when the k value remains stable within a certain period of
time, particle convection and water migration in different areas of the material maintain
dynamic balance. This means that homogenization is reached. According to Daumann’s
theory, k will eventually converge on a certain value under the condition of specific mixing
equipment and process parameters, which has nothing to do with the ratio of materials.
Thus, the homogeneous state of the slurry at a certain time can be determined by the
convergency value.

The discriminative model of CPB homogeneity was used to analyze the results of
image texture features, and the k of test groups A, B, and C converge to 0.048, 0.051, and
0.051, respectively. The calculation result of group A is shown in Figure 10. As we all
know [39], to improve the homogeneity of the mixture is to pursue a better backfilling
performance of CPB. The theoretical calculation results were used to compare with the
backfilling performance (fluidity of fresh paste and UCS of the samples after curing for
14 days). Therefore, it was used as the criterion to analyze the accuracy of the theoretical
model, as shown in Figure 10.

The average value of k convergence values (0.048, 0.051, 0.051) for the three experi-
mental groups was 0.05, which can be taken as the discriminant coefficient of the paste
homogeneity. By comparing the results of Figure 10, it can be seen that the group A1
experiment reaches a stable stage at about 370 s. Combined with the changing curve of
backfilling performance, its backfilling performance (fluidity and mechanical strength)
also tends to be stable at 370 s. The discriminant curve has negative correlation with the
changing curve of backfilling performance before 370 s. At the same time, these three
curves begin to stabilize at about 370 s, that is Ts = Th. The results show that there is a
close correlation between texture features and homogenization, and the enhancement of
homogenization of mixture reduces the texture feature value, and the image texture features
are the macroscopic expression of the homogenization among the meso-particles [40].

Based on the discriminant model, the texture feature value of group B and group
C were analyzed, and the stabilization time (Th) of the two experimental groups was
330 s and 310 s, respectively. Thus, the homogenization time (T0) of experimental groups
B and group C was predicted to be 330 s and 310 s, respectively. This prediction was
verified by the backfilling performance test results of group B and group C. Therefore,
homogenization monitoring based on image analysis technology has good applicability
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and can give positive feedback to the evolution of backfilling performance of CPB in the
mixing process, thus, the intelligent level and preparation quality are improved, and the
labor cost of CPB technology is reduced.

4.4. The Engineering Implications of the Technology

Currently, most technicians in mines determine the mixing effect by testing the slurry
samples to obtain the paste properties, e.g., mechanical performance, hydration properties,
and fluidity. However, this method has great randomness and severe hysteresis quality.
The paste factories lack the real-time monitoring technology of the slurry homogenization,
and cannot learn about the quality of the slurry mixing in time. In this way, they fail to
further optimize the mixing parameters.

In this study, a technique for judging the homogeneity of paste slurry based on images
is proposed, which can quickly judge the effect of paste mixing. The operation to realize
such an effect is shown in Figure 11. A camera is installed above the mixer to capture
the image of the slurry, and the acquired image is transmitted to the control center. In
the control center, the image analysis software is used to perform grayscale distribution
statistics on the paste picture. Combined with Section 4.3, the K value is used as the basis
for the identification of paste homogeneity, which is calculated by Formula (6). When the
K value is less than 0.05, the prepared paste homogeneity can be considered good; when
the K value is greater than 0.05, the network control center will give feedback to the mixer
system so as to strengthen the mixing, such as increasing the mixing speed or reducing the
backfill flow to extend the mixing time.
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Figure 11. On-line monitoring of CPB undergoing mixing.

This technology enables real-time monitoring of the paste preparation process, helping
to accurately grasp the homogeneity of the paste to ensure that the paste meets the backfill
needs. In addition, this technology can improve the automatic management level of the
backfill process, realize the unmanned backfill and mixing workshop, thus greatly reducing
the labor cost and bringing considerable economic benefits to the mining enterprises.

5. Conclusions

Image analysis technology is applied to monitor the paste preparation process and
grayscale variance value is adopted as the texture feature value to discriminate the surface
differences of the slurry. The experimental results show that the variance curve of the three
sets of slurry experiments has the same changing trend, converging at 370 s, 330 s, and 310 s,
and its texture feature values are 0.00534, 0.00462, and 0.00305, respectively. It indicates
that there is a correlation between the texture feature value and the paste properties. The
higher the paste concentration is, the longer the mixing homogenization time is, and also,
the greater the image texture feature value is.

Taking the backfilling performance (fluidity and mechanical properties) as the homo-
geneity index, the homogeneity appears to rise rapidly and then tends to stabilize with
passing of the mixing time. This changing trend is similar to that of the image texture
feature value. The results show that there is a correlation between image texture features
and homogeneity of slurry, and it can be considered that the image texture features are
the macroscopic manifestations of slurry meso-structure. It proves that the image texture
feature value can be used to monitor the paste homogeneity.
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Based on the image texture feature value of the paste to establish the discriminant
model suitable for analyzing the homogeneity of paste slurry, the discriminant coefficient
of the paste homogeneity is 0.05, which is suitable. Image monitoring technology can be
used for homogeneity monitoring of intelligent backfilling process. When the k value in
the discriminant model is close to 0.05, it can be considered that the paste slurry achieves
good homogeneity. When the K value is greater than 0.05, the mixing system needs
to strengthen mixing so that the paste performance can meet the backfill requirements.
This technology is accurate and highly automated, which can greatly reduce the cost of
backfilling management.
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