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Understanding Earth’s interior dynamics, the origin and factors of which maintain the
present-day plate-like behavior of the lithosphere on our planet, is one of the main goals
of geosciences. In the theory of plate tectonics, strain is concentrated at plate interfaces,
leading to the localized production of earthquakes and volcanic activity. However, the
origin and mechanisms allowing strain localization throughout the lithosphere remain
puzzling and require more investigations on rock deformation at plate interfaces through
multi-disciplinary approaches.

The main available tools to constrain rock deformation processes nowadays include
field observations (together with geophysical observations) and lab experiments. While
the former provides partial snapshots of geological processes at different scales, the latter
attempts to reproduce natural processes at a micrometric scale using specific conditions in
the laboratory, with some access to mechanical properties. Both types of investigations may
be independently performed, but the comparison of their respective micro-structural fea-
tures remains essential to compare and extrapolate experimental outputs and the resulting
rheological laws to ‘geological’ time and space scales. This Special Issue gathers papers that
use and/or combine results from these two different approaches, providing new insights
on minerals and rocks that deformed at conditions representative of the lithosphere and
asthenopheric upper mantle.

The study of Boneh et al. [1] is a perfect illustration of the value of making this link
between natural observations and lab experiments using micro-structural features. Because
lab conditions imply strain rates of several orders of magnitude higher than “geological”
ones, requiring substantial extrapolation of the experimental outputs to geological condi-
tions, Boneh et al. indeed examined xenolith samples deformed at strain rates comparable
to a laboratory shearing time scale. Using the Electron Backscatter Diffraction (EBSD)
technique to describe deformation features in three dimensions, which is at the forefront of
microstructural studies, they demonstrate how mantle xenoliths may serve as a reference
to compare lab tests and natural features. EBSD is also extensively used in the studies
of Newman et al. [2], Linckens et al. [3], and Jung et al. [4] to describe the deformation
features of highly deformed minerals in mantle shear zones, typically where strain has
been localized. They respectively discuss how stress, melt and amphibole affect strain
localization or may be used to decipher deformation mechanisms in upper mantle rocks.
The role of ultrahigh pressure in affecting rock deformation at plate interfaces is further
addressed in the paper of Asano et al. [5] through EBSD acquisitions, with a particular
focus on the quartz—coesite transition.

In addition, this Special Issue highlights new discoveries from deformation experi-
ments. The study of Akamatsu et al. [6] first focuses on the role of H,O in modifying the
strength- and strain-related behavior of the oceanic lithosphere. From measurements of
elastic wave velocity during low-pressure rock deformation experiments, they show how
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hydrated olivine may reduce the strength of olivine gabbro and prevent any dilatancy before
rock failure in the brittle regime. Gasc et al. [7] then considered the processes taking place
at far higher pressure to experimentally explore the role of polymorphic reactions on rock
deformation at the base of the upper mantle. Based on acoustic emissions recorded during
deformation of Germanium olivine, they show how an analogue of the olivine-ringwoodite
transformation may interact with strain localization and rock embrittlement. Finally, this
volume is closed by the experimental study of Ferrand and Deldique [8] and a review study
by Ferrand [9], both focusing on the nature of the lithosphere-asthenosphere boundary
(LAB). While experimental data highlight a solid-state process commonly observed in
metals to account for rock weakening through the LAB, the second study discusses and
suggests the presence of garnet-rich pyroxenite layers at the LAB to explain the anomalies
of electrical conductivity within the Cocos and Nazca plates offshore Nicaragua.
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