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Abstract: This work concentrates on the energy consumption and grinding energy efficiency of a
laboratory vertical roller mill (VRM) under various operating parameters. For design of experiments
(DOE), the response surface method (RSM) was employed with the VRM experiments to systemat-
ically investigate the influence of operating parameters on the energy consumption and grinding
energy efficiency. The prediction models of energy consumption (Ecs) and grinding energy efficiency
(η) were established respectively with the operating parameters (loading pressure, rotation speed
and moisture content). Analysis of variance (ANOVA) was performed to obtain useful knowledge in
designing operating parameters. Moreover, the multi-objective optimization design (MOD) method
was conducted to seek out the optimal parameters of the VRM, and a set of optimal parameters
was gained based on the desirability approach by Design-Expert. It is proved that the optimized
prediction results match the experimental results well, which indicates this research offers a reliable
guidance for reducing energy consumption and improving grinding energy efficiency.

Keywords: energy consumption; grinding energy efficiency; response surface method; multi-objective
optimization; desirability approach

1. Introduction

Mineral crushing is highly energy consuming, accounting for about 35–50% of the total
cost and 1.8% of the global electrical energy consumption [1,2]. Therefore, energy-efficient
grinding technologies have become the main focus of the industry, especially in the cement
industry with large-scale plants. Until now, various types of crushing equipment have
been developed to meet the requirement of the industry, such as jaw crusher, cone crusher
and vertical roller mill i.e., VRM [3–5]. Among these devices, VRM plays an important
role in cement, accounting for more than 55% of China’s cement raw meal market [6], and
its performance directly affects the cost of producing cement. VRM has the functions of
grinding and powder selection, including a grinding unit and an air classifier, and can
be divided into two categories, one air-swept and the other an overflow type without air
involved [5].

A review of the literature shows that there are numerous studies on energy consump-
tion comparing conventional grinding systems and VRM in cement plants. It is worth
noting that the VRM could save 30% energy in cement grinding [7–12]. In a test performed
in the Loesche test center in Germany, copper slag grinding saved 22.9% energy in an
air-swept model and 34.4% energy in an overflow model [13,14]. Altun also found this
situation in a chalcopyrite test, where the grinding energy consumption is reduced by 18%
compared with the conventional ball milling process, and pointed out that overflow type is
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expected to be more efficient than the air-swept model [5]. Although the overflow model
shows better energy-saving potential than the air-swept model, it has poor adaptability to
different working conditions. Due to inappropriate arguments such as the moisture, hard-
ness and particle size in cement raw meal, a series of serious problems regarding product
quality, production efficiency and energy consumption could occur on the VRM [15,16].
Therefore, for a VRM, reasonable operating parameters are of great importance to the
grinding performance. In other words, it is necessary to carry out the optimal design of
related parameters.

Performance optimization has become one of the objectives of crushing equipment
research. Until now, the single factor analysis method has been mainly used to investigate
the influence of various factors on the grinding performance of a VRM [13,14,17,18]. How-
ever, practical problems often require a multi-objective optimization, and the optimization
goals would always affect each other. As far as we know, there are few multi-objective
optimization studies on energy consumption and grinding energy efficiency for a VRM.
There are usually four kinds of VRMs in the cement production line, including raw meal
mill, coal mill, Clinker Mill and cement mill, and the vertical mill occupies a large energy
consumption unit. Therefore, it is necessary to optimize the multi-objective parameters of
the VRM in order to improve the grinding performance and reduce energy consumption.

The present work focuses on the grinding performance of an overflow laboratory
VRM. It concentrates on addressing the designing and optimizing issues for the energy
consumption and grinding energy efficiency. An integration method with experiments
in the VRM and the response surface method (RSM) was employed to explore the effects
of operating parameters (loading pressure (P), rotation speed (n) and moisture content
(ω)) on the grinding performance of the VRM. The energy consumption (Ecs) and the
grinding energy efficiency (η) were modelled as functions by the operating parameters.
Parametric studies were carried out to research the main and reciprocal impacts of the
operating parameters on the Ecs and η. Moreover, multi-objective optimization design
(MOD) of the grinding performance was executed by employing a desirability approach to
obtain minimum Ecs and maximum η.

2. Material and Methods
2.1. Material Properties

Limestone with the bond work index of 15.129 kWh/t and Moisture content of 4.9%
was bought from an ore market. Experimental limestone was first crushed by a jaw crusher
(Tianjin Zhongluda Instrument Technology Co., Ltd., Tianjin, China) to −10 mm, and its
particle size distribution is given in Figure 1a. Associated minerals in raw limestone were
investigated by the D/MAX-RB X-ray diffractometer made by RIGAKU (Tokyo, Japan),
and the X-ray spectrum of limestone is shown in Figure 1b. As shown, the main mineral
components are calcite, illite and quartz.
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2.2. Experimental Setup

The device (Figure 2) used in this investigation in China was a specially designed
laboratory-scale VRM with a production capacity of 0.2 t/h. Its structure is similar to the
vertical spindle pulverizer (VSP) [17], including a complete loading force, motion and
feeding control system, and the power consumed by grinding materials can be obtained
through the electrical control system. The parameters of VRM are as follows: roller radius
340 mm, roller width 105 mm, roller inclination 13◦, millstone radius 300 mm, millstone
revolution rate 0–72 rpm, motor revolution rate 0–1000 rpm, maximum motor power 15 kW,
loading pressure 0–10 MPa, feeding rate 0–200 kg/h. All raw limestone was dried before
the grinding experiments. Products can be collected from the product export and sampled
three times under the same working conditions, and the average of the three groups of
experimental results is selected as the research data.
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2.3. Grinding Performance Indexes

In the field of mineral processing, the specific energy Ecs (kWh/kg) is often used
to compare the grinding performance of different equipment or different loading meth-
ods [19–22]. Although the special energy Ecs can evaluate the grinding performance of
the equipment as a whole, it is not possible to compare the grinding energy efficiency
of different particle sizes. Therefore, the grinding energy efficiency of VRM at different
conditions is calculated from the experimental data by the following equation:

η = Q
Pd − Fd

P
(1)

where η represents the grinding energy efficiency defined as the net production of specified
particle size per unit of energy (for example, 1.0 kg/kWh for particle size in −0.63 + 0.315 mm),
Q is the feeding rate of VRM (kg/h), P is the VRM power (kW), Pd is the percentage of
specified particle size in the product (%), Fd is the percentage of specified particle size in
feed (%).
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In this work, indicators Ecs and η (−0.63 + 0.315 mm) are used to characterize the
grinding performance of VRM. The proportion of (−0.63 + 0.315 mm) particle size in
the product increased from 7.55% to 20.2% compared with that before grinding, and the
increase was lower than that of other particle sizes. In addition, due to space constrains,
the grinding energy efficiency of other particle sizes (−0.315 + 0.16 mm, −0.16 + 0.08 mm
and −0.08 mm) are no longer displayed.

3. Response Surface Models and Parametric Study
3.1. Design of Experimental (DOE)

Based on the Box–Behnken method, the experimental tests on three factors and three
levels were carried out in the Design-Expert software (8.0.6, Stat-Ease, Minneapolis, USA).
As reported by Boehm [23] and by Altun [24], there are several factors affecting the grinding
effect, among which the loading pressure and feed rate are more important, while the motor
rotation speed and the moisture content of raw materials are also important, but few reports
could be found. Accordingly, in this research, rotation speed (n), loading pressure (P) and
moisture content (ω) were taken as the controllable operating parameters, and energy (Ecs)
and grinding energy efficiency (η) (−0.63 + 0.315 mm) are the objectives to optimize. This
experiment was carried out under the condition that the feeding rate was 100 kg/h and
the initial particle size gradation was unchanged. Before preparing wet materials with
different proportions of moisture, the raw materials need to be dried. The moisture content
can be controlled by adding different proportions of water into the raw limestone and
mixing evenly. Box-Behnken Design (BBD) has been investigated to receive design matrix
of three factors at three levels as shown in Table 1. The experimental parameters and levels
were selected in this research according to the review of previous research and present
equipment capability. The Box–Behnken design experiment schemes and response values
are presented in Table 2.

Table 1. Operating parameters and experiment design levels.

Parameters Code −1 0 1

Loading pressure (MPa) P 6 7 8
Rotation speed (rpm) n 350 450 550
Moisture content (%) ω 0 1 2

Table 2. Design experiment schemes and response values.

No. P (MPa) n (rpm) ω (%) Ecs (kWh/kg) η (kg/kWh)

1 7.00 450.00 1.00 0.03 0.834
2 6.00 550.00 1.00 0.028 0.856
3 8.00 450.00 2.00 0.04 0.756
4 8.00 450.00 0.00 0.038 0.962
5 7.00 350.00 2.00 0.028 0.756
6 8.00 550.00 1.00 0.043 0.751
7 6.00 450.00 0.00 0.024 1.021
8 7.00 450.00 1.00 0.03 0.834
9 6.00 350.00 1.00 0.025 1.042
10 7.00 550.00 2.00 0.035 0.426
11 7.00 450.00 1.00 0.03 0.834
12 6.00 450.00 2.00 0.027 0.812
13 7.00 450.00 1.00 0.03 0.834
14 7.00 550.00 0.00 0.029 0.654
15 7.00 350.00 0.00 0.026 0.994
16 7.00 450.00 1.00 0.028 0.834
17 8.00 350.00 1.00 0.038 0.942

3.2. Response Surface Models

Response surface methodology (RSM) integrates mathematical and statistical tech-
niques, including modeling, data analysis, data prediction and parameter optimization [25].
Compared with other technologies, RSM not only avoids a large number of experiments,
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but also can obtain the main influencing factors and interactive effects from the designed
experiments as reported in [26,27]. Based on the simulated data, the response surface
method (RSM) is used to establish the relationship between operation parameters and
responses, and then to predict the response and optimize relevant parameters. Generally,
the second-order polynomial Equation (2) employed in RSM can be shown as:

Y = β0 + ∑k
i=1 βixi + ∑k

i=1 βiix2
i + ∑k−1

i=1 ∑k
j=2 βijxixj, (2)

where Y represents the predicted response value, β0 is a constant value, βi means the linear
coefficient, βii denotes the squared coefficient, βij is the cross coefficient, k is the number of
parameters. For the second-order polynomial, these coefficients can be gained by using
Design-Expert software (8.0.6, Stat-Ease, Minneapolis, MN, USA).

3.3. Analysis of Variance (ANOVA)

In this research, analysis of variance (ANOVA) was adopted to explore the operating
parameters of the VRM for providing a clearer picture of the degree of their impacts on the
grinding performance indexes.

3.3.1. Analysis of Variance of Energy Consumption (Ecs) Responses

Table 3 gives the ANOVA results, the F-value is 77.75 of the Ecs model and the P-value
is far less than 0.05, and the value of adequate precision with 30.429 is much larger than
4, which reveals that the model is highly significant. The predicted R2 is 0.934, which is
consistent with the adjusted R2 of 0.9774. The difference between predicted R-squared
and the adjusted R-squared was less than 0.2. According to the analysis results in Table 3,
order of parameter effect on energy consumption (Ecs) can be obtained by comparing the
F-values and p-values magnitudes as follows: P > P2 > n > ω > nω > ω2 > n2 > Pn > Pω.

Table 3. Analysis of variance for Ecs.

Source Sum of
Squares Df Mean Square F-Value p-Value

Model 4.948 × 10−4 9 5.498 × 10−5 77.75 <0.0001
P 3.781 × 10−4 1 3.781 × 10−4 534.72 <0.0001
n 4.050 × 10−5 1 4.050 × 10−5 57.27 0.0001
ω 2.113 × 10−5 1 2.113 × 10−5 29.87 0.0009
Pn 1.000 × 10−6 1 1.000 × 10−6 1.41 0.2731
Pω 2.500 × 10−7 1 2.500 × 10−7 0.35 0.5708
nω 4.000 × 10−6 1 4.000 × 10−6 5.66 0.0490
P2 4.655 × 10−5 1 4.655 × 10−5 65.83 <0.0001
n2 1.392 × 10−6 1 1.392 × 10−6 1.97 0.2034
ω2 1.918 × 10−6 1 1.918 × 10−6 2.71 0.1435

Residual 4.950 × 10−6 7 7.071 × 10−7

Lack of Fit 1.750 × 10−6 3 5.833 × 10−7 0.73 0.5860
Pure Error 3.200 × 10−6 4 8.000 × 10−7

Cor Total 4.998 × 10−4 16
R2 Adjusted R2 Predicted R2 Adequate precision

0.9901 0.9774 0.934 30.429

In order to improve the accuracy of the prediction model, the insignificant compo-
nents were removed from the Ecs response. Therefore, the prediction model of energy
consumption (Ecs) can be given as:

Ecs = 0.13683 − 0.039597P + 1.25 × 10−5n − 2.875 × 10−3ω + 1 × 10−5nω + 3.31944 × 10−3P2, (3)

It is worth noting that the prediction model obtained in this study is not applicable to
other equipment and materials because of the different working mechanism of equipment
and the complexity of materials.
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3.3.2. Analysis of Variance of Grinding Energy Efficiency (η) Responses

Table 4 shows the ANOVA results; the F-value is 21.82 of the η model and the P-value
does not exceed 0.05, and the value of adequate precision of 18.79 is much larger than 4,
which means that the model is significant. The predicted R2 is 0.854, which is consistent
with the adjusted R2 of 0.9213. It can be seen that the difference between predicted R-
squared and the adjusted R-squared is less than 0.2. According to the analysis results in
Table 4, order of parameter effect on grinding energy efficiency (η) can be obtained by
comparing the F-values and P-values magnitudes as follows: n > ω > P > P2 > ω2 > n2 >
nω > Pn > Pω.

Table 4. Analysis of variance for η.

Source Sum of
Squares Df Mean Square F-Value p-Value

Model 0.34 9 0.038 21.82 0.0003
P 0.013 1 0.013 7.42 0.0296
n 0.14 1 0.14 79.48 <0.0001
ω 0.097 1 0.097 56.27 0.0001
Pn 6.250 × 10−6 1 6.250 × 10−6 3.625 × 10−3 0.9537
Pω 2.250 × 10−6 1 2.250 × 10−6 1.305 × 10−3 0.9722
nω 2.500 × 10−5 1 2.500 × 10−5 0.015 0.9075
P2 0.063 1 0.063 36.35 0.0005
n2 0.014 1 0.014 8.29 0.0237
ω2 0.020 1 0.020 11.38 0.0119

Residual 0.012 7 1.724 × 10−3

Lack of Fit 0.012 3 4.023 × 10−3

Pure Error 0.000 4 0.000
Cor Total 0.35 16

R2 Adjusted R2 Predicted R2 Adequate precision
0.9656 0.9213 0.854 18.79

Here, all the components with the condition (p-value ≥ 0.05) in the η response were
removed from the proposed equation for the response model of η. Hence, the prediction
model of grinding energy efficiency (η) can be shown as:

η = 6.54325 − 1.748P + 3.93375 × 10−3n + 0.026375ω + 0.122P2 − 5.825 × 10−6n2 − 0.06825ω2, (4)

3.4. Validation of the RS Models

Figure 3 gives the relationship between the actual and predicted values of the energy
consumption (Ecs) and grinding energy efficiency (η). As shown in the figure, it is found
that the predicted and actual values of Ecs and η quadratic polynomial models are near a
diagonal, indicating that the model has good prediction ability.

Minerals 2022, 12, x FOR PEER REVIEW 7 of 13 
 

 

Cor Total 0.35 16    
R2 Adjusted R2 Predicted R2 Adequate precision 

0.9656 0.9213 0.854 18.79 

3.4. Validation of the RS Models 
Figure 3 gives the relationship between the actual and predicted values of the 

energy consumption (𝐸 ) and grinding energy efficiency (𝜂). As shown in the figure, it 
is found that the predicted and actual values of 𝐸  and 𝜂 quadratic polynomial models 
are near a diagonal, indicating that the model has good prediction ability. 

  
(a) (b) 

Figure 3. (a) Scatter diagram of 𝐸 ; (b) scatter diagram of 𝜂. 

3.5. Parametric Study 
3.5.1. Effect of Operating Parameters on 𝐸  Response 

The analysis of variance (ANOVA) in Table 3 implied that parameter P had a more 
significant impact on the 𝐸  response than other parameters. Figure 4a shows the 
variation of 𝐸  with rotation speed and loading pressure. As seen, the 𝐸  increases 
when the loading pressure increases due to the increase of resistance of millstone 
movement with the increase of loading pressure. The same changes were also found in 
the work of Xie [18]. The maximum 𝐸  could be obtained with the maximum rotation 
speed and maximum loading pressure. It can be found that the change of response 
surface shape along P is steeper than that along n, indicating that P has a more significant 
impact on 𝐸  than n, which is consistent with the conclusion described in Section 3.3.1. 
Figure 4b gives the variation of 𝐸  with rotation speed and moisture content. It can be 
seen that the interaction between these two factors is weak. A perturbation plot is given 
in Figure 4c, which presents the influence of all the parameters on the energy 
consumption at the center point in the design space. It is demonstrated from this figure 
that loading pressure is of great importance to the 𝐸 , while the influence of rotation 
speed and moisture content is relatively small, and positively correlated with 𝐸 . When 
the rotating speed increases, the power of equipment operation increases, and finally the 
energy consumption increases under constant feeding. With the increase of moisture 
content, the equipment operation resistance increases and the grinding capacity 
decreases, resulting in the increase of energy consumption. 

Figure 3. (a) Scatter diagram of Ecs; (b) scatter diagram of η.



Minerals 2022, 12, 133 7 of 12

3.5. Parametric Study
3.5.1. Effect of Operating Parameters on Ecs Response

The analysis of variance (ANOVA) in Table 3 implied that parameter P had a more
significant impact on the Ecs response than other parameters. Figure 4a shows the variation
of Ecs with rotation speed and loading pressure. As seen, the Ecs increases when the
loading pressure increases due to the increase of resistance of millstone movement with the
increase of loading pressure. The same changes were also found in the work of Xie [18]. The
maximum Ecs could be obtained with the maximum rotation speed and maximum loading
pressure. It can be found that the change of response surface shape along P is steeper
than that along n, indicating that P has a more significant impact on Ecs than n, which is
consistent with the conclusion described in Section 3.3.1. Figure 4b gives the variation of
Ecs with rotation speed and moisture content. It can be seen that the interaction between
these two factors is weak. A perturbation plot is given in Figure 4c, which presents the
influence of all the parameters on the energy consumption at the center point in the design
space. It is demonstrated from this figure that loading pressure is of great importance to
the Ecs, while the influence of rotation speed and moisture content is relatively small, and
positively correlated with Ecs. When the rotating speed increases, the power of equipment
operation increases, and finally the energy consumption increases under constant feeding.
With the increase of moisture content, the equipment operation resistance increases and the
grinding capacity decreases, resulting in the increase of energy consumption.
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3.5.2. Effect of Operating Parameters on η Response

The analysis of variance (ANOVA) in Table 4 revealed that η depended mainly on the
parameter ω and the parameter n. Figure 5a shows the variation of η with and moisture
content and rotation speed. As seen, the η increases as the rotation speed decreases, and
the maximum η could be obtained with the minimum moisture content and minimum
rotation speed. Xie [18] found the motor power consumption and product output are
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proportional to the motor rotation speed based on VRM experiments, but did not compare
the degree of change. This work gives the grinding energy efficiency at the particle size
of −0.63 + 0.315 mm. The results show that the change of response surface shape along n
is steeper than that along ω, meaning that n has a more significant influence on η than ω;
this conclusion is consistent with previous conclusions in Section 3.3.2. Figure 5b presents
the variation of η with loading pressure and rotation speed. As seen, there is a strong
interaction between the two factors. A perturbation plot is presented in Figure 5c, which
shows the impact of all the parameters on the grinding energy efficiency at the center point
in the design space. As seen, the rotation speed and moisture content have a negative effect
on the η. According to the definition and unit of η, generally, it is inversely proportional to
Ecs. According to the change trend of Ecs, η is inversely proportional to rotating speed and
moisture content.
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4. Multi-Objective Optimization Design (MOD)
4.1. Description of the Optimization Problem

Although the influence of three operating parameters on grinding performance has
been explored in the previous sections, how to design optimal operating parameters under
multiple objectives is still unknown. Therefore, it is more meaningful to carry out the
operating parameters optimization of the grinding performance within a multi-objective
optimization framework. As an important rule for the design of crushing equipment, the
first objective is to minimize the energy consumption of equipment operation, and another
objective is to maximize the grinding energy efficiency.
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So, the MOD problem of grinding performance under various parameters can be
formulated as follow: 

Minmize f 1 = Ecs(P, n, ω)
Maxmize f 2 = η(P, n, ω)
s.t. 6 ≤ P ≤ 8 MPa

350 ≤ n ≤ 450 rpm
0 ≤ ω ≤ 2%

, (5)

4.2. Desirability Function Approach

In this work, due to its simplicity and availability in the Design-Expert, the desirability
function approach is employed to optimize multi-objective responses. Each response can
be changed by the weights (weights could be ranged between 0.1 and 10) and importance
(importance varies from the least important + to the most important +++++). The over-
all desirability function simultaneously considers the energy consumption and grinding
energy efficiency.

The basic idea of solving multi-objective optimization problems is to combine multiple
responses into a dimensionless measure of performance [28]. The first task of desirability
function is to change each response variable Yi to a desirability di value, where 0 ≤ di ≤ 1
and a greater di value means that response value Yi is more desirable, i.e., if di = 0
this implies that the response is completely undesired, otherwise di = 1 means a totally
desired response.

If an objective function is to be maximized, the individual desirability function (di)
can be defined by

di =


0 Yi ≤ Lowi(

Yi−Lowi
Highi−Lowi

)wti
Lowi < Yi < Highi

1 Yi ≥ Highi

, (6)

If an objective function is to be minimized, the individual desirability function (di) can
be defined by

di =


1 Yi ≤ Lowi(

Highi−Yi
Highi−Lowi

)wti
Lowi < Yi < Highi

0 Yi ≥ Highi

, (7)

where Yi is the response value, Lowi represents the lower limit, Highi denotes the upper
limit, wti represents the weight factor.

The desirability objective function D is combined with these determined individual di
values, and it is a geometric mean of all the di values.

D =
(
∏n

i=1 dri
i

)1/n
, (8)

where n denotes the number of responses, each response can be given an importance
indicator (ri) relative to other responses. Importance (ri) varies from the least important
values of 1(+), to the most important value of 5(+++++).

4.3. Design Optimization Results

In this article, the goal of multi-objective design is to achieve the minimum Ecs
and the maximum η. Employing the desirability method, the MOD problem of grinding
performance under various parameters can be formulated as

Maxmize D =
√

dEcs × dη

s.t. 6 ≤ P ≤ 8 MPa
350 ≤ n ≤ 450 rpm

0 ≤ ω ≤ 2%

, (9)
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where

dEcs =

(
Ecs

H − Ecs(P, n, ω)

Ecs H − EcsL

)w1

, (10)

dη =

(
η(P, n, ω)− ηL

ηH − ηL

)w2

, (11)

in which Ecs
H , Ecs

L, and ηH , ηL denote the upper and lower limits on Ecs and η, respectively.
w1 and w2 mean the weight factors for Ecs and η, respectively.

The values of loading pressure (P), rotation speed n and moisture content (ω) were
set to vary for seeking the optimal configuration of the grinding performance. The op-
timization function in the Design-Expert software package can maximize the expected
function in multiple factors. The desirability objective function (D) vs n and P is given in
Figure 6. As seen, with the decrease of rotation speed and loading pressure, the overall
desirability increases.
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Both objectives are given equal importance values and weight values, and the optimal
solution results are shown in Table 5. It can be found that the optimal desirability is
accounted by the parameters with P = 6 MPa, n = 350 rpm and ω = 2%. So, if the parameter
has a minimum loading pressure and rotation speed, the multi-objective optimization
design could be gained. The optimization results of DOE were verified by an experiment
and Table 6 shows the comparison between the experimental results and the predicted
results. As seen, the maximum error between experimental and predicted values is 9.2%,
indicating the optimized results are valid.

Table 5. Optimal solution as obtained by Design-Expert. “/” means no value.

Parameter P (MPa) n (rpm) ω (%) Ecs (kWh/kg) η (kg/kWh) Desirability

Example 7 450 1 0.03 0.834 /
Optimzed 6 350 2 0.02314 1.11343 0.449

Table 6. Comparison between the experimental results and the predicted results.

Parameter Ecs (kWh/kg) η (kg/kWh)

Predicted 0.02314 1.11343
Experimental 0.02135 1.02981

Error 7.7% 9.2%

5. Conclusions

For design of experiments (DOE), the response surface method (RSM) was employed
with the laboratory VRM experiments to systematically investigate the influence of operat-
ing parameters such as loading pressure (P), rotation speed (n) and moisture content (ω) on
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the grinding performance of VRM. The energy consumption (Ecs) and the grinding energy
efficiency (η) were established respectively with operating parameters. Furthermore, based
on the developed models of the (Ecs) and (η), the multi-objective optimization design
(MOD) method was utilized to seek out the optimal parameters of the VRM. The following
conclusions could be drawn:

The models of energy consumption and grinding energy efficiency by the RSM could
well reveal the potential association between the models and the corresponding operating
parameters.

Comparing with rotation speed (n), the loading pressure (P) has a more significant
impact on the energy consumption (Ecs) and the moisture content (ω) has the lowest
influence.

The optimal parameters for energy consumption (Ecs) and grinding energy efficiency
(η) are as follows: loading pressure 6 MPa, rotation speed 350 rpm and moisture content 2%.

The predicted values of the optimization design model match the experimental results
well under same conditions. The RSM turns out to be a valid method to perform multi-
objective optimization.
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