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Abstract: The origin of ultramafic rocks, especially those in suture zones, has been a focus because
they are not only important mantle sources of magma, but also provide substantial information on
metamorphism and melt/fluid–peridotite interaction. Ultramafic rocks in Hujialin, in the central
part of the Sulu orogen, include peridotite and pyroxenite. Although many papers on their origin
and tectonic evolution have been published in the past few decades, these questions are still highly
debated. Here, we present mineralogy, mineral composition, and bulk-rocks of these ultramafic
rocks to evaluate their origin and tectonic evolution. The garnet clinopyroxenite is low in heavy
rare-earth elements (HREE, 5.97–10.6 ppm) and has convex spoon-shaped chondrite-normalized
REE patterns, suggesting the garnet formed later, and its precursor is clinopyroxenite. It is high in
incompatible elements (i.e., Cs, Rb, Ba) and shows negative to positive U, Nb, and Ta anomalies,
without pronounced positive Sr or Eu anomalies. Clinopyroxene in garnet clinopyroxenite contains
high MgO (Mg# 0.90–0.97). The mineral chemistry and bulk-rock compositions are similar to those
of reactive clinopyroxenite, suggesting that it originally formed via peridotite–melt interaction, and
that such silicic and calcic melt might derive from the subducted Yangtze continent (YZC). Dunite
contains olivine with high Fo (93.0–94.1), low NiO (0.11–0.29 wt.%) and MnO (≤0.1 wt.%), chromite
with high Cr# (0.75–0.96), TiO2 (up to 0.88 wt.%), and Na2O (0.01–0.10 wt.%). It has negatively
sloped chondrite-normalized REE patterns. Mineral chemistry and bulk rocks suggest dunite likely
represent residual ancient lithosperic mantle peridotite beneath the North China Craton (NCC) that
was overprinted by aqueous fluids. The lack of prograde and retrograde metamorphic minerals
in dunite and irregular shaped mineral inclusions in chromite suggest dunite did not subduct to
deep levels. Dunite mingled with garnet clinopyroxenite during exhumation of the latter at shallow
depths. These ultramafic rocks, especially hydrated peridotite, may be important sources of Au for
the Jiaodong gold province in the NCC.

Keywords: Sulu orogenic belt; clinopyroxenite; North China Craton; melt–peridotite interaction

1. Introduction

The Dabie-Sulu orogenic belt formed from the subduction of Yangtze Craton (YZC)
beneath the North China Craton (NCC) in the Triassic in east-central China [1–3]. It is one
of the largest ultrahigh-pressure (UHP) metamorphic terranes in the world with an exposed
area of about 30,000 km2 [4,5]. The terrane is mainly composed of granitic gneisses, with
volumetrically minor ultramafic rocks occurring as massifs and lenticular bodies. These
ultramafic rocks include garnet peridotite, spinel peridotite, and pyroxenite. They mainly
distribute in Weihai, Rongcheng (Chijiadian, Lijiatun, and Macaokuang), Jiangzhuang,
Xugou, Rizhao (Suoluoshu and Hujialin), and Yangkou [1,2,6] (Figure 1a).
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Ultramafic rocks in Hujialin are surrounded by granitic gneiss, and mainly consist of
serpentinized peridotite with minor dunite and clinopyroxenite lenses [7]. The origin of
pyroxenite has been a focus not only because pyroxenite subducted into the mantle is an
important source for magma, but also because the pyroxenite returned to the surface pro-
vides substantial information on metamorphism and melt/fluid–peridotite interaction [8].
Although many papers on the origin of Hujialin clinopyroxenite have been published
in the past few decades, the question of whether the clinopyroxenite is a cumulate of
magma [7,9–11] or a product of melt–peridotite interaction [12] is still highly debated.
Besides, given that clinopyroxenite occurs closely associated with dunite somewhere in
Hujialin [5], questions such as “What is the relationship between their origins?” and “How
did they exhume together ?” require further discussion.

This study presents detailed petrology, mineral composition, and bulk-rock geochem-
istry of clinopyroxenite and dunite of Hujialin, to evaluate the origin and tectonic evolutions
of these two ultramafic rocks.

1 
 

 
 

 

Figure 1. (a) A sketch map showing the framework of the Dabie-Sulu orogenic belt and the distribu-
tion of orogenic ultramafic rocks (modified after Zheng et al. [13]; Chen et al. [14]). (b) Geological
sketch map of the Rizhao area, showing the position of ultramafic rocks in Hujialin (modified after
Zhang and Liou [15]). (c) Outcrop map of the Hujialin ultramafic rocks (after Zhang and Liou [15]).
Abbreviations: Y-W Fault = Yantai-Wulian Fault; J-X Fault = Jiashan-Xiangshui Fault.

2. Geological Setting

The Sulu orogen is displaced northward from the Dabie orogen by the sinistral Tan-Lu
fault for about 500 km. It is bounded by the Yantai-Wulian to the north, and Jiashan-
Xiangshui fault to the south (Figure 1a). Three main fault-bounded metamorphic zones are
classified, with (I) low-temperature/low-pressure (LT/LP) greenschist-facies zone in the
north composed of Neoproterozoic igneous rocks and Neoproterozoic-pre-Triassic sedimen-
tary rocks; (II) mid-temperature/ultrahigh-pressure (MT/UHP) eclogite-facies zone in the
central dominated by ortho- and paragneiss with layers and blocks of eclogite, amphibolite,
marble, and sporadically distributed ultramafic bodies; and (III) low-temperature/high-
pressure (LT/HP) blueschist-facies zone in the south consisting of quartzite schist, ortho-
and paragneiss, marble, and blueschist [16–19]. They are unconformably overlain by Juras-
sic siliciclastic and Cretaceous volcanoclastic rocks and intruded by post-orogenic Mesozoic
granites [19].

The rocks in UHP zones retain evidence of UHP metamorphism, such as coesite
inclusions in minerals of garnet, omphacite, jadeite, kyanite, and epidote from both eclogite
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and metasedimentary rock in Donghai area [16]; the presence of exsolved clinopyroxene,
rutile, and apatite in garnet from Yangkou eclogite [20], and coesite and other ultrahigh-
pressure mineral inclusions in zircon from eclogite and gneiss core samples of the Chinese
Continental Scientific Drilling Site (CCSD) [19,21,22]. This indicates that both supracrustal
and basement rocks underwent UHP metamorphism at subarc depths more than 100 km.
U-Pb zircon dating of garnet peridotites [23], UHP gneisses [24], and eclogites [25] shows
that they were subjected to UHP metamorphism at 245–220 Ma. The peak metamorphic
conditions were considered to be 750–850 ◦C and 3.4–4.0 GPa [19].

The Hujialin ultramafic complex is situated in Rizhao City and located in the middle
of the Sulu orogen. It trends NNW-SSE for about 6 km long and is cut by a NE-SW-trending
fault (Figure 1b). The ultramafic complex is in fault contact with the UHP gneiss. It mainly
consists of serpentinized peridotite that contains minor discontinuous lenses of garnet
clinopyroxenite and dunite (Figure 1c). Petrological studies, such as mineral exsolution
texture in clinopyroxene, mineral assemblage, and associated P-T calculation, indicate that
the Hujialin garnet clinopyroxenite underwent UHP metamorphism [5,15,26]. Zircons
discovered from the ultramafic complex yielded U-Pb ages of 215–226 Ma, consistent with
the time of initial exhumation of deeply subducted continental crust in the Dabie-Sulu
orogenic belt [27–29]. Some spinel peridotites show no evidence of UHP metamorphism
and may have undergone different paths [2,11].

3. Materials and Methods
3.1. Sample Description

We examined nine clinopyroxenite samples and six dunite samples. They were col-
lected in the northern lenses of the Hujialin complex in a stone pit (Figure 1c), with
eight clinopyroxenite samples at 35◦12′24′′ N, 119◦15′6′′ E; one clinopyroxenite (HJ-19) at
35◦12′23′′ N, 119◦15′8′′ E; and dunite at 35◦12′35′′ N, 119◦15′2′′ E. The Hujialin complex is
not very large, and the pyroxenite and dunite are mainly exposed in the northern part of
the complex based on our field observation. Therefore, the samples that we collected may
represent the whole set of outcrops of pyroxenite-dunite.

Clinopyroxenite is divided into omphacite-bearing (type-1, samples of HJ-1, HJ-6) and
omphacite-free (type-2) varieties. Type-2 clinopyroxenite is subdivided into garnet-rich
(type-2A, samples of HJ-8, HJ-16) and garnet-poor (type-2B, samples of HJ-2, HJ-9, HJ-10,
HJ-12, HJ-19) varieties. Type-1 and type-2A clinopyroxenite are partly altered and show
porphyroblastic texture, in which coarse-grained garnet (20–50 vol.%, 1.5–5 mm in size)
occurs in a fine-grained matrix (0.4 mm on average) that is composed of garnet (~10 vol.%),
clinopyroxene with minor alteration minerals (amphibole, chlorite, and epidote), and
Fe-oxides (magnetite and ilmenite) (Figure 2a,b). Clinopyroxene, including omphacite
(euhedral to anhedral, 35–65 vol.%) occurs as inclusions in garnet and isolated grains
(Figure 2c). Clinopyroxene shows an interlocking texture with fine-grained garnet and has
irregular boundaries. It is euhedral to subhedral in sample of HJ-8, and sometimes shows
120◦ triple junction (Figure 2d). In sample of HJ-16, clinopyroxene grains are elongated and
show preferred orientation (Figure 2e). Fe-oxide intergrowths in type-1 clinopyroxenite
(commonly <0.2 mm in size, <2 vol.%) mainly occur in interstitial spaces of other minerals
and are enclosed in clinopyroxene and occasionally in garnet.

Type-2B clinopyroxenite is moderately altered and shows equigranular texture, ex-
cept for HJ-9, which shows porphyroblastic texture. Garnet-poor clinopyroxenite contains
clinopyroxene (euhedral to anhedral, 0.5 mm on average, >90 vol.%), garnet (<1 mm in
size, ~5 vol.%), alteration minerals (amphibole, chlorite, and epidote), Fe-oxides (magnetite,
and ilmenite), and titanite (Figure 2f). Clinopyroxene occurs as inclusions in garnet and
isolated grains in matrix. In HJ-9, coarse-grained clinopyroxene (~1 mm in size) is com-
monly surrounded by fine-grained clinopyroxene (~0.1 mm). Garnet commonly contains
clinopyroxene inclusions and occasionally contains amphibole and Fe-oxides (Figure 2g). It
is mostly altered and rimmed by amphibole, epidote, and chlorite (Figure 2f). Similar to
garnet-rich clinopyroxenite, Fe-oxides and titanite intergrowths (commonly <0.2 mm in
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size, <2 vol.%) mainly occur in interstitial spaces of other minerals (Figure 2h,i). A grain
(irregular in shape and 0.4 mm in size) showing chromite and ilmenite intergrowth was
discovered in interstitial space of clinopyroxene in sample HJ-10.
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Figure 2. Photomicrographs of garnet pyroxenite and dunite at Hujialin in the Sulu orogen, showing
mineral assemblages and characteristic textures. (a,b) Type-1 and type-2A clinopyroxenite show
porphyroblastic texture. (c) Clinopyroxene occurs as inclusions in garnet and isolated grains. (d) Eu-
hedral to anhedral clinopyroxene. (e) Clinopyroxene grains are elongated and show preferred
orientation in some samples. (f) Garnet-poor clinopyroxenite composed of clinopyroxene, garnet,
alteration minerals, Fe-oxides, and titanite. (g) Clinopyroxene, minor amphibole, and Fe-oxides are
included in garnet. (h,i) Fe-oxides and titanite intergrowths occur in interstital spaces of other miner-
als. (j–l) Dunite consists of olivine and chromite. Some chromite grains show preferred orientation.
Amp = amphibole; Chl = chlorite; Chr = chromite; Cpx = clinopyroxene; Ep = epidote; Grt = garnet;
Ilm = ilmenite; Mag = magnitite; Ol = olivine; Srp = serpentine; Ttn = titanite. Mineral abbreviations
after Whitney and Evans [30].

Dunite (samples of HJ-20, HJ-23, HJ-25, HJ-27, HJ-28, and HJ-29) is slightly to mod-
erately altered along cracks and boundaries of olivine into serpentine, amphibole, and
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chlorite (Figure 2j–l). It shows a granular mosaic structure, and mainly consists of olivine
(~0.6 mm in size, >95 vol.%) and chromite (<3 vol.%). No sulfide minerals are found. Some
olivine and chromite grains are mylonitized and show preferred orientation (Figure 2j).
Chromite shows uneven size (<0.1 mm to 2 mm) and varying color (dark red to opaque). It
occurs in interstitial spaces of olivine grains. Several chromite grains form aggregates.

3.2. Analytical Methods

Mineral compositions were determined using a JEOL JXA-8230 microprobe by the
wavelength dispersive method at the Institute of Mineral Resources, Chinese Academy
of Geological Sciences, Beijing, China. The peak counting time was 10 s for each element.
Analytical conditions were 15 kV accelerating voltage, 20 nA beam current, and 5 µm beam
spot. The standards were jadite (Si, Al, Na), forsterite (Mg), rutile (Ti), topaz (F), potash
feldspar (K), wollastonite (Ca), hematite (Fe), Cr2O3 (Cr), MnO (Mn), NiO (Ni), and NaCl
(Cl). Raw data were corrected using a ZAF program. Fe3+ and Fe2+ contents of chromite
were calculated based on stoichiometry of AB2O4.

Samples were crushed to powders of 2 µm in agate mortars for bulk-rock major and
minor elements analysis in Yanduzhongshi Geological Analysis Laboratories Ltd., Beijing,
China. Bulk-rock major elements were analyzed by an X-ray fluorescent spectrometer
(XRF-1800). Bulk-rock powder was added to a flux of lithium metaborate, mixed well,
and fused in a furnace at 1150 ◦C. A flat glass disk was prepared, and then the major
elements were analyzed by XRF. Relative standard deviations for major element oxides are
within 1%.

Minor elements were analyzed by inductively coupled mass spectrometry (ICP-MS,
M90). The sample preparation procedure was similar to that described by Li et al. [12].
Sample powder was heated in an oven at 105 ◦C for 12 h, and 50 mg of powder was
weighed and placed into Teflon bombs with a mixture of HF and HNO3. The Teflon bomb
was put in a stainless-steel pressure jacket and heated to 190 ◦C for 24 h. After cooling, the
Teflon bomb was opened and placed on a hotplate at 140 ◦C and evaporated to incipient
dryness. Then, 1 mL HNO3, 1 mL MQ water, and 1 mL internal standard solution of 1 ppm
In was added. The Teflon bomb was resealed and put in the oven at 190 ◦C for >12 h. The
final solution was transferred to a polyethylene bottle and diluted to 100 g by 2% HNO3
for ICP analysis. Standards of AGV-2, BHVO-2, BCR-2, BGM-2, and GSR-2 were used to
monitor the analytical quality. Relative standard deviations for most minor elements are
within 5%.

4. Results
4.1. Mineral Chemistry
4.1.1. Clinopyroxene and Garnet in Clinopyroxenite

Clinopyroxene is diopside and omphacite in type-1 clinopyroxenite (Supplementary
Materials Table S1, Figure 3). Omphacite inclusions contain slightly higher Jd content
(=100* AlVI/(Na + Ca)) of 29–30 mol% than isolated ones (26–28 mol%), both of which are
similar to the composition of omphacite from eclogite in Sulu orogen [31,32] (Figure 3). The
composition of diopsidic clinopyroxene is not listed in Supplementary Materials Table S1
because of its slightly low total content (SiO2 52.9 wt.%, TiO2 0.12 wt.%, Al2O3 2.57 wt.%,
Cr2O3 0.04 wt.%, FeO 2.96 wt.%, MnO < 0.01 wt.%, MgO 13.9 wt.%, CaO 23.8 wt.%, Na2O
0.33 wt.%, K2O < 0.01 wt.%, with total content 96.6 wt.%).

Diopside in type-2 clinopyroxenite contains high MgO (15.7–17.6 wt.%) with Mg#

(=Mg2+/(Mg2+ + Fetotal)) 0.90–0.97, SiO2 (53.1–56.3 wt.%), low TiO2 (<0.25 wt.%), Na2O
(0.38–0.94 wt.%), and Al2O3 (0.72–3.13 wt.%). Diopside inclusions have identical composi-
tion with isolated grains (Supplementary Materials Table S1). The composition is close to
that of diopside in mantle peridotite of the North China Craton (Figure 4). The diopside
studied here shows little exsolved phases and is likely close to the composition at the time
of crystallization.
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Garnet shows variable proportions of pyrope, grossular, and almandine components. It
is represented by Prp19–25Alm22–26Gro48–57, Prp28–38Alm21–24Gro41–49, and
Prp28–42Alm20–30Gro34–47Spe0–1 (Prp: pyrope; Alm: almandine; Gro: grossular; Spe: spes-
sartine) in type-1, type-2A, and type-2B clinopyroxenite, respectively, similar to the B-type
and C-type garnet defined by Coleman et al. [33] (Supplementary Materials Table S2,
Figure 5). The Si content of garnet is generally >6 apfu, suggesting the Hujialin garnet
clinopyroxenite underwent UHP metamorphism as documented by Zhang and Liou [15].
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4.1.2. Olivine and Chromite in Dunite

Olivine in dunite has consistently high Fo (Fo = 100 ×Mg/[Mg + Fe]; 93.0–94.1), and
low NiO (0.11–0.29 wt.%) and MnO (≤0.1 wt.%) (Supplementary Materials Table S3). The
Fo for studied samples is comparable to that of mantle olivine and ancient sub-continental
lithospheric mantle (SCLM), but the NiO and MnO are both lower than those of mantle
olivine, ancient SCLM, and Cenozoic SCLM (Figure 6).

Chromite contains high Cr# (=Cr/[Cr + Al]; 0.75–0.96), relatively high TiO2 (up to
0.88 wt.%) and Na2O (0.01–0.10 wt.%), and low XFe3+ (=Fe3+/[Fe3+ + Al + Cr]; ≤0.18)
(Supplementary Materials Table S4). It is not homogeneous in composition within indi-
vidual grains, with higher Cr, Mg, and Al and lower Fe in cores (Cr2O3 52.3–60.0 wt.%,
MgO 4.98–8.40 wt.%, Al2O3 5.52–12.5 wt.%, FeO 20.8–30.0 wt.%) than in rims (Cr2O3
12.6–53.8 wt.%, MgO 1.20–3.83 wt.%, Al2O3 0.01–2.15 wt.%, FeO 36.2–70.3 wt.%) (Figure 7),
similar to altered chromite in forearc mantle serpentinites of the Rio San Juan complex
reported by Saumur and Hattori [41]. On a ternary diagram of Fe3+-Cr-Al, and binary
Cr#-Mg and Al2O3-TiO2 diagrams, chromite plots into the fields of Himalayas and forearc
peridotite (Figure 8).
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Figure 6. Compositional variations of olivine. (a) NiO vs. Fo. (b) MnO vs. Fo. The mantle olivine
array is based on Hattori et al. [42]. Partial melting trend is from Ozawa [43]. Trend of cumulate
olivine is from Ozawa [43] and Nakamura [44]. Fields of Ancient and Cenozoic subcontinental
lithospheric mantle (SCLM) are from Xie et al. [2] and references therein.
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mantle peridotite [47], and sub-arc peridotite (SAP) [48]. Fields of ancient and Cenozoic SCLM
beneath the North China Craton, as well as CCSD-PP1 peridotite, are based on Xie et al. [2] and
references therein.
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4.1.3. Other Minerals

Chlorite, epidote, amphibole, and titanite occur as retrograde minerals in clinopyroxenite.
Chlorite, amphibole, and serpentine occur as secondary minerals in dunite. Chlorite in
different types of samples shows different composition (Supplementary Materials Table S5).
It is clinochlore in type-2A clinopyroxenite with moderate SiO2 (28.8–30.6 wt.%), Al2O3
(18.4–19.6 wt.%), FeO (1.91–5.19 wt.%), and MgO (29.8–31.4 wt.%). Chlorites are clinochlore
and sheridanite varieties in type-2B clinopyroxenite with relatively low SiO2 (26.8–29.1 wt.%)
and MgO (24.8–29.8 wt.%), and high Al2O3 (19.8–21.2 wt.%) and FeO (5.67–11.17 wt.%).
Chlorite in dunite contains the highest SiO2 (35.2 wt.%) and MgO (33.3 wt.%), while the
lowest Al2O3 (11.2 wt.%) and FeO (1.2 wt.%) belong to pennine variety.

Epidote in type-1 clinopyroxenite shows slightly lower SiO2 (36.4–37.9 wt.%), Al2O3
(23.7–24.5 wt.%), and Cr2O3 (0.01–0.05 wt.%), and higher FeO (6.76–8.17 wt.%) relative
to epidote in type-2B clinopyroxenite (SiO2 37.4–38.4wt.%, Al2O3 24.0–25.3 wt.%, Cr2O3
0.22–0.44 wt.%, FeO 5.21–7.21 wt.%). The XFe (=Fe3+/(Fe3+ + Al + Cr + Mn)) of epidote
in type-1 and type-2B clinopyroxenite is 0.06–0.13 and 0–0.08, and belongs to clinozoisite-
epidote and zoisite, respectively, based on the classification of Enami et al. [49] (Supple-
mentary Materials Table S5).

Amphibole is pargasite in clinopyroxenite and tremolite in dunite based on the classi-
fication described by Hawthorne et al. [50]. Pargasite contains SiO2 (43.9–45.4 wt.%), Al2O3
(12.5–14.5 wt.%), FeO (2.91–8.50 wt.%), MgO (14.6–18.4 wt.%), CaO (10.5–12.5 wt.%), Na2O
(1.51–3.05 wt.%), and K2O (0.47–1.80 wt.%). Tremolite contains higher SiO2 (58.8 wt.%),
MgO (24.4 wt.%), and CaO (13.0 wt.%), and lower Al2O3 (0.21 wt.%), FeO (0.88 wt.%),
Na2O (0.09 wt.%), and K2O (0.02 wt.%) (Supplementary Materials Table S6).

Serpentine in dunite shows two varieties. One contains SiO2 (41.2–43.8 wt.%), MgO
(39.1–43.1 wt.%), Al2O3 (≤0.13 wt.%), and CaO (≤0.01 wt.%). The other type contains
relatively high SiO2 (59.3 wt.%), low MgO (29.5 wt.%), and comparable Al2O3 (0.14 wt.%)
and CaO (0.04 wt.%) (Supplementary Materials Table S6).

4.2. Bulk-Rock Compositions
4.2.1. Major Elements

Type-1 clinopyroxenite contains lower SiO2 (44.9–45.9 wt.%), MgO (9.38–9.74 wt.%),
and CaO (17.6–17.9 wt.%), and higher Al2O3 (13.2–13.9 wt.%), Na2O (1.52–2.07 wt.%),
and K2O (0.10–0.12 wt.%) relative to type-2 clinopyroxenite (SiO2 45.9–47.5 wt.%, MgO
12.6–14.4 wt.%, CaO 18.6–20.1 wt.%, Al2O3 4.84–9.28 wt.%, Na2O 0.46–0.63 wt.%, K2O
0.04–0.10 wt.%) (Supplementary Materials Table S7). The compositions of them are slightly
different from those of eclogite and garnet pyroxenite metamorphosed from cumulative
pyroxenite (Figure 9).

Dunite contains similar contents of SiO2 (38.2–39.8 wt.%), Fe2O3 (7.72–8.20 wt.%), and
MnO (0.11–0.17 wt.%), higher MgO (46.6–48.8 wt.%) and Na2O (0.02–0.04 wt.%), and lower
CaO (0.05–0.35 wt.%) and TiO2 (~0.01 wt.%) relative to that reported by Xie et al. [2].
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4.2.2. Minor Elements

Clinopyroxenite samples have similar convex-upward primitive mantle-normalized
trace element patterns (Figure 10), with high concentrations of incompatible elements (i.e.,
Cs, Rb, Ba), negative to positive U, Nb, Ta anomalies; consistently negative Th and Zr
anomalies; and positive Hf anomalies. Type-1 clinopyroxenite has no obvious Eu anomaly,
negative to without Sr anomalies, and higher concentrations of REE (77.0–82.1 ppm), while
type-2 clinopyroxenite shows negative Eu anomaly, negative to positive Sr anomalies, and
relatively lower concentrations of REE (25.7–36.6 ppm) (Supplementary Materials Table S7,
Figure 10). They have similar convex spoon-shaped chondrite-normalized REE patterns,
showing enrichment from La to Nd, and depletion from Nd to Lu (Figure 10).

Dunite samples have low concentrations of trace elements as a whole (0.55–1.39 ppm)
and display negatively sloped primitive mantle-normalized trace element patterns (Supple-
mentary Materials Table S7, Figure 10). They show positive Ba, U, Ta, Pb, and Hf anomalies;
negative Rb, Th, Nb, Zr anomalies, slightly positive Sr anomaly; and negative Eu anomaly
(Figure 10). They display negatively sloped chondrite-normalized REE patterns and show
depletion from La to Tm and flat to slight enrichment from Tm to Lu. The characteristics of
dunite are similar to those of Archean cratonic mantle peridotite beneath the North China
Craton (NCC) [40] and Suoluoshu serpentinite [3] (Figure 10).
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5. Discussion
5.1. Origin of Hujialin Garnet Clinopyroxenite and Nature of Metasomatic Agent

Although there is a compositional overlap between eclogite and garnet pyroxen-
ite in Ca, Fe, Al, and Mg contents, the two are not identical in origin [51,57]. Eclogite
is linked to the subducted oceanic slab and has a basaltic or gabbroic precursor, while
garnet pyroxenite is a cumulate of mantle-derived melt or a product of melt–peridotite
interaction [36,42,51,54]. Type-1 garnet clinopyroxenite contains omphacite, high Al2O3
content (13.2–13.9 wt.%), and low MgO content (9.38–9.74 wt.%) relative to type-2 clinopy-
roxenite, and itseems to show affinity with eclogite (Figure 9); however, its trace-element
features argue against this possibility. Pronounced positive Sr and Eu anomalies and
flat HREE patterns are striking features of eclogite, due to its plagioclase-bearing pro-
tolith [51,57], while type-1 garnet clinopyroxenite shows no evident positive Eu or Sr
anomalies and has negatively sloped HREE patterns (Figure 10). In addition, if type-1 gar-
net clinopyroxenite is derived from metamorphism of solid-state recycled oceanic slab, its
major compositions and normalized REE patterns should be similar to those of MORB [57]
(Figure 10). As illustrated in Figures 9 and 10, the high CaO content and REE patterns of
type-1 garnet clinopyroxenite, together with type-2 garnet clinopyroxenite, do not resemble
those of MORB and metamorphic recycled oceanic slab, indicating the Hujialin garnet
clinopyroxenite is different from eclogite in origin.

The garnet clinopyroxenite samples have low concentrations of HREE (5.97–10.6 ppm,
Supplementary Materials Table S7) and convex spoon-shaped chondrite-normalized REE
patterns, indicating that garnet formed later during deep subduction, and the prograde
metamorphic process formed in a closed system because garnet preferentially incorporate
HREE [42]. If garnet was an initial phase or there was melt/fluid injected during the meta-
morphic process, the garnet clinopyroxenite samples would contain high concentrations
of HREE [42]. This interpretation is also in agreement with the common occurrence of
clinopyroxene and ilmenite inclusions in garnet. Therefore, the precursor of Hujialin garnet
clinopyroxenite is clinopyroxenite.

As previously mentioned, there are two possible origins for clinopyroxenite: cumulate
of a mantle-derived melt [42,51] and interactive product between melt and peridotite [36,54].
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The Hujialin clinopyroxenite shows negatively sloped REE patterns and may be a
cumulate from a melt. However, the clinopyroxene contains high MgO with Mg# up to
0.90–0.97 (Supplementary Materials Table S1), which is distinct from that of clinopyroxene
phenocrysts of host lavas worldwide (Figure 4), but similar to that of clinopyroxene of
mantle peridotite from the North China Craton (Figure 4). Furthermore, Hujialin clinopy-
roxenite contains high CaO and the major compositions are different from those of garnet
pyroxenite metamorphosed from cumulate pyroxenite (Figure 9). The REE patterns of
Hujialin garnet clinopyroxenite are also different from those of cumulate pyroxenite, but
similar to those of clinopyroxene of reactive origin, because cumulate pyroxenite has almost
flat LREE and HREE patterns (Figure 10). Therefore, we propose the protolith of Hujialin
garnet clinopyroxenite is not a cumulate of a mantle-derived melt. Instead, it is a product
of melt–peridotite interaction, which is also supported by the relic olivine grains with
rounded and eroded shapes included in clinopyroxene [27].

The findings above raise the question of the nature of the metamorphic melt. The
replacement of olivine by clinopyroxene indicates the metamorphic agent is a silicic and
calcic melt, and the transformation from olivine to clinopyroxene may have involved two
reactions: (1) olivine + SiO2 (melt1) = orthopyroxene (+melt2), and (2) orthopyroxene +
Ca (melt3) = clinopyroxene (+melt4), similar to the formation of websterite xenoliths from
the Feixian basalts in the eastern NCC [36]. Petrographic observations of calcite in matrix,
dolomite in porphyroblastic garnet [12], and high CaO content of bulk-rock composition
(Figure 9) support the involvement of a carbonatitic melt. Such a silicic and calcic melt
may derive from the Yangtze continent during its subduction beneath the North China
Craton. Therefore, the studied samples were primarily formed from peridotite-silicic and
calcic melt interaction, which were later transformed to garnet clinopyroxenite during deep
subduction of the Yangtze continent.

5.2. Origin of Dunite

There are three possible origins for dunite: (1) cumulate of a mafic melt [58], (2) reactive
product of peridotite and silicon-unsaturated mafic melt [59], and (3) residue after partial
melting [42].

Dunite contains relatively high concentrations of Cs, Ba, U, Pb, and LREE, and low
concentrations of HREE, and therefore maybe of cumulate origin. Cumulate dunite con-
taining high-Fo olivine and high-Cr# chromite was documented by Arai [60] and Wang
et al. [61]. However, the Fo in olivine is uniform, and the relationships between NiO vs. Fo
and MnO vs. Fo in olivine do not support a cumulate origin (Figure 6). Chromite inclusions
in olivine are common in cumulate dunite, but this is not the case for the studied dunite.
Therefore, we discount this possibility.

Dunite formed from peridotite-melt interaction commonly contains relics of orthopy-
roxene [62,63], and shows variable and low Fo in olivine [64]. For the studied dunite, it
contains olivine with consistently high Fo, and there areno relics of orthopyroxene. In
addition, dunite is large, voluminous, and free of the evidence for melt percolation in the
field. Therefore, dunite is likely a residue after partial melting, which is consistent with
olivine with high Fo (93.0–94.1) and chromite with high Cr# (0.75–0.96).

It is worth noting that the studied dunite shows negatively sloped chondrite-normalized
REE patterns (Figures 6 and 10), similar to those of Suoluoshu serpentinite and serpen-
tine [3]. Considering olivine in residual mantle has low concentrations of REEs, we attribute
such negatively sloped REE patterns of the dunite to serpentinization. Serpentinization
is also responsible for the low NiO (0.11–0.29 wt.%) and MnO (≤0.1 wt.%) contents in
olivine, as well as high TiO2 (up to 0.88 wt.%) in chromite, because these elements are
mobile during this alteration [3]. Taken together, dunite is a residue after partial melting
and overprinted by aqueous fluids metasomatism.
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5.3. Tectonic Evolutions of Hujialin Garnet Clinopyroxenite and Dunite

The tectonic evolution of Hujialin garnet clinopyroxenite has been discussed by many
other researchers [5,10,11,15,26,28,65]. They share a common view that Hujialin garnet
clinopyroxenite underwent HP-UHP metamorphism during continental collision and sub-
sequently exhumed to the surface with granitic gneisses, but the detailed tectonic evolution
of the garnet clinopyroxenite is controversial. Based on our data, we propose the Hujialin
garnet clinopyroxenite formed through at least three stages (Figure 11): (1) Clinopyroxenite
was formed by interaction of peridotite with a silicic and calcic melt derived from subducted
Yangtze continental crust during continental subduction. (2) Clinopyroxenite formed at
shallow depths was incorporated into subduction channel and metamorphosed to garnet
clinopyroxenite during deep subduction. The P-T conditions of peak metamorphism of
the Hujialin garnet clinopyroxenite were estimated at P ≥ 5.0 GPa, T ≥ 750 ◦C [10,26],
and 4.5 ± 0.5 GPa, 800 ± 50 ◦C [5] based on the Mg–Fe exchange of coexisting garnet and
clinopyroxene. The conditions are equivalent to a depth of about 150 km. (3) Exhumation
to surface occurred. During this stage, retrograded minerals such as amphibole, chlorite,
and epidote formed around the garnet at shallow crustal levels (Figure 2c,f,g).
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Sulu orogen. (a) Formation of the serpentinized dunite and clinopyroxenite. (b) Clinopyroxenite was
incorporated into subduction channel and metamorphosed to garnet clinopyroxenite during deep
subduction. It mingled with dunite during its exhumation at shallow depths.

Dunite consists of chromite and olivine, and occurs with garnet clinopyroxenite,
suggesting two possible paths for it. One possibility is that dunite underwent a deep
subduction process. It was incorporated into the subduction channel, and exhumed to
the surface later with the garnet clinopyroxenite. The lack of garnet in dunite is likely
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attributed to the low content of Al in the bulk rock composition, similar to the dunite in
the subduction complex of the northern Dominican Republic [42]. However, we discount
this possibility, because serpentine is unstable under HP to UHP conditions [3], and will
breakdown, forming secondary forsterite, enstatite, or talc [66]. This is not the case for
the studied samples. The dunite is slightly to moderately serpentinized along olivine
boundaries and cracks, without secondary forsterite and enstatite. In addition, mineral
inclusions in chromite are irregular in shape (Figure 7) and different from those formed
under HP to UHP conditions, which tend to be needle-like [67]. Therefore, we propose
that dunite was not subjected to deep subduction. Instead, dunite mingled with the garnet
clinopyroxenite during the exhumation process of the latter at relatively shallow depths
(Figure 11).

6. Conclusions

Mineral chemistry and bulk-rock composition suggest that the precursor of Hujialin
garnet clinopyroxenite is clinopyroxenite that formed from the interaction of peridotite
with a Si- and Ca- rich melt during subduction of the Yangtze continent beneath the NCC.
Dunite is a residue that was overprinted by aqueous fluids.

Clinopyroxenite that formed at shallow depths was incorporated into a subduction
channel and transformed to garnet clinopyroxenite during deep subduction. The lack of
prograde and retrograde metamorphic minerals in dunite, together with the irregularly
shaped mineral inclusions in chromite, indicates that dunite did not subduct to deep levels.
Most likely, dunite mingled with garnet clinopyroxenite during exhumation of the latter at
relatively shallow depths. These ultramafic rocks, especially hydrated peridotite, may have
supplied Au to the Jiaodong Au province [68].

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/min12020162/s1, Table S1: Representative composition of clinopy-
roxene in Hujialin garnet clinopyroxenite (wt.%); Table S2: Representative composition of garnet in
Hujialin garnet clinopyroxenite (wt.%); Table S3: Repre-sentative composition of olivine in Hujialin
dunite (wt.%); Table S4: Representative composition of chromite in Hujialin dunite (wt.%); Table S5:
Representative composition of chlorite and epidote in Hujialin clinopyroxenite and dunite (wt.%);
Table S6: Representative composition of amphibole and serpentine in Hujialin clinopyroxenite and
dunite (wt.%); Table S7: Bulk rock major and minor element compositions of garnet clinopyroxenite
and dunite at Hujialin.
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