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Abstract: The combustion of fossil fuels from the input of oil refineries, power plants, and the venting
or flaring of produced gases in oil fields leads to greenhouse gas emissions. Economic usage of
greenhouse and flue gases in conventional and unconventional reservoirs would not only enhance
the oil and gas recovery but also offers CO2 sequestration. In this regard, the accurate estimation of
the interfacial tension (IFT) between the injected gases and the crude oils is crucial for the successful
execution of injection scenarios in enhanced oil recovery (EOR) operations. In this paper, the IFT
between a CO2/N2 mixture and n-alkanes at different pressures and temperatures is investigated
by utilizing machine learning (ML) methods. To this end, a data set containing 268 IFT data was
gathered from the literature. Pressure, temperature, the carbon number of n-alkanes, and the mole
fraction of N2 were selected as the input parameters. Then, six well-known ML methods (radial basis
function (RBF), the adaptive neuro-fuzzy inference system (ANFIS), the least square support vector
machine (LSSVM), random forest (RF), multilayer perceptron (MLP), and extremely randomized
tree (extra-tree)) were used along with four optimization methods (colliding bodies optimization
(CBO), particle swarm optimization (PSO), the Levenberg–Marquardt (LM) algorithm, and coupled
simulated annealing (CSA)) to model the IFT of the CO2/N2 mixture and n-alkanes. The RBF model
predicted all the IFT values with exceptional precision with an average absolute relative error of 0.77%,
and also outperformed all other models in this paper and available in the literature. Furthermore, it
was found that the pressure and the carbon number of n-alkanes would show the highest influence on
the IFT of the CO2/N2 and n-alkanes, based on sensitivity analysis. Finally, the utilized IFT database
and the area of the RBF model applicability were investigated via the leverage method.

Keywords: interfacial tension; CO2/N2 mixture; n-alkanes; machine learning; flue gas injection;
carbon dioxide sequestration

1. Introduction

To produce crude oil from a reservoir, three methods are available: primary, secondary,
and tertiary or enhanced oil recovery (EOR). EOR is a way to produce reducible oil in
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the reservoir which is defined as a set of techniques and processes that increases the
amount of oil recovery by employing energy and the injection of materials [1–3]. Improved
oil recovery (IOR) and EOR are used to increase the recovery factor of remained oil in
reservoirs. The main objective of EOR focuses on the immobile oil that is trapped because
of the viscous forces and/or capillary. Thus, the reduction of the residual oil, improving
the displacement efficiency (microscopic) as compared to ordinary water flooding, or
increasing the volumetric sweep efficiency (macroscopic) are the main objectives of all EOR
techniques. Herein, the reduction of interfacial tension (IFT) can help to increase EOR by
removing the trapped oil. Moreover, it can increase the two-phase miscibility and improve
oil recovery [2,3]. EOR is divided into several methods, such as gas injection, chemical EOR,
thermal EOR, and other new technologies. In gas injection, different gases are injected into
the reservoir, which consists of flue gases, hydrocarbons, air, N2, CO2, and a mixture of
gases. The ability of CO2 to interact with the reservoir fluid makes it attractive to use for
this specific purpose. Another advantage of CO2 injection is storing it underground, as CO2
is a greenhouse gas. The cyclic injection ability and accessibility of N2 in the air, as well as
its low cost, makes it an attractive option for EOR operations. Hence, the mixture of N2 and
CO2 could have the advantages of both gases when they are being used separately [4]. Flue
gas, as the main emissions of industrial operations, contains mainly CO2 and N2 along with
CO, SO2, and water vapor. Studies have shown that non-CO2 and CO2 gases emitted as flue
gas during fuel combustion, cement clinker production, etc., can be sequestered in depleted
or mature hydrocarbon reservoirs, coal seams, and saline aquifers [5]. Moreover, raw flue
gas injection into oil reservoirs can benefit us in two ways, both the incremental oil recovery
due to special properties of CO2/N2 gases and the sequestration of these greenhouse gases
into the reservoirs if the structural seals for trapping them is confirmed [6,7].

In relation to enhanced shale oil/gas recovery techniques by gas injection, depending
on the fluids with special features considering the reservoir circumstances, injected gas can
be CO2, N2, flue gas, and produced gases [8]. However, it has been shown that injecting
gas into shale oil reservoirs, regardless of the type of injected gas, can recover significant
oil, even if the injected gas is not completely miscible with the reservoir oil [9]. During oil
recovery, significant produced gas associated with oil production is released into the air
or flared that is hazardous to the environment and is considered a waste of energy. These
produced gases can be utilized for recycled gas EOR in order to compensate for the oil
production decline and reduce gas release or flaring [8,10]. CO2 injection in shale reservoirs
can enhance oil or natural gas recovery via multicontact miscible displacement, maintain-
ing pressure, the desorption of methane, and molecular diffusion along with permanent
sequestration within the small pores in an adsorbed state [8,11–14]. Additionally, due to
the high minimum miscibility pressure, an immiscible displacement approach can help dis-
place the oil by utilizing the injection of N2 as an economical and environmentally friendly
alternative. Furthermore, flue gases have been successfully injected in unconventional
reservoirs, including gas hydrate and coalbed methane, and are regarded as a potential
injection gas resource for shale reservoirs [8]. Gas hydrates, ice-like crystalline solids con-
sisting of water and gas molecules, mainly methane that are trapped in permafrost regions
and subsea sediments [15,16], can be decomposed if pressure and temperature are outside
their hydrate stability zone, or the chemical equilibrium between the hydrate phase and the
adjacent environment is disturbed [16]. Researchers have illustrated that flue gas injection
into gas hydrate reservoirs, as a type of unconventional reservoir, is associated with the
fast dissociation of the methane hydrate by shifting the methane hydrate stability zone.
This affordable method has been considered a promising one that improves the feasibility
of methane recovery from gas hydrate reservoirs and CO2 sequestration in geological
formations [15].

IFT plays a crucial role in all EOR processes, especially gas injection. IFT is strongly
affected by the composition of the two phases, pressure, and temperature. This property can
be measured by experimental techniques, such as pendent and springing drop methods,
that are expensive and time-consuming. Thus, calculating the IFT via modeling is an
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alternative method that should be considered. The Parachor model, thermodynamic
correlations, gradient theory, and corresponding state theory are among the most famous
models for predicting the IFT, while Parachor has been used extensively in the petroleum
industry. Nevertheless, this model also needs us to apply an equation of state (EOS), as
well as flash calculations, which compromises its accuracy [17].

To overcome the above challenge, artificial intelligence (AI) methods that have been
utilized in the petroleum industry for various purposes, including IFT estimation, can be
an alternative solution. AI is an instinctive mechanism that performs different tasks such
as observing, learning, and reasoning [18]. AI is an interdisciplinary science with multiple
approaches. Some of the most important successful applications of AI are “classification”,
“forecasting”, “control systems”, and “optimization and decision making” [19]. Machine
learning (ML) is a branch of AI and computer science which focuses on the usage of
data and algorithms to imitate the way that humans learn, thus gradually improving
its accuracy. ML focuses on the computer program development that can change when
exposed to new data. In addition, deep learning (DL) is a class of ML techniques that
utilizes multilayered neural networks [20,21]. In the following section, some of the recent
models in this area are briefly reviewed. It should be noted, as the dominant fluids that exist
in the reservoir are oil and water, that the majority of ML models were developed to predict
the IFT in oil−brine [22,23], water−hydrocarbon [24,25], brine−hydrocarbon [26–28], and
CO2−brine [29–32] systems. Ahmadi and Mahmoudi [33] predicted the gas–oil IFT with
least squares support vector machines (LSSVM) as a well-known ML method. For the
whole data set, their model yielded the coefficient of determination (R2) of 0.998. One small
drawback of this model is the low data range. Ayatollahi et al. [34] modeled the IFT and
minimum miscibility pressure (MMP) between normal-alkane and the injecting gas (CO2)
by LSSVM. The developed model could predict the IFT values with an average absolute
percent relative error (AAPRE) of 4.7%. Moreover, pressure had the greatest influence on
the IFT among the inputs. Hemmati-Sarapardeh and Mohagheghian [35] implemented the
group method of data handling (GMDH) for modeling the IFT and MMP in paraffin–N2
systems. GMDH is a family of inductive algorithms for computer-based mathematical
modeling of multiparametric datasets. This model estimates the data satisfactorily, with
AAPRE values of 3.91% and 3.81% in the testing and training subsets, respectively. Based
on the relevancy factor, pressure plays an important role in the IFT modeling of paraffin–
N2 systems. Shang et al. [36] studied the IFT of the CO2/N2 mixture + paraffin. They
also proposed an empirical correlation for predictions of IFT data with a mean absolute
relative error of 4.47%. Ameli et al. [1] used three famous ML methods, including the radial
basis function (RBF) and multilayer perceptron (MLP) neural networks along with LSSVM,
for estimating the IFT in N2/n-alkane systems. The MLP trained with the Levenberg–
Marquardt algorithm obtained the most accurate predictions, with an AAPRE of 1.38%.
The advantages of this research are the low error, acceptable data range, and a reliable
database with just a few outliers. Zhang et al. [37] utilized the extreme gradient boosting
tree method as a supervised branch of ML for estimating the IFT of gas/n-alkane. The
model’s results (root mean square error (RMSE) and R2) were 0.15 mN/m and 0.99 for the
train subset and 0.57 mN/m and 0.99 for the testing subset. They concluded that pressure
and n-alkane’s molecular weight have the highest effect on the IFT. Rahul Gajbhiye [4]
experimentally investigated the impact of CO2/N2 mixture composition on the IFT of
crude oil and gas systems. The outcomes of this study confirmed that the IFT of the
crude oil and CO2/N2 gas mixture increased with an increase in the fraction of N2 and
decreased with an increase in the fraction of CO2. Mirzaie and Tatar [38] utilized EOS
and gene expression programming (GEP) to model the IFT in binary mixtures of N2, CH4,
and CO2–alkanes. GEP is an evolutionary algorithm that creates computer programs or
models that can be used to develop mathematical correlations. Conversely, the EOS model
failed to present the IFT results for some experimental observations. For the GEP model in
CH4, CO2, and N2–alkanes systems, the R2 values were 0.92, 0.94, and 0.91, respectively.
Rezaei et al. [17] compared soft computing techniques, empirical correlations, and the
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Parachor model in estimating the IFT of CO2–paraffin systems and concluded that the RBF
neural network optimized by the imperialist competitive algorithm has the most reliable
prediction. According to our information and the literature review, there is not any AI
model to predict the IFT relationship between the CO2/N2 mixture and n-alkanes (as the
main constitutes of crude oil) so far. Hence, this work attempts to fulfill this gap and present
accurate ML models for predicting the IFT of the CO2/N2 mixture and n-alkanes. To do
so, the IFT of the CO2/N2 mixture and n-alkanes is modeled by utilizing six well-known
ML methods along with four optimization methods and a database containing 268 IFT
data at varying pressures and temperatures. Moreover, sensitivity analysis is performed to
determine the influence of the input parameters on the IFT of n-alkanes and the CO2/N2
mixture. Eventually, the applicability of the best-developed model is examined by the
leverage approach.

2. Data Collection

A dataset with a broad range of data containing 268 IFT data points is collected from
the literature [36,39]. The IFT database utilized for modeling in this research is presented in
Table S1. Pressure, temperature, the carbon number of n-alkanes, and the mole fraction of
N2 are selected as input variables to the model. The output of the model is the IFT of the
N2/CO2 mixture + n-alkanes. Statistical data of each column of inputs and target data are
also presented in Table 1. This statistical information demonstrated that the variation and
distribution of model input parameters are broad enough to be able to develop a model for
estimating the IFT of the N2/CO2 mixture + n-alkanes.

Table 1. Statistical data of each column of inputs and target data.

IFT (mN/m) N2 (Mole Fraction) Carbon Number Temperature (◦C) Pressure (MPa)

1.75 0.25 5 30 0.1 Minimum
22.93 1 17 120 40.16 Maximum
10.33 0.25 13 40 0.1 Mode
11.11 0.25 11 60 7.8 Median
11.71 0.43 11.28 67.99 8.78 Mean
0.3833 1.1845 0.0067 0.4725 1.7978 Skewness
−0.5802 −0.6015 −1.0395 −1.0451 4.6985 Kurtosis

3. Methodology

AI has several great branches, known as neural networks, ML, and expert systems.
ML is a subset of AI and provides computers the ability to learn without being explicitly
programmed. As a simple definition, ML is any type of computer program that can “learn”
by itself and where humans have no role during learning. DL is defined as a form of
ML that can apply either supervised, unsupervised algorithms, or both. Artificial neural
networks (ANNs) are a subset of ML and are at the heart of DL algorithms [40]. In the
last decades, a wide range of engineering problems has been solved by inductive ML
algorithms [23,24,41]. ANNs are suited towards tasks that include fuzzy or incomplete
information, complex and ill-defined problems, and incomplete data sets, where they are
usually decided on a visional basis. ANNs can be trained from real examples and are able
to address nonlinear problems. Furthermore, they display robustness and fault tolerance.
Classification, forecasting, and control systems are some of the most important successful
applications of ANNs [19].

A general flowchart for the implemented algorithms for the development of the IFT
models that were used in this work is shown in Figure 1.
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Figure 1. A schematic flowchart of the applied algorithms for the development of IFT models.

3.1. Model Development
3.1.1. Multilayer Perceptron

MLP is an algorithm that is classified as a feed-forward ANN with several layers.
The term MLP is usually applied for feed-forward ANNs and networks composed of
several layers of perceptrons, loosely and strictly, respectively (with threshold activation).
The first and the latest layer are contacted with inputs and outputs data (or targets) [42].
MLP includes at least three layers: input, hidden, and output layers. Each layer involves
several nodes that are considered as neurons (their number depends on the number of
input and output parameters) that utilize a nonlinear activation function only for the
hidden layers and the output layer [43]. Training an ANN can be done by supervised,
unsupervised, and semisupervised learning. MLP uses a supervised learning technique
dubbed backpropagation. MLP is a good algorithm for data that is not linearly separable [1].
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An MLP has some activation functions that map the weighted inputs to the out-
put of each neuron. Commonly utilized activation functions are sigmoids, which are
formulated below:

y (vi) = tan h (vi)andy(vi) =
(

1 + e−vi
)−1

(1)

The hyperbolic tangent ranges from −1 to 1, while the logistic function with similar
shape ranges from 0 to 1.

In the perceptron, when connection weights change, learning occurs after each piece
of data is processed on the basis of error amount in the predicted values compared to the
experimental data. In the present work, tansig (tangent hyperbolic) in the hidden layers
and pureline (linear function) in the output layer were utilized as transfer functions. These
transfer functions are the followings [1]:

Tansig transfer functions

f (x) =
2

1 + exp (−2x)
− 1 (2)

Pureline transfer functions
f (x) = x (3)

Logsig transfer functions

Logsig (n) = 1 / (1 + exp (−n)) (4)

3.1.2. Radial Basis Function Neural Network

For mathematical modeling and physics problems, an RBF network [44] as a kind
of ANN can be an attractive choice. The activation functions of RBF are radial basis
functions [1]. To calculate the output, the linear combination of the RBFs of the inputs
and neuron parameters are utilized. RBF networks usually include three layers: a linear
output layer, an input layer, and a hidden layer with a nonlinear RBF activation function. A
schematic of an RBF network is depicted in Figure 2. The input can be modeled as a vector
of real numbers x ε Rn, and the result of the network is a scalar function of the input vector,
ϕ: R→ Rn, and is obtained by:

ϕ(x) = ∑n
i=1 aiρ(||x− ci||) (5)

where Ci shows the center vector for neuron i, ai stands for the weight of the neuron in the
linear output neuron, and N denotes the count of neurons in the hidden layer. Basically,
all inputs are connected to every hidden neuron. The rule is usually taken to be the
Euclidean distance (although the Mahalanobis distance performs better, generally) and RBF
is established on the Gaussian method. The Gaussian radial basis function is as follows:

ρ
(∣∣∣∣∣x− ci

∣∣∣∣∣) = exp
[
−β
∣∣∣∣∣x− ci

∣∣∣∣∣2] (6)

Gaussian basis functions search the center vector in the sense that:

limρ∣∣∣∣∣x∣∣∣∣∣ →∞

(∣∣∣∣∣x− ci
∣∣∣∣∣) = 0 (7)

The above parameters are determined for optimizing the fitness between ϕ and the
experimental data.

Here we need to determine and calculate the central vector for each group of data,
and where data accumulation is high, proportionally appropriate several central vectors
for them. Supervised and unsupervised central vector selecting are two ways for opti-
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mizing RBF. Data centers can be specified utilizing k-means clustering, which is used for
unsupervised sampling [1,25,29,43].

Figure 2. Schematic of a RBF network.

3.1.3. Least Squares Support Vector Machine

A modified type of SVM as a well-known ML method, known as LSSVM, was devel-
oped by Suykens and Vandewalle [45] in 1999. This version attempted to enhance the SVM
convergence speed and reduce the complexity of the ordinary SVM. LSSVM is a tool for the
classification of data, regression, and for predicting them. In the LSSVM algorithm, equality
bounds are employed instead of inequality ones that are utilized in ordinary SVM [45,46].
The advantage of using equality constraints in LSSVM is that the learning process includes
an arrangement of linear equations that can be solved iteratively [45,47]. Besides, LSSVM
is a more acceptable method for problems with large ranges of data when the learning
process time and precision are essential. LSSVM optimizes problems with the following
formulas [45]:

minJ(w, e) =
1
2
||w||2 + 1

2
µ

N

∑
k=1

ek
2 (8)

yk = ek +
(
wt, g(xk)

)
+ b k = 1, 2, . . . , n (9)

In the above equations, g(x) shows the mapping function, ek represents error variables,
µ ≥ 0 is regularization constant, b and w stand for bias terms and weight vectors, respec-
tively, and superscript t is the transpose operator. Considering the linear constraint into the
objective function leads to [48]:

LLssvm =
1
2
||w||2 + 1

2
µ

N

∑
k=1

ek
2 −

N

∑
k=1

βk
(
ek +

(
wt, g(xk)

)
+ b
)

(10)

With Lagrangian multipliers βk ∈ R. The following conditions consider the Lagrangian
multipliers method for optimization:

∂Llssvm
∂b

= 0→
n

∑
i=1
βk = 0 (11)

∂Llssvm
∂w

= 0→ w = ∑n
i=1 βk g(xk) (12)
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∂Llssvm
∂βk

= 0→
{

wt, g(xk)
}
+ b + ek − yk = 0) (13)

∂Llssvm
∂ek

= 0→ βk = µek , (k = 1, . . . , n) (14)

If linear regression is assumed among dependent and independent parameters, the
above equation in the LSSVM algorithm changes to [48]:

y = ∑ βk·xt
k + b (15)

Equation (12) is used for linear regression problems; Kernel function may be presented
below for utilizing the Equation (12) in nonlinear regression problems:

y = ∑ βkK(x, xk) + b (16)

Here, K (x, xk) presents the kernel function obtained from the inner product of vectors
g(x), and g(xk) in the feasible margin is defined as:

K(x, xk) = g(x)·g(xk)
t (17)

Gaussian RBF kernel is a commonly used kernel which is expressed as [46]:

K(x, xk) = exp
(
−‖x− xk‖2/2σ2

)
(18)

where σ2 shows the squared bandwidth that is optimized during the training process by
an external optimization method. The mean squared error (MSE) between the LSSVM
calculated values and experimental data is calculated as below [49]:

MSE =
∑n

i=1(yexp−ycal)
2

n
(19)

where y is the IFT and n stands for the count of objects in the training collection.
Suykens and Vandewalle [45] and Pelckmans et al. [50] developed the LSSVM algo-

rithm that is employed in the current work to model the IFT values. Model parameters
(µ and σ2) that are used for the convergence and controlling the model precision were
optimized by the coupled simulated annealing (CSA) algorithm, which is applied during
the learning process to enhance the model accuracy [1,5,6,9,10,19,20].

3.1.4. Adaptive Neuro-Fuzzy Inference System

Zadeh [51] was the first person who developed fuzzy logic (FL) in 1965. The detailed
and precise information of a problem is important to model the process with the FL method.
Inadequate information about the problem and differences in judgments is the main issue
for an acceptable and reliable model. To solve this problem, using an ANN coupled with a
fuzzy inference system is useful, and is called the ANFIS.

The ANFIS model employs certain if-then rules that are combined with several func-
tions, known as membership functions (MFs), and called the fuzzy inference system (FIS).
The FIS has two types, which include Takagi–Sugeno–Kang (TSK) and Mamdani. The
ANFIS can be optimized with metaheuristic algorithms such as Conjugate of Hybrid and
PSO methods (CHPSO) and PSO [25,27].

3.1.5. Extremely Randomized Tree (Extra-Tree)

The extremely randomized trees model was exhibited by Geurts et al. [52] in 2006 as
a context of numerical input features. Extra-trees is an ensemble ML algorithm based on
decision trees. Extra-trees are established on supervised learning problems, and considers
numerical input variables and single target variables and is based on various collection
of regression and classification problems. Extra-trees, like the random forest, builds an
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ensemble of the regression, or unpruned decision trees and separate nodes utilizing random
subsets of features, to minimize over-fitting and overlearning. There are two main differ-
ences: it does not use bootstrap observations (whole learning sample) and the splitting of
nodes on random splits of all observations. In summary: (1) It builds several trees without
utilizing the bagging procedure, as the same input training is applied to train all trees; (2) It
splits nodes on the basis of random splits. All variables are chosen randomly among the
random features at every node.

Extra-trees are attractive due to their computational efficiency during learning, and
they are fast particularly because of their extreme randomization [52].

3.1.6. Random Forest

Random forest is a supervised ML algorithm that is utilized in regression and classifi-
cation problems. This algorithm ensemble a number of trees and allows the trees vote for
better parameters. This algorithm utilizes random selection and bagging combinations for
the growth of each tree (without replacement) and is made from training dataset samples.

Amit and Geman [53], in 1997, used a large number of geometric features and a
random selection search for best splitting at any node. Nature and dimensionality make
up the tree structures. After the training data set is identified, the samples are randomly
selected from the training data set, which creates a lot of trees. Then, they vote for the most
important regression. This method is called random forest. The random forest is predicted
by the average over i of the trees {h(x, i)}.

Regression random forest is defined as an ensemble learning method and makes a lot
of regression tree models built from bootstrap samples of the training data [54]. Several
regression tree estimators are combined to decrease the estimation error and improve the
estimation precision. In this approach, the averaging of all the individual regression tree
estimators is used for the estimated value. The free parameters of the method that can
be optimized include the count of estimator variables randomly chosen at each node, the
number of trees, the minimum leaf, the minimum count of observations in a regression
tree’s terminal node, and the proportion of observations to sample in each regression
tree [54,55]. The random forest procedure is illustrated in Figure 3.

Figure 3. Flowchart of the random forest and decision tree algorithms.
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3.2. Optimization Methods
3.2.1. Colliding Bodies Optimization (CBO)

CBO is a model that can be coupled with ANFIS. Kaveh and Mahdavi [56] established
CBO as a novel metaheuristic search algorithm. It is based on colliding one object with
another object while moving towards a minimum energy level. The concept of CBO is
simple and does not depend on any internal parameter. Each colliding body (CB), Xi, owns
a specific mass defined as:

Mk =

1
fit(k)

∑n
i=1

1
fit(i)

(20)

where n denotes the count of colliding bodies and fit(i) is the objective function value of
the ith CB. Each agent is modeled as a body with a velocity and specific mass. The end
collision between pairs of objects finds the near-global or global solutions. For saving some
of the best solutions, enhanced colliding bodies optimization (ECBO) utilizes memory and
employs a mechanism to flee from local optima [56,57]. Figure 4 represents the flowchart
of the ECBO algorithm. CBO uses a simple formulation to discover the maximum or
minimum of functions and does not hinge on internal parameters.

3.2.2. Particle Swarm Optimization (PSO) Algorithm

Kennedy and Eberhart [58] developed this algorithm considering the natural swarming
of insects and birds. This algorithm makes a population and selects random solutions, then,
with updating the generation, the optimum solution is developed. Particles are defined as
the solutions in the problem space and move towards finding the optimum answers. Each
particle has position and velocity, and their positions are changed for getting well-fitness.
Particles have two distinct data: (1) The best position for each particle (pbest) and (2) the
global best position for the population (gbest) [59]. PSO is run and pbest and gbest are
compared for avoiding local optima. The following equations, explain the updated position
of the particles:

νi(t + 1) = w·νi(t) + c1·rand1·(pbesti(t)− xi(t)) + c2·rand2·(gbesti(t)− xi(t)) (21)

xi(t + 1) = xi(t) + νi(t + 1)(i = 1, . . . , N) (22)

Here, υ is the velocity of the particle, w shows inertia weight and controls the previous
velocities’ impact on new particles, N denotes the count of particles, x displays particle
position, c1 and c2 are the learning factors and the effect of the social and cognitive compo-
nents, and rand1 and rand2 are selected randomly [59–61]. The main goal of the PSO is to
optimize the position of the particles according to the above equations.

3.2.3. Coupled Simulated Annealing (CSA)

CSA modifies simulated annealing for outcomes that are more precise without los-
ing convergence speed. This modification achieves easier and better results. Besides, it
accelerates the convergence of the problem. This technique is utilized for optimizing the
tuning parameters of LSSVM, including γ and σ2. Suykens and Vandewalle [62] displayed
escaping from the local minimum for nonconvex problems as an outcome of coupling the
local optimization.

3.2.4. Levenberg–Marquardt (LM) Algorithm

The MLP method uses the following algorithm and methods to improve the coeffi-
cients. The LM algorithm is one of the most practical algorithms used for optimizing the
weights and biases of MLP models. Solving nonlinear least squares problems is done with
this algorithm. More details about this algorithm are available in the literature [63,64].
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Figure 4. Flowchart of the ECBO algorithm.

4. Results and Discussion
4.1. Comparison of ML Models

The data were divided into two subsets, including training data (80% of the data) and
testing data (20% of the data). Parameter setting in all models is done manually using a
trial-and-error approach according to the amount of data. However, after setting the input
parameters to start modeling, the model adjusts its internal parameters to achieve the best
output in the shortest time. Effective input parameters are modified to match the output
with the target data after each model is run. In this case, there are four inputs and one
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output, but the models have their own parameters that are adjusted based on the structure
of their formation. For example, in order to create a fitting network in MLP, the number of
hidden layers and the number of neurons in every hidden layer are determined by applying
a trial-and-error approach. ANFIS relies on the number of repetitions and the population.
LSSVM uses the tune LSSVM function to communicate with input data and calls the
optimal regularization parameter and the optimal kernel parameter(s). RBF also regulates
the maximum count of neurons and the coefficient spread. After modeling, the following
results were found to be appropriate and lead to the best structure in each model. LM was
used to optimize the MLP parameters (biases and weights). The best structure of the MLP
was obtained as size = (20 12), which denotes a model with two hidden layers having 20
and 12 neurons. Likewise, the number of extra-trees in the ensemble was obtained at 40.
The population in ANIFS–PSO and ANFIS–ECBO were 40 and 20, respectively. The best
results of both algorithms were attained after 1000 and 2000 iterations, respectively. The
number of input parameters is four for all algorithms. In the RBF algorithm, the maximum
count of neurons was 100, and the spread coefficient was 2. Moreover, the random forest
used 150 bags for tree bagging. The optimal regularization and optimal kernel parameters
of the LSSVM are 962,599.26 and 3.554, respectively.

The validity and accuracy of a model is identified by the error between the output (ycal)
and target (yexp) data. Several statistical criteria were employed to recognize these errors
and to prove the validity of the developed models. These statistical criteria include [65]:

1. Average percent relative error (APRE%):

APRE =
1
n

n

∑
i=1

(
yexp − ycal

)(
yexp

) × 100 (23)

2. Average absolute percent relative error (AAPRE%):

AAPRE =
1
n

n

∑
i=1

∣∣∣∣∣
(
yexp − ycal

)(
yexp

) × 100

∣∣∣∣∣ (24)

3. Root mean square error (RMSE):

RMSE =

√
∑n

i=1(yexp−ycal)
2

n
(25)

4. Standard errors (SD):

SD =

√√√√∑n
i=1

(yexp−ycal)
yexp

2

n− 1
(26)

According to the calculated statistical criteria of the models represented in Table 2,
RBF has shown the best results. As shown in Table 2, the RBF model has the least AAPRE
(0.77%) and RMSE (0.11 mN·m−1) compared to other models. Furthermore, LSSVM–CSA,
MLP–LM, extra-tree, ANFIS–PSO, ANFIS–ECBO, and the random forest models have the
best accuracy following the RBF model. The run time is another important parameter that
affects selecting the best model in soft computing efforts. Figure 5 depicts the statistical
results of the run time and the computational accuracy for the various methods, which
reveals that the RBF is the best model in this study, having a minimum AAPRE (0.77%) and
run time (36 s).



Minerals 2022, 12, 252 13 of 24

Table 2. Statistical parameters for the proposed models in this work.

R2 SD APRE % AAPRE % RMSE Statistical Factor

0.996 0.0263 −0.0100 1.9147 0.282 Train
ANFIS–PSO0.989 0.0476 −0.3639 3.241 0.5458 Test

0.994 0.0982 −0.0814 2.182 0.3515 Total
0.988 0.0423 0.1674 3.206 0.4846 Train

ANFIS–ECBO0.988 0.0597 2.0286 4.0881 0.5802 Test
0.988 0.1441 0.5424 3.3838 0.5053 Total
0.999 0.0065 −0.0001 0.389 0.0645 Train

MLP–LM0.996 0.0256 0.2437 1.991 0.2837 Test
0.998 0.0429 0.0919 0.7868 0.154 Total
0.999 0.0101 −0.0110 0.7061 0.1102 Train

LSSVM–CSA0.998 0.0146 0.1029 1.1449 0.1638 Test
0.999 0.0359 0.0119 0.7945 0.1229 Total
0.999 0.0098 −0.0090 0.6844 0.1017 Train

RBF0.998 0.0152 0.3838 1.1479 0.1569 Test
0.999 0.0341 0.0701 0.7778 0.115 Total
0.999 0.0207 −0.2573 1.1612 0.1386 Train

Extra-tree0.991 0.0527 −0.8242 3.5599 0.4361 Test
0.997 0.0759 −0.3716 1.6445 0.2317 Total
0.984 0.102 −1.7619 4.9478 0.755 Train

Random forest0.965 0.0795 −1.7963 5.9719 0.619 Test
0.981 0.2183 −1.7689 5.1542 0.6487 Total

Figure 5. The run time and computational accuracy for various methods.

The following graphical diagrams were used to visually demonstrate the performance
and accuracy of the models:

1. Cross plot: In this graph, the estimated data by the models are plotted versus the
laboratory data. Using this visual presentation, we can assess the deviation of the
estimated data by the models from the actual data. The more data near the unit slope
line, the greater the precision of the model in predicting the experimental data would
be. Figure 6 displays the comparison between the output and target data by cross
plots for all models. As can be seen, the data points are located near the unit slope line
for the ML models, although the precision of the RBF, LSSVM–CSA, and MLP–LM
models is higher for both testing and training sets.
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2. Error distribution plot: This plot explains the percent relative error of each data point
versus the real laboratory data or the independent parameters so to represent the error
value or the possible error trend. If the error value is close to nil, it reveals that the
estimated data and the laboratory data are close to each other, but the high scatter of
the data around the zero-error line infers the poor performance of the model. Figure 7
depicts the error distribution plots for all proposed models in this work. Similarly,
RBF and LSSVM–CSA are considered more precise models, having more data points
with less error and a high concentration of data near the zero-error line.

3. Cumulative frequency plot: The error of each model in estimating any percentage
of the data can be examined by plotting the cumulative frequency vs. the absolute
relative error (ARE, %). Cumulative frequency graphs of all models are shown in
Figure 8. The robustness of the RBF model is acceptable, since about 90% of the data
have ARE lower than 1.8%. Moreover, the LSSVM–CSA and MLP–LM models have a
high percentage of low-error data, which confirms the high reliability of these models
along with the RBF model. The random forest and ANFIS–ECBO models display
poorer performance compared to other ones.

Figure 6. Cont.
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Figure 6. Cross plots of all proposed models.

Figure 9 depicts the AAPRE of the proposed models in this work and the empirical
correlation of Shang et al. [36] in predicting the IFT of the N2/CO2 mixture + n-alkanes.
All models proposed in this paper except the Random-forest model have a lower AAPRE
than the proposed Shang et al. correlation. RBF, LSSVM–CSA, and MLP–LM models are
more accurate than other models and correlation in estimating the IFT of the N2/CO2
mixture + n-alkanes.

After evaluating all proposed models, RBF was selected as the best model for estimat-
ing the IFT of the N2/CO2 mixture + n-alkanes. Hence, further analyses were performed
with this model.
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Figure 7. Cont.
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Figure 7. Error distribution graphs of the implemented models (percent relative error vs. experimental
IFT data).

4.2. Trend Analysis

In the next step, the IFT of the N2/CO2 mixture + n-hexane [36] was estimated with
the RBF model to assess the ability of this model in predicting the actual physical process
of IFT changes at different pressures and temperatures. Figure 10 depicts the experimental
IFT of N2/CO2 mixture + n-hexane and RBF model predictions. Based on the results, when
pressure increased, the IFT decreased because pressure rising caused increasing forces on
the fluid surface, which makes a minimum surface that is contacted with other fluid or solid
surfaces. Increasing the temperature also has a decreasing effect on the IFT of the N2/CO2
mixture + n-hexane. Here, the RBF model correctly estimates the IFT of the N2/CO2
mixture + n-hexane at different operating conditions and demonstrates the superior ability
to track the process of decreasing IFT with increasing pressure and temperature.
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Figure 8. Cumulative frequency against ARE for all of the models.

Figure 9. Comparing AAPRE for all available models and correlations for estimating the IFT of
N2/CO2 mixture + n-alkanes.

4.3. Sensitivity Analysis

In the next stage, the relevancy factor (r) is analyzed to assess the quantitative influence
of inputs on the outcome of the RBF model. The higher r-value for an input variable
indicates the higher impact of that parameter on the IFT of the N2/CO2 mixture + n-alkanes.
The r-values for the input parameters that can be calculated using the equation below [66]:

r(inpi, IFT) =
∑n

j=1
(
inpi,j − inpave,i

)(
IFTj − IFTave

)√
∑n

j=1
(
inpi,j − inpave,i

)2
∑n

j=1
(

IFTj − IFTave
)2

(27)
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where inpave,i and inpi,j stand for the average value and the jth value of the ith input,
respectively (i is pressure, temperature, the mole fraction of N2, and the carbon number of
n-alkanes). IFTj stands for the jth value of the prognosticated IFTm and IFTave is the average
of prognosticated IFT of the N2/CO2 mixture + n-alkanes. The effect of the input variables
on the IFT of the N2/CO2 mixture + n-alkanes is presented in Figure 11 in percentages.
As shown in this figure, pressure had the greatest influence on the IFT of the N2/CO2
mixture + n-alkanes, followed by carbon number of n-alkanes, the temperature, and the
mole fraction of N2.

Figure 10. The experimental values and RBF predictions for the IFT of N2/CO2 mixture + n-hexane.

Figure 11. Importance assessment of input parameters on IFT of N2/CO2 mixture + n-alkanes.

4.4. Model Reliability Assessment and Outlier Diagnostics

Utilizing the leverage approach [67–69] as a technique to determine the applicability
area of a model and the probable outlier data can give a good view of the validity of the
RBF model. In this method, the deviations of the output of the model from the real data are
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standardized residuals (R), and Hat matrix leverage values are computed. The usability
area of the model is also determined graphically by plotting the William’s plot. Figure 12
depicts the obtained William’s plot for the RBF model, in which the Hat matrix leverage
(H) values and critical leverage (H*) were distinguished. As can be seen in Figure 12, the
majority of the data are located in the interval of −3 ≤ R ≤ 3 and 0 ≤ H ≤ H*. The points
with lower values of R and H are more reliable [70,71]. Only six data points were recognized
to be outside of the scope of the model applicability, which proves the high reliability of the
RBF model for estimating the IFT of the N2/CO2 mixture + n-alkanes. The data points that
are out of the scope of the model’s application are presented in Table 3. Collectively, this
study showed how using AI would enable us to predict the IFT of various gas mixtures in
different pressures and temperatures so to ultimately make us independent from running
expensive and time consuming experimental studies or to avoid the numerical methods
that can be less precise.

Figure 12. Identification of RBF model usability scope and doubtful data using William’s plot.

Table 3. Detected suspected data or outliers for the RBF model according to the leverage approach.

Reference R H
IFT, IFT, Pressure

(MPa)
Temperature N2 (Mole

Fraction)
Carbon
Number

No.Pred. (mN/m) Exp. (mN/m) (◦C)

[36] 3.204 0.00571 11.4096 11.04 8.01 60 0.25 13 1

[36] −3.4922 0.00509 12.6572 13.06 6.96 80 0.25 13 2

[36] 3.0862 0.01619 14.4079 14.05 5.97 40 0.25 15 3

[39] −0.0127 0.0758 2.2784 2.28 40.16 40 1 6 4

[39] −0.0398 0.0725 5.6152 5.62 40.1 40 1 8 5

[39] 0.04771 0.0711 8.0556 8.05 40.1 40 1 10 6

5. Conclusions

In the current paper, the IFT of the CO2/N2 mixture and n-alkanes was modeled
utilizing ML methods at different pressures and temperatures. A data set containing
268 IFT data was gathered from the literature. The pressure, temperature, carbon number,
and the mole fraction of N2 were selected as input parameters. Six well-known ML
methods, RBF, LSSVM, ANFIS, MLP, random-forest, and extra-tree, were used along with
four optimization techniques, CBO, the LM algorithm, PSO, and CSA, to model the IFT
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between the CO2/N2 mixture and n-alkanes. Based on the results the following conclusions
are made:

1. The RBF model estimates all of the IFT data with superb accuracy, with an AAPRE
of 0.77%, which outperformed all proposed models in this work and the literature.
The RBF model successfully recognized the decreasing trend of IFT with increasing
pressure and temperature.

2. Moreover, LSSVM–CSA, MLP–LM, extra-tree, ANFIS–PSO, ANFIS–ECBO, and random-
forest models followed the RBF model in terms of accuracy.

3. According to the sensitivity analysis, pressure would have the greatest impact on the
IFT of the N2/CO2 mixture + n-alkanes, followed by carbon number of n-alkanes,
the temperature, and the mole fraction of N2y. Pressure and temperature have a
decreasing impact on the IFT of the N2/CO2 mixture + n-alkanes.

4. Finally, based on the leverage approach, only six data points were recognized to be
outside of the scope of the model applicability, which proves the high reliability of the
RBF model for estimating the IFT of the N2/CO2 mixture + n-alkanes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/min12020252/s1, Table S1: IFT_database.
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Nomenclature

APRE Average percent relative error
ANFIS Adaptive neuro-fuzzy inference system
AAPRE Average absolute percent relative error
ARE Absolute relative error
ANNs Artificial neural networks
AI Artificial intelligence
CBO Colliding bodies optimization
CSA Coupled simulated annealing
DL Deep learning
Extra-tree Extremely randomized trees
ECBO Enhanced colliding bodies optimization
EOR Enhanced oil recovery
FL Fuzzy logic
IFT Interfacial tension
LSSVM Least square support vector machine
LM Levenberg–Marquardt
ML Machine learning
MLP Multilayer perceptron
PSO Particle swarm optimization
R2 Coefficient of determination
RMSE Root mean square error
RBF Radial basis function
SD Standard deviation
SVM Support vector machine
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