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Abstract: Platinum group metals (PGMs) play a key role in modern society as they find application in
clean technologies and other high-tech equipment. Spent catalytic converters as a secondary resource
contain higher PGM concentrations and the recovery of these metals via leaching is continuously
being improved but efforts are also directed at the purification of individual metal ions. The study
presents the recovery of PGMs, namely, rhodium (Rh), platinum (Pt) and palladium (Pd) as well
as base metals, namely, zinc (Zn), nickel (Ni), iron (Fe), manganese (Mn) and chromium (Cr) using
leachates from spent diesel and petrol catalytic converters. The largest amount of Pt was leached
from the diesel catalytic converter while the petrol gave the highest amount of Pd when leached with
aqua regia. Merrifield beads (M) were functionalized with triethylenetetramine (TETA), ethane-1,2-
dithiol (SS) and bis((1H-benzimidazol-2-yl)methyl)sulfide (NSN) to form M-TETA, M-SS and M-NSN,
respectively, for recovery of PGMs and base metals from the leach solutions. The adsorption and
loading capacities of the PGMs and base metals were investigated using column studies at 1 M HCl
concentration. The loading capacity was observed in the increasing order of Pd to be 64.93 mmol/g
(M-SS), 177.07 mmol/g (M-NSN), and 192.0 mmol/g (M-TETA), respectively, from a petrol catalytic
converter. The M-NSN beads also had a much higher loading capacity for Fe (489.55 mmol/g)
compared to other base metals. The finding showed that functionalized Merrifield resins were
effective for the simultaneous recovery of PGMs and base metals from spent catalytic converters.

Keywords: spent catalytic converters; platinum group metals; base metals; recovery

1. Introduction

The production and the use of platinum group metals (PGMs) have increased globally
in the past half-century resulting in high-tech applications [1]. Current ways to obtain
raw materials include mining and metal processing [2,3] and recycling of spent products
such as e-waste and catalytic converters [4,5]. The PGM industry has developed into
being an exclusive supplier for the largest components of high-tech equipment and clean
technologies over the years [6]. The development of high technology products uses PGMs
due to their unique properties such as high electrical conductivity and catalytic activities as
well as high corrosion and oxidation resistance [7]. Thus, the commercial use of precious
metals has rapidly increased both in number and quantity resulting in improvements in
the quality of life.

PGMs are becoming depleted and there are already limited resources of these precious
metals as a result demand does not meet supply. It is necessary to recognize that the primary
and secondary production of these metals is complementary and mutually dependent [8].
The secondary production of PGMs includes recycling which recovers metals from spent
materials such as automotive catalysts [9], and electronic scraps [10] as well as residues
created in primary production [11]. Secondary production contributes significantly to
supply and demand. Therefore, the recycling of PGMs aims at incorporating metals into a
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product or component back to the market at the end of the component’s useful life [12] and
PGMs recovery from end-of-life vehicles has increased over the years [13].

Recent studies have shown interest in the recovery of PGMs from spent catalytic
converters [1,14–18] which consist of the catalytic material that contains a mixture of
platinum (Pt), palladium (Pd), and rhodium (Rh) [17,19,20]. Most petrol and diesel vehicles,
including automobiles, trucks, buses, trains, motorcycles, and planes, have exhaust systems
employing a catalytic converter and Pt, Pd, and/or Rh are active components of PGMs that
convert harmful gases emitted from vehicle engines to relatively harmless gases by both
the reduction of nitrogen oxides (NOx) into nitrogen N2 and the oxidation of hydrocarbons
and CO to CO2 [21]. The cumulative PGMs concentration in an automotive catalyst ranges
between 0.1% and 0.2%, [22,23] and in the commercial operations 95% of PGM recovery
rates are achieved from a charge with very low concentrations of PGM (<0.1%) [21].

The recovery methods and their parameters have been reported, namely, pyromet-
allurgy [24], hydrometallurgy [25–27] and biometallurgy [26,27]. Hydrometallurgy uses
oxidants such as aqua regia to dissolve PGMs, while also releasing considerable amounts
of NOx gases [28,29]. The hydrometallurgical technology process has been widely used for
PGMs recovery and dismantling is the most important step before the leaching step during
the PGMs recovery [17,30,31]. Selective extraction and separation of PGMs from spent
catalytic converters is a challenge in the subsequent hydrometallurgical processing [32]
and developing extraction methods for the metal ions is required. Therefore, the develop-
ment of coordination chemistry, based on the outer sphere or inner-sphere mechanism, for
selective separation of Rh, Pt, Pd in chloride media has been of interest [33]. The extraction
mechanism of the PGMs is essential for achieving the selectivity of extractants through
the understanding of structural information of precious metals complexes in an aqueous
chloride solution [34]. Chloride complexes for PGMs are well studied and allow excellent
conditions for PGMs dissolution [27]. Therefore, chloride medium has been widely used
in the hydrometallurgical recovery of PGMs due to higher leachability of complex metals,
stability of chloride complexes and regeneration of leaching reagents [35].

The speciation in a chloride medium is critical for successful separations, 1 M HCl
solutions platinum(IV) exists as the hexachlorido species ([PtCl6]2−) while palladium(II) is
in the tetrachlorido form and rhodium(III) in lower chlorido forms, thus the aqua ligands
on the rhodium(III) may be susceptible to ligand substitution despite the inert nature of
rhodium(III). Possible rhodium(III) species formed in 1 M HCl matrix are the mer and fac-
[RhCl3(H2O)3], trans-[RhCl4(H2O)2]− and cis-[RhCl4(H2O)2]−. The substitutionally labile
nature of [PdCl4]2− also makes it susceptible to the inner sphere complexation mechanism
while ([PtCl6]2− is more susceptible to the outer sphere mechanism (ion-pairing). Therefore,
the exploitation of the coordination chemistry of precious metal ions is critical in deriving
successful separations and the reactivity of the PGMs depends on the oxidation state of
the metal ion as well as the nature of the extracting ligands [36,37]. The order of reactivity
with soft donor ligands is directly related to periodicity, with second-row precious metals
being more reactive than the third-row metals. Metals in their divalent oxidation state are
readily susceptible towards substitution by soft donor ligands and rates of substitution can
be several orders of magnitude faster than for metals in their higher oxidation states [37].
Pt and Pd prefer soft donor ligands as opposed to σ donor only ligands such as aliphatic
amines and ammonia but have a greater preference for π acceptor ligands such as sulphur,
arsenic and phosphorous donors. The divalent palladium complexes are spin-paired
square planar d8 systems, while tetravalent rhodium ions are spin-paired octahedral d6

systems [38,39]. Rhodium and iridium commonly occur as very stable trivalent states. These
metals are primarily found in the form of spin-paired (d6), kinetically inert octahedral
complexes [40,41].

This work focuses mainly on the development of functional materials for the recovery
of platinum group metals from leachates of spent catalytic converters. The application
of ligands containing nitrogen (N) and/or sulphur (S) atoms have been explored. The
following ligands were investigated, triethylenetetramine (TETA), ethane-1,2-dithiol (SS)
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and bis((1H-benzimidazol-2-yl)methyl)sulfide (NSN) (Figure 1). Application of N and/or S
ligands have been explored in complexation of base metals and PGMs [39–41]. The work
was performed in stages; the spent catalyst was dismantled by cutting the metal casing
and then crushed and the resulting particles were analysed (morphology, particle size
distribution and chemical composition). The leaching was undertaken using aqua regia
followed by further separation using the functional materials. The main aim of this work
was to evaluate the efficiency of the proposed extractants hosted on Merrifield microspheres
in extracting platinum group metals from the leachates of spent catalytic converters.
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Figure 1. Chemical structures of extractants: Triethylenetetramine (TETA), Ethane-1,2-dithiol (SS)
and Bis((1H-benzimidazol-2-yl)methyl)sulfide (NSN).

2. Materials and Methods
2.1. Reagents and Material

The reagents and materials used in this study, including 2,2’-thiodipropionic acid
(97%), o-phenylenediamine (99.5%), triethylenetetramine (TETA) (97%), ethane-1,2-dithiol
(SS) (90%), Merrifield chloromethylated polystyrene-divinyl benzene resin (capacity [Cl]:
1.2 mmol.g−1 resin, 40–60 mesh), N,N-dimethylformamide (99%), methanol (99%), diethyl
ether (99%), hydrochloric acid (37%), nitric acid (70%), ammonia (25%), ethanol (98%), and
activated charcoal, were purchased from Sigma-Aldrich, Johannesburg, South Africa. All
solvents were purchased from Merck and used as received. The spent catalytic converters
were purchased from Auto King Used Spares scrapyard in Markman, Port Elizabeth,
South Africa.

2.2. Instrumentation

Semi-quantitative X-ray fluorescence (XRF) analysis was carried out using a Bruker
S1 Titan XRF analyser using the “Precious metals” mode, was used to identify platinum
group metals, base metals and other metals. The X-ray diffraction (XRD) analysis was
carried using a Bruker AXS (Karlsruhe, Germany) with a diffractometer, D8 advance with
a LynxEye detector (position sensitive detector). The XRD characterization was carried
out on materials both before and after treatment. Samples were prepared for Scanning
Electron Microscopy (SEM) by coating them in gold using a Balzers’ spluttering device.
The samples were imaged using a TESCAN Vega TS 5136LM typically operated at 20 kV
at a working distance of 20 mm. Elemental analysis of samples using the Bruker energy
dispersive spectroscopy (EDS) was determined by using the same procedure as described
for SEM analysis, except that no sample surface coating was needed. Before images were
taken; the nanofibers were coated with gold to prevent surface charging and to protect the
surface material from thermal damage by the electron beam.

A Perkin-Elmer 400 FTIR was used to confirm the presence of the expected functional
groups during the synthesis steps. The structure of the ligand was determined by 1H
NMR spectroscopy on a Bruker AMX 400 MHz NMR spectrometer and reported relative to
tetramethylsilane (TMS) δ 0.00. A custom-made glass column with the following dimen-
sions were used for the column (dynamic) studies; 10 cm length, an internal diameter of
3.5 mm and a tip diameter of 1 mm. The metal ions analyses (Rh, Pd, Pt, Ru, Ni, Cr, Mn,
Zn, Fe, Al) were carried out with a Perkin Elmer (Avio 200) Inductively Coupled Plasma
(ICP) spectrometer equipped with an Optical Emission Spectrometer (OES) as the detector
at 343.489 nm for Rh, 203.646 nm for Pt, 363.470 nm for Pd, 240.272 for Ru, 206.200 for Zn,
231.604 nm for Ni, 238.204 nm for Fe, 257.610 nm for Mn, 396.153 nm for AI and 267.716 nm
for Cr.
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2.3. Dismantling and Preparation of Leach Solutions

The honeycomb spent catalytic converter samples (Figure 2A) were dismantled
(Figure 2B) and ground into 85 µm particles (mesh) that were used in leaching studies
(Figure 2C,D). The petrol (P) and diesel (D) spent catalytic converters were used in this
study. 40 mL of aqua regia (3 HCl:1 HNO3) was added to 1 g of sample (meshed spent
catalytic converter powder) and the resulting mixture was stirred while heated at 90 ◦C for
1 h [42]. The samples were cooled and then filtered to remove the undissolved solids. An
orange solution was obtained for the petrol (P) sample (Figure 2E) while a yellow solution
was obtained for the diesel (D) sample (Figure 2E). The resulting solutions were diluted
and analysed using ICP-OES to verify the content of precious metals and base metals
concentrations in the spent catalysts.
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Figure 2. Dismantling and leaching process of diesel (D) and petrol (P) spent catalytic converters
where (A) spent catalytic converters for diesel (D) and petrol (P), (B) dismantled catalytic converters,
(C) Sieving tool used to mesh crushed catalytic converter, (D) meshed to up 85 µm particles and
(E) leached D and P sample using 3:1 HCl: NHO3.

2.4. Leached Metal Solution Analysis

The platinum group metals and base metals standards were prepared in HCl and
HNO3, respectively, for the construction of calibration curves using distilled, deionized
water for the dilutions. The metal ion analyses were prepared by measuring 20 µL of the
leachate solution and diluting up to 15 mL. The elements, Rh, Pt, Pd, Ru, Zn, Ni, Fe, Mn
and Cr, were analysed using ICP-OES.

2.5. Synthesis of Bis((1H-benzimidazol-2-yl)methyl)sulfide (NSN)

The synthesis of bis((1H-benzimidazol-2-yl)methyl)sulfide (NSN) was carried out
using a mixture of 2,2’-thiodipropionic (5.0 g, 0.0333 mol) and o-phenylenediamine (10.0 g,
0.0930 mol) in 4 M aqueous HCl (250 mL) as shown in Scheme 1 [38–40]. This reaction
mixture was refluxed for 24 h. The reaction mixture was then cooled in ice, a precipitate
formed and filtered. The precipitate was identified as a dihydrochloride (L.2HCl). The free
base ligand was obtained by treatment of the hydrochloride ligand with excess aqueous
ammonia. A precipitate formed and was filtered and dissolved in ethanol and decolourized
with charcoal. The solution was filtered and concentrated using rotavapor to obtain a
light brown solid as a final product and the yield was 75%. Anal. Calcd for C16H14N4S
(%): C, 65.28; H, 4.79; N, 19.03; S, 10.89. Found: C, 64.96; H, 4.58; N, 18.89; S, 10.67. 1H
NMR (400 MHz, DMSO) δ (ppm): 7.53 (4H, s, CH), 7.18 (4H, s, CH), 4.04 (4H, m, CH2). IR
(νmax/cm-1): 3377 ν(N–H), 1534 ν(C=N), 1128 ν(C-S-C).
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2.6. Preparation of Functionalised Microspheres

The Merrifield resins (M-TETA, M-SS and M-NSN) were prepared by using 3 g
of chloromethylated polystyrene beads suspended in 30 mL of DMF and 18 g of each
ligand (triethylenetetramine (TETA), 1,2-ethanedithiol (SS) and bis((1H-benzimidazol-2-
yl)methyl)sulfide (NSN)) (Scheme 2). The reaction mixture was stirred for 15 h at 70 ◦C.
The resin was then washed thoroughly with methanol and diethyl ether, and then Soxhlet
extraction was carried out using methanol. The resulting functionalised Merrifield beads
were analysed using FT-IR (cm−1): 1018 m(C–N), 1671 d(N–H), 3200–3300 m (N–H). Anal.
found (C, H, N%): M-TETA (67.16, 10.47, 22.38), (C, H, S%) M-SS (60.55, 7.11, 32.33) and (C,
H, N, S%) M-NSN (72.33, 5.56, 14.06, 8.05).
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Scheme 2. Synthesis scheme for the functionalized Merrifield resins: M-TETA, M-SS and M-NSN.

2.7. Column Studies

The capacity of the functionalized Merrifield resins for PGMs (Pt, Pd, Rh and Ru) and
base metals (Ni, Mn, Cr, Zn and Fe) uptake from the leachate solutions were determined
as a function of fraction number collected in a column. The 0.3 g of resin was conditioned
with 5 mL of water followed by 5 mL of 1 M HCl solution. 1.5 mL of a 1 M HCl leachate
solution was loaded into the column after the conditioning step. The column was left
for 24 h after which it was washed with 5 mL of 1 M HCl to remove metals that did not
adhere to the surface of the resin. The extracted metal ions were eluted by collecting 0.5 mL
fractions from the loaded resin with 3% thiourea in 1 M HCl through the column. The
eluent (0.5 mL fractions) were diluted appropriately and analysed with ICP-OES. The resin
loading capacity was calculated as millimoles of metal per gram of the resin (mmol/g).

3. Results and Discussion
3.1. Catalytic Converters Characterization

The chemical composition of spent automotive catalytic converters for diesel and
petrol samples were determined by XRF. Two X-ray fluorescence measurements for diesel
and petrol samples have been conducted. It was observed that the catalytic component
for the diesel and petrol samples contains a combination of rhodium and platinum; and
platinum and palladium, respectively as shown in Table 1. The diesel sample confirmed a
higher loading of platinum with 21.11 wt% and petrol higher loading of palladium with
2.90 wt%. PGMs that were not detected by XRF were palladium for the diesel sample
and rhodium for the petrol sample. The XRD diffractogram of the spent catalyst before
leaching is presented in Figure 3. The XRD result of the petrol sample showed 100% of
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the characteristic reflections of the cordierite with the orthorhombic phase Mg2(Al4Si5O18)
(Figure 3) [43]. The diesel sample showed the cordierite phase as a major component (red)
but with minor phases of aluminium phosphate hydrate (turquoise), aluminium oxide
(blue), gamma-alumina (light blue), aluminium silicate (green). PGMs phases would be too
small to be determined singly by XRD and the cordierite is the dominant phase that would
overshadow them.

Table 1. The main constituents of the catalysts were obtained with XRF analysis.

No. Element (wt%) Diesel Petrol No. Element (%) Diesel Petrol

1 Si 31.60 1.07 13 Zn 1.21 0.23

2 S 22.93 ND 14 Y ND 0.90

3 Pt 21.11 0.89 15 Zr 1.35 70.20

4 Al 12.59 4.76 16 Mo 0.07 0.34

5 Fe 3.66 0.96 17 Pb ND 0.04

6 V ND 11.77 18 Pd ND 2.90

7 Ti 1.22 ND 19 In 0.70 0.35

8 Cr 0.87 4.69 20 Rh 0.73 ND

9 Mn 0.15 0.49 21 Hf ND 1.04

10 Cu 0.85 ND 22 Ta ND 1.10

11 Co 0.04 0.03 23 W 0.73 0.08

12 Ni 0.13 0.10
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The spent catalytic convertors were dissected for morphology examination for both
the diesel and petrol samples. The samples were carefully examined under the Scanning
Electron Microscope (SEM) combined with energy-dispersive X-ray spectroscopy analysis
(EDS) to provide an additional understanding of the surface material composition. The
micrographs obtained corresponding to D and P samples confirmed the composition of
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the honeycomb cordierite structure of the catalytic converter as depicted by Figure 4. SEM
observation confirmed the presence of PGMs with honeycomb cordierite skeleton-type
(2MgO-2Al2O3·5SiO2). The morphology indicates a single body possessing maltitude
parallel channels, with the catalytically active material deposited along the walls of the
channels [43]. The energy dispersive x-ray (EDX) analysis on the spent catalytic converters
is shown in Figure 5, and the images confirm the presence of Pt, Pd and Rh metals in both
diesel and petrol catalysts. The EDX analysis confirmed the presence of other elementals,
carbon (C), oxygen (O), magnesium (Mg), aluminium (Al), silicon (Si), phosphorous (P),
calcium (Ca), titanium (Ti), molybdenum (Mo), and manganese (Mn) and are all part of
essential minerals chiefly found in catalytic converters samples.
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3.2. Leach Solution Analysis

The leaching of PGMs and base metal from diesel and petrol spent catalytic converters
followed the long-established leaching system of using a high acidity aqua regia. The
ICP-OES was used to confirm the presence of PGMs (Pd, Pt, Rh, Ru) and base metals (Cr,
Fe, Mn, Ni, Zn). In this leaching method, the results obtained showed that the percentage
of PGMs leaching greatly depended on the leaching solution used at ambient temperature
with a 136.97 ppm concentration of Pt for the diesel sample observed compared with
52.37 ppm Pt for the petrol sample. A concentration of 89.40 ppm for Pd was higher for
the petrol sample while Rh and Ru were lower in concertation for both petrol and diesel
samples (Figure 6). Leaching results based on concentrations as well as %metal based on
sample mass used are observed to have the following order: Pt (136.97 ppm, 0.55%) > Pd
(27.30 ppm, 0.11%) > Ru (5.71 ppm, 0.023%) > Rh (4.08 ppm, 0.016%) for the diesel sample
and Pd (89.40 ppm, 0.36%) > Pt (52.37 ppm, 0.21%) > Rh (9.98 ppm, 0.040%) > Ru (6.53 ppm,
0.026%) for the petrol sample. Cumulatively, this translates to 0.17% PGMs in a diesel
sample and 0.16% PGMs in a petrol sample, assuming 100% leaching.
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Figure 6. Leach solution analysis of platinum group metals from the diesel and petrol spent cat-
alytic converters.

The advantage of using aqua regia produces chlorine, which is an aggressive oxi-
dant [44]. As a result, PGMs dissolved in the form of chlorido complexes PtCl62−, PdCl42−

and RhCl63− leaving the cordierite substrate as a leach residue [45]

3Pt(s) + 18HCl(aq) + 4HNO3 (aq)↔ 3[PtCl6]
2−(aq) + 6H+(aq) + 4NO(g) + 8H2O (1)

3Pd(s) + 12HCl(aq) + 2HNO3(aq) ↔ 3[PdCl6]
2−(aq) + 6H+(aq) + 2NO(g) + 4H2O (2)

2Rh(s) + 12HCl(aq) + 2HNO3(aq) ↔ 2[RhCl6]
3−(aq) + 6H+(aq) + 2NO(g) + 4H2O (3)
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the concentration for Zn (95.37 ppm) was higher in diesel and petrol samples, and Fe
(70.43 ppm) was observed to be higher for the diesel sample compared with the petrol
sample. The leaching results were achieved in a single step in aqua regia. The efficiency
demonstrated that PGMs can be obtained from the leaching of catalytic converters with
aqua regia but that base metals are also simultaneously leached. However, some of the
cordierite support becomes dissolved in the aqua regia as evidenced by the 26.3–28.0 ppm
Al detected in the leach solution which is about 10.5–11.2% of Al in the petrol sample.
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The advantage of using aqua regia produces chlorine, which is an aggressive oxi-
dant [44]. As a result, PGMs dissolved in the form of chlorido complexes PtCl62−, PdCl42−

and RhCl63− leaving the cordierite substrate as a leach residue [45]

3Pt(s) + 18HCl(aq) + 4HNO3 (aq)↔ 3[PtCl6]
2−(aq) + 6H+(aq) + 4NO(g) + 8H2O (1)

3Pd(s) + 12HCl(aq) + 2HNO3(aq) ↔ 3[PdCl6]
2−(aq) + 6H+(aq) + 2NO(g) + 4H2O (2)

2Rh(s) + 12HCl(aq) + 2HNO3(aq) ↔ 2[RhCl6]
3−(aq) + 6H+(aq) + 2NO(g) + 4H2O (3)

Analysis of base metals from leachates was performed to acquire an insight into
the dissolution phenomena related to Cr, Fe, Mn, Ni and Zn. From the results obtained,
the concentration for Zn (95.37 ppm) was higher in diesel and petrol samples, and Fe
(70.43 ppm) was observed to be higher for the diesel sample compared with the petrol
sample. The leaching results were achieved in a single step in aqua regia. The efficiency
demonstrated that PGMs can be obtained from the leaching of catalytic converters with
aqua regia but that base metals are also simultaneously leached. However, some of the
cordierite support becomes dissolved in the aqua regia as evidenced by the 26.3–28.0 ppm
Al detected in the leach solution which is about 10.5–11.2% of Al in the petrol sample.

3.3. Column Studies

The performance of the functionalized Merrifield resins M-TETA, M-SS and M-NSN
were used for the recovery of PGMs and base metals under dynamic flow adsorption
conditions. The multi-element leachate solution containing PGMs (Pt, Pd, Rh, Ru) and base
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metals (Cr, Fe, Mn, Ni and Zn) was loaded on the column to study the adsorption/elution
profiles of the sorbent materials. The column was washed with 1 M HCl to remove
unabsorbed ions (fraction 1–10), followed by elution/stripping with 3% w/v thiourea in
1 M HCl solution (fraction 11–50) at ambient temperature. The multi-element column
elution for M-TETA, M-SS and M-NSN resins showed an uptake of the Rh, Pt, Pd, Ru and
Zn, Ni, Fe, Mn and Cr. The concentration of PGMs and base metals were each fraction
collected and determined. The performance of each ligand (TETA, SS and NSN) was
evaluated. The loading capacity of the materials for PGMs and base metals was calculated
from the total amount of the collected fractions after stripping and calculated as total moles
of each metal (mmol)/mass of the polymer material (g) from the concentrations (mg/L)
obtained by ICP analysis.

3.3.1. Recovery of Platinum Group Metals

Figures 7 and 8 represent the column elution profiles and loading capacities, respec-
tively, for the functionalized resins. The highest loading capacity seems to be for Pd with
M-TETA highest followed by M-NSN and then M-SS. It seems that nitrogen content is
important for the functioning of the resins [36]. Under acidic conditions, the amine groups
function as ammonium sites in ion exchangers to induce the adsorption of the chlorido com-
plexes of PGMs through electrostatic interactions [46]. It is possible that the inner sphere
complexation is not dominant in these highly acidic solutions but is expected to be active
in M-SS [47]. The loading capacities for Pd decrease in the order M-TETA (192 mmol/g)
> M-NSN (177 mmol/g) > M-SS (64 mmol/g) and this order is reproduced for the other
metal ions albeit in lower quantities (Table 2). The M-SS and M-NSN were, respectively,
taken through a second cycle and the recoveries of specific metals are somewhat consistent
(Table 2). For example, Cycle 1 for M-NSN resin gave a Pd recovery of 177 mmol/g and
Cycle 2 gave 131 mmol/g.
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Figure 7. PGMs adsorption/elution profiles using 5 mL of 1M of the leachate solution, 0.3 g resins:
(A) M-TETA, (B) M-SS and (C) M-NSN were, respectively, washed with 1 M HCl and eluted with 3%
w/v thiourea at ambient temperature.
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Figure 8. Loading capacities of the functionalized Merrifield resins for Pt, Pd, Rh and Ru at a flow
rate of 0.5 mL/h for Cycle 1.

Table 2. Loading capacities of platinum group metals extracted using functionalized Merrifield resins
M-TETA, M-SS, and M-NSN.

Merrifield
Resin

Rh
(mmol/g)

Pt
(mmol/g)

Pd
(mmol/g)

Ru
(mmol/g)

Cycle 1 Cycle 2 Cycle 1 Cycle 2 Cycle 1 Cycle 2 Cycle 1 Cycle 2

M-TETA 17.19 - * 7.88 - * 192.00 - * 14.76 - *

M-SS 11.67 9.03 2.03 3.40 64.93 60.54 4.09 5.24

M-NSN 16.52 9.12 5.85 3.79 177.07 131.01 14.34 5.078

* M-TETA 2nd cycle was not determined.

3.3.2. Recovery of Base Metals

The possibility of simultaneous recovery of base metals was investigated to evaluate
the practical applications of the resin for the recovery of PGMs. From the same solution
loaded for the recovery of PGMs, the base metals were analysed for each sorbent and the
extraction of base metal was observed (Figure 9). The recovery of Ni and Mn was observed
in all three resins as shown in Table 3. The M-SS and M-NSN sorbents could recover
all base metal under study (Zn, Ni, Fe, Mn and Cr) with higher loading capacity for Zn
(31.77 mmol/g) for M-SS and a higher loading capacity of Fe (489.55 mmol/g) for M-NSN.
M-TETA was unable to recover Zn and Fe but could recover the other three base metals (Ni
(19.49 mmol/g), Mn (29.10 mmol/g), Cr (14.49 mmol/g). The highest recovery for base
metals was achieved by M-NSN indicating that the recovery of base metals is favoured by
a greater preference for π acceptor ligands [38]. As discussed in the PGMs recovery section,
the high recovery of PGMs attained with M-TETA is accompanied by a low recovery of
base metals. These results demonstrated the importance of the chemistry of the resin in
its functioning to recover specific metals. In this case, selective separations were not fully
achieved but the simultaneous recovery of PGMs and exclusion of some based metals by
M-TETA is promising.

Figure 8. Loading capacities of the functionalized Merrifield resins for Pt, Pd, Rh and Ru at a flow
rate of 0.5 mL/h for Cycle 1.

Table 2. Loading capacities of platinum group metals extracted using functionalized Merrifield resins
M-TETA, M-SS, and M-NSN.

Merrifield
Resin

Rh
(mmol/g)

Pt
(mmol/g)

Pd
(mmol/g)

Ru
(mmol/g)

Cycle 1 Cycle 2 Cycle 1 Cycle 2 Cycle 1 Cycle 2 Cycle 1 Cycle 2

M-TETA 17.19 - * 7.88 - * 192.00 - * 14.76 - *

M-SS 11.67 9.03 2.03 3.40 64.93 60.54 4.09 5.24

M-NSN 16.52 9.12 5.85 3.79 177.07 131.01 14.34 5.078

* M-TETA 2nd cycle was not determined.

3.3.2. Recovery of Base Metals

The possibility of simultaneous recovery of base metals was investigated to evaluate
the practical applications of the resin for the recovery of PGMs. From the same solution
loaded for the recovery of PGMs, the base metals were analysed for each sorbent and the
extraction of base metal was observed (Figure 9). The recovery of Ni and Mn was observed
in all three resins as shown in Table 3. The M-SS and M-NSN sorbents could recover
all base metal under study (Zn, Ni, Fe, Mn and Cr) with higher loading capacity for Zn
(31.77 mmol/g) for M-SS and a higher loading capacity of Fe (489.55 mmol/g) for M-NSN.
M-TETA was unable to recover Zn and Fe but could recover the other three base metals (Ni
(19.49 mmol/g), Mn (29.10 mmol/g), Cr (14.49 mmol/g). The highest recovery for base
metals was achieved by M-NSN indicating that the recovery of base metals is favoured by
a greater preference for π acceptor ligands [38]. As discussed in the PGMs recovery section,
the high recovery of PGMs attained with M-TETA is accompanied by a low recovery of
base metals. These results demonstrated the importance of the chemistry of the resin in
its functioning to recover specific metals. In this case, selective separations were not fully
achieved but the simultaneous recovery of PGMs and exclusion of some based metals by
M-TETA is promising.
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Figure 9. Base metals adsorption/elution profiles using 5 mL of 1 M leachate solution on 0.3 g
functionalized Merrifield resins: (A) M-TETA, (B) M-SS and (C) M-NSN were, respectively, washed
with 1 M HCl and eluted with 3% w/v thiourea at ambient temperature.

Table 3. Loading capacities of base metals extracted using microspheres beads functionalized M-
TETA, M-SS, and M-NSN.

Functionalized
Microspheres

Zn
(mmol/g)

Ni
(mmol/g)

Fe
(mmol/g)

Mn
(mmol/g)

Cr
(mmol/g)

M-TETA - 19.49 - 29.10 14.49

M-SS 37.77 26.82 25.25 30.45 26.57

M-NSN 9.02 74.91 489.55 29.64 140.34

4. Conclusions

This study demonstrates an interesting case of functionalized Merrifield resins for
the recovery of platinum group metals and base metals from leachates of spent catalytic
converters. The hydrometallurgical process for PGMs recovery from spent catalytic con-
verter was followed which included: dismantling, leaching with mineral acids, extraction
of platinum group metals and lastly recovery of base metals. The leaching of PGMs using
aqua regia was successful and this confirmed the cumulative 0.1–0.2% quantity of PGMs
in spent catalytic converters. The recovery of PGMs from leach solutions using M-TETA,
M-SS and M-NSN was also successful albeit with simultaneous recovery of base metals.
M-TETA showed the highest uptake of palladium followed by M-NSN and then M-SS.
Sulfur ligands are known the convert to sulfoxides in highly oxidizing media, hence it is
possible that the S-donor ability of M-SS was partially inactivated. The order for the uptake
of other PGMs was similar with respect to the resins albeit much lower quantities were
extracted. The highest quantities obtained were for palladium with all three resins and
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one can possibly consider these resins as having a higher affinity for palladium. Neverthe-
less, the simultaneous recovery of PGMs and base metals is the only limitation for their
palladium selectivity and future studies require further ligand design strategies around
these functional groups to eliminate the co-extraction of smaller quantities of PGMs and
base metals.
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