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Abstract: Copper and associated gold mineralization in the Mundiyawas-Khera area of western
India is hosted by the Proterozoic felsic volcanic rocks of rhyo-dacite composition. Signatures of
hydrothermal alteration represented by sericite, epidote, scapolite and carbonates are well observed
around the ore mineralization zone. The felsic volcanic rocks with gently to flat sloping REE pat-
tern, variable negative Eu anomaly, intermediate abundances of HFSE and moderate to low Zr/Y
anomalies are suggested to be FII, FIIIa and FIV type rhyolite. The felsic volcanic host rock for copper
mineralization has a depleted and flat HREE pattern and indicates the crustal source, which is garnet
free. Negative Eu anomaly in the rock is probably because of the intracrustal partial melting formed in
a rift related environment. The high temperature magmatic activities are probably evolved due to the
partial melting of crust at shallow to moderate depths, suggesting an evolved continental crust. The
δ13C values of the mineralized carbonate veins range between −10.4‰ and −0.9 ‰ (min = −10.6‰,
n = 27), whereas the δ18O values show a range of 16.35‰ to 25.23‰ (min = 21.49‰, n = 27), ideally
suggesting a mixed source for the ore bearing fluid. Geological, geochemical and stable isotope data
of the Mundiyawas-Khera copper deposit suggest it to be a VMS/VHMS setup and these insights
will lead to finding new deposits in the nearby areas, having same stratigraphic horizons and similar
lithogeochemical assemblages.

Keywords: western India; rhyolite; copper; rift environment; partial melting; carbon isotope; VMS

1. Introduction

Copper mineralization mainly occurs in a wide variety of geologic environments
among which the magmatic copper sulfides, porphyry copper deposits, iron oxide copper-
gold (IOCG), volcanogenic massive sulfide (VMS) or volcanic-hosted massive sulfide
(VHMS) and sediment-hosted copper deposits are very significant [1–3]. Different copper
deposit types are characterized by their litho-association, ore mineralogy, fluid character-
istics, alteration patterns and stable isotopic signatures [4,5]. The VMS/VHMS deposits
occur in a wide variety of geologic environments and throughout geologic history, starting
from the Archean (e.g., deposits in the Slave and Abitibi-Superior provinces in Canada [6])
to the modern day (e.g., the Solwara-1 and Solwara-2 deposits in deep seawater in Papua
New Guinea [3]). They are distributed worldwide and range in size varying from insignifi-
cant to giant, with world-class deposits such as Kidd Creek, Ontario and Windy Craggy,
British Columbia [3]. The origin of the deposit can be well understood through host rock
geochemistry, alteration patterns, ore mineral associations and isotopic signatures and
has wide application in mineral exploration. Distinct hydrothermal alteration patterns are
observed both in the porphyry and VMS setting [7,8]. The alteration patterns are the gross
effect of the interaction between the metal bearing hydrothermal fluid and the country
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rocks. Hence, host rock lithogeochemistry and mineral association can be the tracers for
types of copper deposit.

In western India, the Proterozoic Aravalli Delhi Fold Belt (ADFB) hosts a number of
world class base metal deposits, e.g., Pb-Zn deposits of Agucha, Rajpura-Dariba, Zawar
and Khetri copper belt [9–12]. These base metal deposits are controlled both by the lithol-
ogy and the structural geometry of the terrain. Apart from these, smaller occurrences of
low to medium grade copper mineralization are found in the Nim ka Thana and Alwar
basin [13–15]. The present study is focused on the Mundiyawas-Khera copper-gold de-
posits located in Alwar basin [13,14]. This deposit was discovered by Geological Survey
of India (GSI) through different stages of exploration [13,14,16]. Detailed exploration and
preliminary geochemical characterization of the ore and host rocks have been conducted
by GSI [13,14,16–18]. Geophysical and remote sensing study of the area have also been
carried out to understand the spatial distribution of the ore body and alteration patterns
respectively [19,20]. However, detailed geochemical study of ore and host rocks, source of
ore bearing fluids, alterations and classification of the deposit have not yet been effectively
attempted. The ore forming processes of the study area are unclear and need detailed
investigation. Unlike the well-established copper deposit in Khetri, which has been classi-
fied as an IOCG type deposit [11,12], the Mundiyawas-Khera copper deposit is relatively
smaller with an average grade of 0.41% with distinct variation in the ligthological assem-
blages as well as nature of mineralization and alteration phenomena. As per the present
understanding, startigraphically, this is also hosted within a younger volcano-sedimentary
sequence [14]. This paper deals with the lithogeochemistry, petrography and wall rock
alteration coupled with stable isotope (Carbon and Oxygen isotopes) studies of the copper
mineralizing system to constrain the conditions for the metallogenesis of the Mundiyawas-
Khera copper deposit. This will be a major implication for strategic exploration planning
and refinement of metallogenetic model vector to explore new deposits in nearby areas.

2. Geological Setting
2.1. Regional Geology

The NNE-SSW trending Aravalli and Delhi Fold Belts are located in the western part
of the Indian peninsula (Figure 1). They are the treasure of some classic polymetallic sulfide
deposits [9–15,21]. The vast expanse of gneiss–migmatite–amphibolitic rocks, generally
referred to as Banded Gneissic Complex (BGC), is characterized as the basement of these
belts [22]. The basement complex has experienced granitoid magmatism from 1.73 to
1.72 Ga and by metamorphic events during 1.85 Ga, 1.73 Ga, 1.62 Ga and 1.0–0.95 Ga [23–28].
The two supracrustal units, namely the Palaeoproterozoic Aravalli fold belt (AFB) and
the Meso-Neo Proterozoic Delhi fold belt (DFB), are overlain on Achaean basement and
are known as Aravalli Supergroup and Delhi Supergroup respectively [22,29–32]. These
two-fold belts are presumed to have been formed in a rifted cratonic segment [33–36]
with some exhumed oceanic slices/terrains incorporated during the subduction related
processes [37,38].

The volcano-sedimentary successions of the Delhi Supergroup are subdivided into
North Delhi Fold Belt (NDFB) and South Delhi Fold Belt (SDFB) according to the geo-
graphic location, age and degree of metamorphism. The meta-volcano sedimentary units of
NDFB are distributed over Lalsot–Bayana, Alwar and Khetri basin (Figure 2) [39–41]. Strati-
graphically, the belt is divided into the older Raialo Group (carbonate-dominant), the inter-
mediate Alwar Group (arenaceous-rich) and the younger Ajabgarh Group (argillaceous-
rich) [39,41,42]. The meta-volcano sedimentary rocks of the Delhi Supergroup record
multiple phases of deformation [43,44] and medium-grade metamorphism at ca. 550 ◦C
and 300–400 MPa [9,41,45–47]. The economic copper mineralization occurs in the Alwar
and the Ajabgarh Group of rocks at Khetri, which is classified as an iron oxide–copper–gold
(IOCG)-type deposit [11,48,49].
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Figure 1. (A) Location of Delhi Fold Belt in India map; (B) Generalized regional geological map of 
the Delhi Fold Belt (modified from [28]). Figure 1. (A) Location of Delhi Fold Belt in India map; (B) Generalized regional geological map of
the Delhi Fold Belt (modified from [28]).



Minerals 2022, 12, 370 4 of 24Minerals 2022, 12, x  4 of 24 
 

 

 
Figure 2. Regional geological map of northern Rajasthan and Haryana showing the disposition of 
Khetri copper belt (KCB) and Kho-Dariba deposit (modified after [11]). The ages of Harshora 
Granite, Dadikar Granite and Bairath granite are zircon U–Pb age [28]. 

2.2. Deposit Scale Geology 
The Mundiyawas-Khera copper deposit is located in the Alwar basin which repre-

sents the rock types of Thanagazi Formation of the Ajabgarh Group [14]. The litho types 
exposed in the study area are the felsic tuffs of rhyo-dacite composition, interlayered 
with sedimentary sequences composed of quartzite, carbon phyllite and dolomitic mar-
ble (Figure 3) [13]. The felsic volcanic rocks are the dominant host for base metal miner-
alization as established from the surface signatures and borehole sections (Figure 4). 
Chalcopyrite, pyrrhotite and arsenopyrite are the dominant sulfide minerals observed in 
the area. Green-schist to lower amphibolite facies of metamorphism is noticed [50] from 
the mineral assemblages. Four mineralized zones extending for about 400 m along strike 
with 10–30 m average width of individual zones have been confirmed from the explora-
tion data [17]. Sulfide mineralization is observed in the form of disseminations, stringers, 
vein lets and fracture filling and locally occur as massive chalcopyrite, arsenopyrite and 

Figure 2. Regional geological map of northern Rajasthan and Haryana showing the disposition of
Khetri copper belt (KCB) and Kho-Dariba deposit (modified after [11]). The ages of Harshora Granite,
Dadikar Granite and Bairath granite are zircon U–Pb age [28].

2.2. Deposit Scale Geology

The Mundiyawas-Khera copper deposit is located in the Alwar basin which represents
the rock types of Thanagazi Formation of the Ajabgarh Group [14]. The litho types exposed
in the study area are the felsic tuffs of rhyo-dacite composition, interlayered with sedimen-
tary sequences composed of quartzite, carbon phyllite and dolomitic marble (Figure 3) [13].
The felsic volcanic rocks are the dominant host for base metal mineralization as established
from the surface signatures and borehole sections (Figure 4). Chalcopyrite, pyrrhotite and
arsenopyrite are the dominant sulfide minerals observed in the area. Green-schist to lower
amphibolite facies of metamorphism is noticed [50] from the mineral assemblages. Four
mineralized zones extending for about 400 m along strike with 10–30 m average width
of individual zones have been confirmed from the exploration data [17]. Sulfide mineral-
ization is observed in the form of disseminations, stringers, vein lets and fracture filling
and locally occur as massive chalcopyrite, arsenopyrite and pyrrhotite (Figure 5). The total
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mineral resources of UNFC (332) category estimated for Cu, Au and Ag are 40.49 Mt@
0.37% Cu, 4.19 Mt@ 0.80 g/t Au and 2.71 Mt@ 7.07 g/t Ag respectively [18].
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Figure 4. Sectional view of host and ore zones intersected along boreholes in the study area after 
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Elmer ELAN DRC II, Waltham, MA, USA). Trace elements and REEs were determined by 
digestion of powder samples by adopting standard operation procedure followed in [53]. 
JR-1, JR-2 and RGM-1 reference standards were used for the analysis of rhyolite. Preci-
sion and accuracy are better than RSD 3% for major oxides and trace elements. Stable 
isotope (C and O) geochemistry of fresh carbonate veins was done to determine the con-
dition, environment of formation and deposition of ore bearing fluids. Powdered car-
bonate samples were analyzed using a Kiel IV Carbonate device coupled with a MAT-253 
isotope ratio mass spectrometer (IRMS) in dual inlet mode (Thermo Fisher Scientific, 
Waltham, MA, USA) at Indian Institute of Science Education and Research (IISER) Kol-
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itor the isotopic composition of the measured samples regularly. The Z-Carrara Marble 
was calibrated via NBS-18 prior to the analysis of the samples. 

  

Figure 4. Sectional view of host and ore zones intersected along boreholes in the study area after [52].

Minerals 2022, 12, x  7 of 24 
 

 

4. Results 
4.1. Host Rock and Ore Petrography 

A variety of felsic volcanic rocks is observed in Mundiyawas-Khera area with dis-
tinct features like tuffaceous, massive, fine grained and coarse grained nature associated 
with the meta-sediments viz., carbonaceous phyllite and minor dolomite (Figure 5a–i). 
The coarse grained rhyolite shows spheroidal weathering on the surface at places (Figure 
5i). Rounded elliptical scapolite grains within the felsic tuff and felsic meta-volcanic rocks 
(Figure 5f,g) suggest prominent hydrothermal alteration in the area. The rock is mainly 
composed of quartz, K-feldspars, biotite, sericite, and minor muscovite (Figure 6a–h). 
The feldspar grains are euhedral and larger in size. Embayment of quartz and feldspar 
phenocryst (Figure 6a,b,d,e) are frequently seen in the volcanic rocks, suggesting the 
volcanic origin [14]. Apart from this, microscopic study reveals intense sericitization 
(Figure 6a–c) and scapolitization (Figure 6g). A large variation in the grain sizes is ob-
served in felsic meta-volcanic rocks. In some sections, the rock is very fine grained, i.e., 
cryptocrystalline in nature and individual minerals are difficult to identify (Figure 6f) 
and have glassy appearance. Although the rocks have suffered metamorphism, inter-
locking texture between the grains indicate igneous origin. The textural features and 
mineralogy infer this rock as a felsic volcanic rock. 

 
Figure 5. Field photographs showing (a) foliation parallel and vein (quartz-carbonate) filled chal-
copyrite in felsic meta-volcanic rock; (b) pyrrhotite and chalcopyrite occurring as veins within felsic 

Figure 5. Cont.



Minerals 2022, 12, 370 7 of 24

Minerals 2022, 12, x  7 of 24 
 

 

4. Results 
4.1. Host Rock and Ore Petrography 

A variety of felsic volcanic rocks is observed in Mundiyawas-Khera area with dis-
tinct features like tuffaceous, massive, fine grained and coarse grained nature associated 
with the meta-sediments viz., carbonaceous phyllite and minor dolomite (Figure 5a–i). 
The coarse grained rhyolite shows spheroidal weathering on the surface at places (Figure 
5i). Rounded elliptical scapolite grains within the felsic tuff and felsic meta-volcanic rocks 
(Figure 5f,g) suggest prominent hydrothermal alteration in the area. The rock is mainly 
composed of quartz, K-feldspars, biotite, sericite, and minor muscovite (Figure 6a–h). 
The feldspar grains are euhedral and larger in size. Embayment of quartz and feldspar 
phenocryst (Figure 6a,b,d,e) are frequently seen in the volcanic rocks, suggesting the 
volcanic origin [14]. Apart from this, microscopic study reveals intense sericitization 
(Figure 6a–c) and scapolitization (Figure 6g). A large variation in the grain sizes is ob-
served in felsic meta-volcanic rocks. In some sections, the rock is very fine grained, i.e., 
cryptocrystalline in nature and individual minerals are difficult to identify (Figure 6f) 
and have glassy appearance. Although the rocks have suffered metamorphism, inter-
locking texture between the grains indicate igneous origin. The textural features and 
mineralogy infer this rock as a felsic volcanic rock. 

 
Figure 5. Field photographs showing (a) foliation parallel and vein (quartz-carbonate) filled chal-
copyrite in felsic meta-volcanic rock; (b) pyrrhotite and chalcopyrite occurring as veins within felsic 
Figure 5. Field photographs showing (a) foliation parallel and vein (quartz-carbonate) filled chal-
copyrite in felsic meta-volcanic rock; (b) pyrrhotite and chalcopyrite occurring as veins within felsic
volcanic rock; (c) arsenopyrite as layers within the coarse grained felsic volcanic rocks; (d,e) stringers
and disseminations of chalcopyrite in the coarse grained altered part of the meta-volcanic rock;
(f) scapolite (white patches) in the highly altered felsic tuff; (g) scapolite (as white patches) in
the fine grained and pervasive felsic volcanic rock; (h) Surficial malachite stains on volcanic tuff;
(i) spheroidal weathering exhibited by rhyolite. (Apy: Arsenopyrite, Ccp: Chalcopyrite, Po: Pyrrhotite
and Py: Pyrite).

3. Material and Methods

Polished thin sections of individual lithology collected from surface and boreholes
were studied by Leica DM 27 microscope for understanding the mineralogy as well as
textural properties. The whole rock chemical analyses of the representative fresh samples
were carried out at National Geophysical Research Institute (NGRI), Hyderabad, India
using both XRF (Philips PW-2440 Magix-PRO, The Netherlands) and ICPMS (Perkin Elmer
ELAN DRC II, Waltham, MA, USA). Trace elements and REEs were determined by digestion
of powder samples by adopting standard operation procedure followed in [53]. JR-1, JR-2
and RGM-1 reference standards were used for the analysis of rhyolite. Precision and
accuracy are better than RSD 3% for major oxides and trace elements. Stable isotope
(C and O) geochemistry of fresh carbonate veins was done to determine the condition,
environment of formation and deposition of ore bearing fluids. Powdered carbonate
samples were analyzed using a Kiel IV Carbonate device coupled with a MAT-253 isotope
ratio mass spectrometer (IRMS) in dual inlet mode (Thermo Fisher Scientific, Waltham, MA,
USA) at Indian Institute of Science Education and Research (IISER) Kolkata. The reference
gas (CO2) used during the analysis of the samples has δ13C and δ18O value of 4.5‰ and
14.05‰, respectively and was calibrated using NBS-19. In the present study, the in-house
standard (Z-Carrara Marble, acquired from Physical Research Laboratory, Ahmedabad)
was run along with the international standard (NBS-18) to monitor the isotopic composition
of the measured samples regularly. The Z-Carrara Marble was calibrated via NBS-18 prior
to the analysis of the samples.
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4. Results
4.1. Host Rock and Ore Petrography

A variety of felsic volcanic rocks is observed in Mundiyawas-Khera area with distinct
features like tuffaceous, massive, fine grained and coarse grained nature associated with
the meta-sediments viz., carbonaceous phyllite and minor dolomite (Figure 5a–i). The
coarse grained rhyolite shows spheroidal weathering on the surface at places (Figure 5i).
Rounded elliptical scapolite grains within the felsic tuff and felsic meta-volcanic rocks
(Figure 5f,g) suggest prominent hydrothermal alteration in the area. The rock is mainly
composed of quartz, K-feldspars, biotite, sericite, and minor muscovite (Figure 6a–h). The
feldspar grains are euhedral and larger in size. Embayment of quartz and feldspar phe-
nocryst (Figure 6a,b,d,e) are frequently seen in the volcanic rocks, suggesting the volcanic
origin [14]. Apart from this, microscopic study reveals intense sericitization (Figure 6a–c)
and scapolitization (Figure 6g). A large variation in the grain sizes is observed in felsic
meta-volcanic rocks. In some sections, the rock is very fine grained, i.e., cryptocrystalline
in nature and individual minerals are difficult to identify (Figure 6f) and have glassy ap-
pearance. Although the rocks have suffered metamorphism, interlocking texture between
the grains indicate igneous origin. The textural features and mineralogy infer this rock as a
felsic volcanic rock.

Textural-microstructural features and ore petrography of different litho-units from the
study area confirm the presence of chalcopyrite, pyrrhotite, arsenopyrite and pyrite as the
major sulfide mineral phases (Figure 7a–e). However, chalcopyrite is found to be the most
dominant copper ore mineral either occurring as fine disseminations within the felsic meta-
volcanic rocks and dolomite or as vein fillings (Figure 7a–f). Mutual equilibrium boundary
between pyrrhotite and chalcopyrite (Figure 7b,d) suggests the simultaneous crystallization.

4.2. Geochemistry of Felsic Volcanic Rocks

The host rock geochemistry has been carried out principally to establish the chemical
variations of the felsic meta-volcanic rocks and their bearing on mineralization. Major
element data of felsic volcanic rocks (Table S1) show that they have high silica content
ranging from 61 to 80 wt% (average: 70%), and low Al2O3 (Al2O3 < 19%; average: 13%),
low MgO (<2%; average: 1%) and high FeOT (4–20%; average: 6%) contents. Major oxide
variations plot of the felsic volcanic rocks from Mundiyawas-Khera area with respect to
SiO2 exhibit decreasing trends for Al2O3, MgO, TiO2, Fe2O3 and K2O (Figure 8). These
binary variation patterns suggest fractional crystallization during the evolution of the
magma whereas the felsic volcanic shows increasing trend of Na2O with increasing SiO2
content. Total Alkali vs. Silica (TAS) plot (Figure 9a) and Nb/Y-Zr/TiO2 plot (Figure 9b)
confirms the rhyolite-dacite composition of the felsic volcanic rocks. The felsic volcanic
rocks show calc-alkaline affinity (Figure 9c) and are metaluminous to peraluminous in
nature; however, most of the samples fall in peraluminous field (Figure 9d). The felsic
volcanic rock samples of Mundiyawas-Khera area contain some of the highest HFSE and
REE contents, hosting VMS-deposits, compared to any other in the world [54,55]. The
Zr (86–262 ppm; average 156 ppm), Y (21–68 ppm; average: 34 ppm) and Nb (5–21 ppm;
average: 16 ppm) contents are displayed in (Table S1; Figure 9e). Trace element signatures
and high Ga/Al ratios are similar to I & S type felsic rocks (Figure 9f).
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Figure 6. Photomicrographs showing (a) phenocryst of feldspar within the siliceous ground mass;
(b) phenocrysts of feldspar and quartz showing corrugated margin; (c) sericitization of the feldspar
grains observed in the felsic rock intersected; (d) embayment of quartz and feldspar; (e) foliation
plane defined by the alignment of biotite and felsic ground mass in the volcanic rock; (f) Segregation
of biotite within felsic ground mass; (g) large circular scapolite grain showing in the felsic tuff;
(h) feldspar laths showing intergranular texture surrounded by biotite rich groundmass. (Bt: Biotite,
Fsp: Feldspar, Kfs: K-feldspar, Pl: Plagioclase feldspar, Scp: Scapolite, Ser: Sericite and Qtz: Quartz).
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Figure 7. Photomicrographs showing association of different generations of mineral assemblages
and textural characteristics (a) euhedral arsenopyrite within chalcopyrite grains as disseminated
mineralization; (b,c) replacement of chalcopyrite along the fractures of pyrite; laths of chalcopyrite
within pyrite; (d) a small grain of sphalerite within chalcopyrite and pyrite present at the outer rim
of chalcopyrite; (e) fractured filled pyrrhotite and chalcopyrite in arsenopyrite; (f) coexistence of
pyrrhotite-chalcopyrite and arsenopyrite in the mineralized quartz carbonate veins. (Apy: Arsenopy-
rite, Ccp: Chalcopyrite, Po: Pyrrhotite, Py: Pyrite and Sp: Sphalerite).
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from Mundiyawas-Khera area. (Data source: Table S1).

4.3. Alteration

Hydrothermal alteration is a common phenomenon in many ore deposits and plays a
pivotal role in categorizing the deposits according to the characteristic mineral distribution
pattern. Here the alteration impressions have been identified both from the megascopic
and microscopic characteristics of the host rocks coupled with the host rock geochemistry.
Detailed petrographic studies of host rocks around the mineralized zones revealed the
occurrences of sericite, scapolite, epidote, calcite and sulfide minerals. However, sericiti-
zation (Figure 6b,c) and scapolitization (Figure 6g) were intensely developed in the form
of dominant assemblages as compared to other alteration assemblages in the study area.
Carbonate occurrences in the form of calcite are very common within host rocks. Crisscross
thick and thin vein and veinlets of quartz-carbonate veins and their interrelation with
sulfide mineralization clearly suggest repetitive remobilization and redeposition of sulfide
minerals due to intense hydrothermal activities. Intricate association of sulfide with scapo-
lite clearly indicates the strong involvement of a hydrothermal fluid for the formation of
scapolite. Lithogeochemical characteristics of host rocks are also examined to understand
the hydrothermal and digenetic trend in alteration box plot of [61]. The alteration box plot
is considered to be a robust method to understand the intensity of alteration suffered by
hydrothermal fluids in VMS system [62]. On alteration box plots, felsic volcanic samples of
Mundiyawas-Khera prospect show four distinct hydrothermal alteration trends (Figure 10).
In the alteration box plot (Figure 10), there is a strong correlation towards sericite node
(Trend 1). It shows weak sericite alteration at the margins of a hydrothermal system and
relatively weak correlation towards sericite-chlorite-pyrite node (Trend 2), chlorite-pyrite-
(sericite) node (Trend 3) and carbonate- sericite node (Trend 5). These are clearly discernible
with the field and petrographic observations in the study area and are in conformity with
other VMS deposits.
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field; (b) Zr/TiO2 discrimination diagram of [57] plot well within the rhyo-dacite/dacite field; (c) 
Th/YbvsZr/Y plot after [58] show calc-alkaline affinity; (d) Al2O3/(Na2O + K2O) (molar) vs. 
Al2O3/(CaO + Na2O + K2O) (molar) plot shows a meta-aluminous to peraluminous character [59]; (e) 

Figure 9. Felsic volcanic rocks from Mundiyawas-Khera copper deposit plotted against the dis-
crimination diagram: (a) Total Alkali vs. Silica (TAS) plot after [56] show within rhyolite and
dacite field; (b) Zr/TiO2 discrimination diagram of [57] plot well within the rhyo-dacite/dacite field;
(c) Th/YbvsZr/Y plot after [58] show calc-alkaline affinity; (d) Al2O3/(Na2O + K2O) (molar) vs.
Al2O3/(CaO + Na2O + K2O) (molar) plot shows a meta-aluminous to peraluminous character [59];
(e) Zr vs. Nb diagram showing similarities with rhyolites from post-Archean VMS deposits. The Zr-
Nb diagram illustrates the HFSE variations in rhyolitic rocks associated with VMS environments [60];
(f) Nb vs. Ga/Al, all sample plots in the I & S-type except a few falling in A-type granite field [61].
(Data source: Table S1).
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100 (MgO + FeO)/(MgO + FeO + Na2O + K2O). (Data source: Table S1). 
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responsible for the mixing of fluids or this could be due to fluid/rock interactions. 

Figure 10. Felsic volcanic rocks plotted in the Alteration Box Plot [61] using Alteration Index (AI)
versus chlorite-carbonate-pyrite index (CCPI), which shows a strong correlation with Trend 1 and
weak correlation with Trend 2, 3 and 5. AI = 100 (K2O + MgO)/(K2O + MgO + Na2O + CaO);
CCPI = 100 (MgO + FeO)/(MgO + FeO + Na2O + K2O). (Data source: Table S1).

4.4. Carbon and Oxygen Isotope Geochemistry of Carbonates

The values of carbon and oxygen isotope depend upon the environment of deposition
and are restricted to a particular set of geological reservoirs [63–67]. The carbon and
oxygen isotope data of the mineralized carbonate veins from the deposit is given in Table 1.
The C and O isotope data are plotted on δ13CPDB versus δ18OSMOW plot to understand
the geological environment of deposition; at the same time, they are also compared with
various well-known VMS deposits (Figure 11). The plot shows that the variation of δ13C
values range between −10.4‰ and –0.9 ‰ (min = −10.6‰, n = 27), whereas the δ18O
values show a range of 16.35‰ to 25.23‰ (min = 21.49‰, n = 27). The C and O isotopic
data of the mineralized carbonate veins of Mundiyawas-Khera copper deposit (Figure 11)
does not match with the other carbonate sources and rules out its formation from a single
geological environment. Rather, we can propose mixed types of geological environments
responsible for the mixing of fluids or this could be due to fluid/rock interactions.



Minerals 2022, 12, 370 14 of 24
Minerals 2022, 12, x  14 of 24 
 

 

 
Figure 11. Carbon and oxygen isotopic values of quartz-carbonate veins from the Mundi-
yawas-Khera copper deposit plotted over carbonates of various VMS deposits. Data of major geo-
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noted that some of the Mundiyawas-Khera quartz-carbonates overlap on Afterthought, Mt. 
Chalmers and Bergslagen carbonate fields. Data source as listed in Table 1. 
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Figure 11. Carbon and oxygen isotopic values of quartz-carbonate veins from the Mundiyawas-Khera
copper deposit plotted over carbonates of various VMS deposits. Data of major geologic reservoirs
are from [63–66] (modified after [67,68]) and other VMS deposits from [69]. It is noted that some of
the Mundiyawas-Khera quartz-carbonates overlap on Afterthought, Mt. Chalmers and Bergslagen
carbonate fields. Data source as listed in Table 1.

Table 1. Carbon and oxygen isotope data from mineralized carbonate vein samples from Mundiyawas-
Khera copper deposit.

Sample Sample Description δ18OSMOW δ13CPDB

KBH-1 Carbonate Vein 20.62152 −10.4
KBH-6 Carbonate Vein 20.75554 −7.6

KBH-8A Carbonate Vein 23.33281 −9.2
KBH-13 Carbonate Vein 20.21946 −8
KBH-8B Carbonate Vein 23.74518 −9.8

KBH-18A Carbonate Vein 24.33279 −7.5
KBH-18B Carbonate Vein 22.55963 −9.7
KBH-19A Carbonate Vein 16.35355 −4.6
KBH-19B Carbonate Vein 25.22969 −2.7
KBH-22A Carbonate Vein 24.39465 −7.8
KBH-21 Carbonate Vein 25.4771 −6.9

KBH-22B Carbonate Vein 23.83796 −5.9
KBH-23 Carbonate Vein 20.61121 −8.4
KBH-25 Carbonate Vein 19.88957 −5.4
KEBH-1 Carbonate Vein 23.72456 −9.1
KBH-25B Carbonate Vein 18.32259 −0.9
KEBH-6A Carbonate Vein 20.84832 −7.7
KEBH-6B Carbonate Vein 23.4359 −6.9
KEBH-9A Carbonate Vein 23.31219 −8.9
KEBH-9B Carbonate Vein 23.37405 −9.8

KEBH-12A Carbonate Vein 24.07507 −4.4
KEBH-12B Carbonate Vein 24.55959 −7.3
KEBH-12C Carbonate Vein 23.13694 −8.2
KEBH-12B Carbonate Vein 23.34312 −9.1
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Table 1. Cont.

Sample Sample Description δ18OSMOW δ13CPDB

KEBH-12E Carbonate Vein 20.53905 −5.9
KEBH-12F Carbonate Vein 20.13699 −3.7
KEBH-12H Carbonate Vein 22.39468 −4.9
KEBH-12I Carbonate Vein 22.48747 −9.5

The solubility of carbonate is directly proportional to pressure and inversely propor-
tional to temperature [70]. Hence, we cannot expect the precipitation of calcite from a
hydrothermal solution by simple cooling under a closed system. The promising conditions
for precipitations of carbonates from a hydrothermal fluid are either degassing of CO2 from
the fluid or processes like boiling and change in pH [71]. The nearly horizontal negative
correlation array could be due to the isotopic composition of oxygen in the fluid remaining
unchanged, but the isotopic composition of carbon was changed due to the loss of CO2
and leads to an increase in pH of the fluid and a change in dissolved carbon species from
H2CO3 to HCO3 [71]. This isotopic variation of carbonates is due to the crystallization
from a mixed carbon species and in a transitional condition [71,72]. The inter-relationship
between the δ18O values and temperature of hydrothermal fluids and the wide range of
variations from 7.5 to 20.0‰ is interpreted as a result of varying depositional temperatures
ranging between 100 ◦C and 300 ◦C [73]. In Mundiyawas-Khera copper deposit, the δ18O
values are a little on the higher side with respect to the mentioned deposits in Figure 9 and
vary in the range of 16.35‰ to 25.23‰ (min = 21.49‰, n = 27).

5. Discussion
5.1. Felsic Volcanic Rock Classification and Petrogenesis

On the basis of petrochemical signature, felsic volcanic rocks are divided into four
classes, e.g., FI, FII, FIII and FIV [55,74–76]. The FI felsic volcanic rocks are characterized by
steep REE patterns, weakly negative to moderately positive Eu anomalies and high Zr/Y
and low abundances of high field strength elements (HFSE, Y, Zr, Hf); FII felsic volcanic
rocks are characterized by gently sloping REE patterns, variable Eu anomalies, moderate
Zr/Y and intermediate abundances of HFSE; FIII felsic volcanic rocks, rhyolites and high
silica rhyolites, are characterized by relatively flat REE patterns and subdivided into two
types. The sub-type FIIIa rhyolites exhibit variable negative Eu anomalies, low Zr/Y and
intermediate abundances of HFS elements. FIIIb rhyolites exhibit pronounced negative Eu
anomalies, low Zr/Y and high abundances of HFSE. FIV felsic volcanic rocks are rhyolites
and high silica rhyolites characterized by flat to slightly LREE-depleted REE patterns and
low REE and HFSE abundances [76]. This classification of felsic volcanic rocks is mainly
dependent on the type of crust in which they are sustained (i.e., evolved or juvenile) and
are invariably a function of age (i.e., Archean or post-Archean). The analyzed samples
dominantly fall in FIIIa, FIV and FII of rhyolite discrimination diagram (Figure 12a) and
suggest that the felsic volcanic rocks are probably evolved due to the partial melting of crust
at shallow to moderate depths (<15 km) [75,76]. From Zr/Y vs. Y plot (Figure 12b), the felsic
volcanic samples fall in the FII and FIIIa field suggesting moderate to most prospective area
of Archean VMS deposits [77]. The felsic volcanic rocks of Mundiyawas-Khera prospect
have chemical characteristics consistent with an arc related rifted continental margin setting
and are characteristic to VAG (Volcanic Arc Granite) and WPG (Within Plate Granite) after
tectonic discrimination diagrams (Figure 12c) of [78] for granitoid rocks. In the Nb-Y plot,
the felsic rocks have a trend towards syncollisonal granite and within plate granite in an
evolved arc setting (Figure 12d). The Th/Yb vs. Nb/Yb plot (Figure 12e) of [79] suggests
volcanic arc array field and in Rb/Nb vs. Y/Nb diagram (Figure 12f) felsic volcanic samples
show A2, crustal derived granitoid rocks [80].
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with magmatic affinities based on Zr/Y ratios from the concepts of [82]; most of the felsic rocks 
have FIIIa to FII affinity; (c) Rb vs. Y + Nb tectonic discrimination diagrams of [78] for granitoid 
rocks and samples show VAG (Volcanic Arc Granite) and WPG (Within Plate Granite) (d) Zr vs. Nb 
plot shows that the felsic volcanic rocks are HFSE-enriched and support the evolved arc setting 
after [83]: the fields of VMS-barren (green shaded color) and VMS-hosting rhyolites (grey shaded 
color) in post-Archean continental crust-associated setting. The shaded fields are from [83]. The 
sample falls on the syncollisional S-type granite and within plate granite. (e) Th/Yb vs Nb/Yb plot is 
from [79]. The sample falls on volcanic arc array field (f) Rb/Nb vs Y/Nb diagram, A1, mantle de-
rived and A2, crustal-derived granitoid rocks [80]; felsic volcanic samples fall in A2, which shows 
crustal derivative signature. (Data source: Table S1). 

Trace element compositions of felsic meta-volcanic rocks are marked by lower con-
centrations of compatible elements such as Ni, Cr and enrichment of large ion lithophile 

Figure 12. Petrochemical affinity of the felsic volcanic rocks (a) Chondrite nornamilized [81]
Lacn/Ybcn vs Ybcn rhyolite discrimination diagram after [75,76]; most of the felsic rocks show
FIIIa affinity and a few show FII and FIV affinities; (b) Zr/Y vs. Y diagram of [75], as modified by [55],
with magmatic affinities based on Zr/Y ratios from the concepts of [82]; most of the felsic rocks have
FIIIa to FII affinity; (c) Rb vs. Y + Nb tectonic discrimination diagrams of [78] for granitoid rocks
and samples show VAG (Volcanic Arc Granite) and WPG (Within Plate Granite) (d) Zr vs. Nb plot
shows that the felsic volcanic rocks are HFSE-enriched and support the evolved arc setting after [83]:
the fields of VMS-barren (green shaded color) and VMS-hosting rhyolites (grey shaded color) in
post-Archean continental crust-associated setting. The shaded fields are from [83]. The sample falls
on the syncollisional S-type granite and within plate granite. (e) Th/Yb vs Nb/Yb plot is from [79].
The sample falls on volcanic arc array field (f) Rb/Nb vs Y/Nb diagram, A1, mantle derived and A2,
crustal-derived granitoid rocks [80]; felsic volcanic samples fall in A2, which shows crustal derivative
signature. (Data source: Table S1).
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Trace element compositions of felsic meta-volcanic rocks are marked by lower con-
centrations of compatible elements such as Ni, Cr and enrichment of large ion lithophile
elements (LILE) over high field strength elements (Table S1). Chondrite-normalized REE
pattern [84] of the felsic volcanic rock/tuff suggests a considerable LREE/HREE fractiona-
tion trend with negative Eu anomalies (Figure 13a). The depleted and flat HREE pattern
again indicates crustal source that was garnet free. A negative Eu anomaly is typical of
many continental rocks and probably arises because many crustal rocks were produced
by intracrustal partial melting. The residue of these melts was rich in plagioclase, hence
retaining more Eu in the lower crust and creating a complimentary Eu-depleted upper
crust. Negative Eu anomaly also points to cooler fluids, more oxidized condition and/or
increased clastic contributions [85]. The primitive mantle-normalized after [86] trace ele-
ment pattern (Figure 13b) of the felsic volcanic rock shows distinct negative Nb, Zr and
Ti anomalies. Enrichment of LILE (e.g., Cs, Rb, Ba, Th and U) and depletion of HFSE
(e.g., Zr, Nb and Ti) relative to typical primitive mantle values with negative Nb, Zr and Ti
anomalies and positive Th anomalies is suggestive of a subduction zone magma character
generated in arc settings [78].
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5.2. Source and Evolution of Ore Fluids

The isotopic results indicate the dominancy of highly modified sea water after infiltra-
tion into the upper crust, interaction with the underlying volcanic and sedimentary rocks
and convective circulation to the venting sites. This model is in favor of the ancient and
modern hydrothermal system models of massive sulfide formation [87–92]. The interpre-
tations of isotopic data (Figure 11) suggest a minor participation of magmatic carbonate
in the genesis of mineralized carbonate veins in Mundiyawas-Khera copper deposit. As
suggested by [93], in Neves-Corvo deposit, magmatism plays an important role, not only
as a driving force of seawater convection but also as a direct contributor of metals and
volatile components to the hydrothermal systems. This model may be considered to explain
the genesis of ore bearing hydrothermal fluid in Mundiyawas-Khera copper deposit from
carbon and oxygen isotope study.

5.3. Tectonic and Structural Setting

The lithogeochemistry of felsic volcanic rocks reveals arc magmatic signature (Figure 12c,d).
In addition, the FII, FIIIa and FIV signatures (Figure 12a) of the felsic volcanic rocks
suggest that they could be evolved from the partial melting of crust at shallow to moderate
depths due to subvolcanic eruptions [75,76]. The arc signature of Mundiyawas-Khera felsic
volcanic rocks could be correlated with the arc magmatism in NDFB [94,95] and a probable
geodynamic model (Figure 14) is proposed to understand the possible massive sulfide
deposit of Mundiyawas-Khera area.
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Figure 14. Schematic geodynamic model showing possible massive sulfide deposit of Mundiyawas-
Khera copper deposit, i.e., Upwarping and rifting of continental crust due to upwelling of magma
from asthenosphere in a back arc basin and partial melting of continental crust, disseminated sulfides
(pyrite, pyrrhotite, chalcopyrite and arsenopyrite) deposit with syn-volcanic eruption and epigenetic
copper mineralization due to circulation of hydrothermal fluids.

5.4. A VMS Perspective of Mundiyawas-Khera Copper Deposit

A number of VMS prospects in India are comprised of mafic, mafic-siliciclastic, bi-
modal mafic and bimodal-felsic deposits [96,97]. Cu, Pb and Zn ores are associated with
them. The Deri-Ambaji [10], Pipela VMS prospect in western India [96,98] and the Betul
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VMS prospect of Central India [97,98] are the established VMS deposits in India. The
detailed characteristics are given in Table 2. A thorough understanding of the nature of
mineralization in the Mundiyawas-Khera copper deposit would provide key aspects on
exploration strategies. From the stable isotope (C & O) geochemistry, the deposit is more
likely to be an IBP deposit [92], similar to Afterthoughts VMS deposit, Mt. Chalmers and
Bergslagen VMS deposits [73]. The lithogeochemical classifications of felsic volcanic rocks
reveal; FII, FIIIa and FIV affinity and similarity to FII felsic volcanic rocks (Sturgeon Lake,
Kuroko, Rio Tinto, Bathurst, Myra Falls, Mt. Chalmers, Mt. Windsor, Tulsequah Chief,
Thalanga, Mt. Read, Boliden, Selbaie, Salt Creek), FIIIa felsic volcanic rocks (Noranda,
Jerome, United Verde, Teutonic Bore, Parys Mountain, Ambler, Avoca, Woodlawn, Buchans,
Prieska, Fox Lake, Manitouwadge, Hood river, Sulfur Springs, Scuddles, Berslagen, Win-
ston Lake) and FIV felsic volcanic rocks (Snow lake, FlinFlon, West Shasta, Kutcho Creek,
Canatuan) according to [76]. Presence of alteration mineral assemblages have close simi-
larities with the VMS type deposit [99,100]. From the lithogeochemistry, tectonic setting
and felsic volcanic classification point of view, we inferred the Mundiyawas-Khera copper
deposit shares similarities with the VMS deposit of Nohkouhi, Post e Badam block, Central
Iran [74].

Table 2. A comparison status of felsic volcanic hosted VMS deposit in a global scenario with
similarities and dissimilarities in lithological, mineralogical and tectonic framework.

Deposit Style Age Host Rock Ore Minerals Ore

Tectonic
Setting/

Interpreted
Environ-

ment

Deposit
Type

Hanging
Wall Al-
teration

References

Mt. Lyell Lenses Cambrian

Quartz-sericite-
pyrophyllite schist,
rhyolitic-andesitic

volcanic rocks

Pyrite,
chalcopyrite,

bornite, galena
and sphalerite

Cu, Pb, Zn
and Au

Convergent
plate

boundary

Subsea-
floor and
sea floor

strong/
intense [101,102]

Mattabi Lenses Neo-
Archean Rhyolite and andesite

Pyrrhotite, pyrite,
chalcopyrite,

sphalerite,
galena, and
magnetite

Au-Cu
rich but
Zn poor

Extension
setting

Subsea-
floor strong [103]

Nohkouhi
Stockwork

and
Lenses

Late Pre-
cambrian
to Early

Cambrian

Black shale and
rhyodacite

Pyrite,
chalcopyrite,
galena and
sphalerite

Cu, Pb
and Zn

Extensional
tectonic
settings

Subsea-
floor strong [74]

Pipela Massive
stratiform

Neo-
Proterozoic

Chlorite-mica-quartz
schist, amphibolite

and rhyolite

Pyrite and
sphalerite Cu and Zn Arc

magmatism
Subsea-

floor strong [96,97]

Ambaji and
Deri

Tabular
and

lensoid

Neo-
Proterozoic

Cordierite-
anthophyllite-chlorite
rock, amphibolite and

rhyolite

Pyrite, sphalerite,
galena,

chalcopyrite and
pyrrhotite

Cu, Pb
and Zn

Arc
magmatism

Subsea-
floor strong [96,97]

Betul belt Lenses Palaeo-
Proterozoic

Rhyolite, pillowed
basalt, rhyolitic

autobreccia,
hyaloclasite, peperite

and
tremolite-carbonate

rock

Sphalerite, pyrite,
galena and

chalcopyrite
Zn-Pb-Cu

continental
back-arc

rift
Seafloor strong [97,104]

Mundiyawas
Khera

Dissemi-
nation

and lenses

Meso-
Proterozoic

Felsic volcanic rocks
of rhyodacite

composition and
dolomite

Chalcopyrite,
arsenopyrite,

pyrrhotite,
sphalerite and

galena

Cu-Au-
Ag-Pb-Zn

Arc
magmatism

Subsea-
floor strong [13,14,16–18]

6. Conclusions

The Proterozoic felsic volcanic (rholite-dacite composition) hosted copper-gold deposit
in Mundiyawas-Khera area is located within the Alwar basin of western India. Presence
of ample amounts of scapolite, sericite, epidote and carbonates on felsic volcanic rocks is
presumed to be the product of intense fluid–rock interactions, i.e., interactions between
host rocks and ore bearing fluids. The lithogeochemical signature of felsic volcanic rocks
indicates arc magmatic affinities and calc alkaline composition. FIIIa, FII and FIV type
rhyolite found in VMS deposit have been identified in the area. C and O isotope results
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of the mineralized carbonate veins from the study area suggest a mixed source of crustal
derived ore bearing fluid with deposits in a temperature range of 65 to 150 ◦C. From the
tectonic, style, geology, mineralization and lithogeochemistry of felsic volcanic rocks of
Mundiyawas-Khera, copper-gold deposit is classified under VMS type of deposit. This
study will serve as a guiding tool to obtain new mineral prospects in the same stratigraphic
horizon with similar lithogeochemical assemblages, in the near vicinity of the study area.
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attached as Supplementary file.
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