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Abstract: In large coal preparation plants with a capacity of 30 million tons/year, the belt speed
can reach 7 m/s and the thickness of the material layer can reach 500 mm. Therefore, in high-
throughput and complex environments, the problem exists that harmful feeding materials such
as iron and gangue are not easily detected, and thus fault diagnosis in the crushers lags behind.
Therefore, it is necessary to extract the equipment operation signals from the noisy production
environment and identify the feeding materials. Currently, there is no systematic research on signal
processing and image classification of crusher feeding materials, while the convolutional neural
network (CNN) is outstanding in computer vision. In this paper, sound and vibration signals of
the feeding materials are denoised by spectral subtraction and transformed into feature images by
continuous wavelet transforms. Then, an image classification model based on CNN is built for these
feature images to study its classification mechanism and performance. The results show that the
model classification accuracy is respectively 84.0%, 93.5% and 80.1% in coal–iron–wood classification,
coal–iron classification, and coal–wood classification. The good classification performance for coal,
iron and wood can satisfy the practical demands to remove the harmful feeding materials, which
provides the core technical support for the establishment of operating status monitoring and fault
diagnosis system of crushing equipment.

Keywords: crusher; feeding materials identification; deep learning; operating status monitoring;
fault diagnosis

1. Introduction

As important equipment in the process of coal preparation, crushers can improve the
crushing efficiency of materials as well as product quality [1,2]. However, because of high
belt speed, high throughput, and invisible iron crushing conditions in industrial production,
whereby in a large coal preparation plant with a capacity of 30 million tons/year, the belt
speed can reach 7 m/s and the thickness of the material layer can reach 500 mm, crushers
can have higher failure rates. To ensure the normal operation of crushers, it is considered a
good approach to study their feed composition.

Research has shown that feeding material is one of the key factors affecting the
working life of crushing equipment. In theory, the material entering the crushing chamber
is single-component coal, but other impurities, such as gangue, wood, and iron, are often
interfused. In particular, if the iron mixed in the feed is too large to be crushed, it will jump
between the crushing teeth and impose an impact load on the whole crushing working
chamber, giving rise to the bending deformation and fracture of the roller shaft. Therefore,
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the possibility of damage to the crusher can be reduced by detecting harmful feed materials
in a timely fashion.

In a coal preparation plant, there are many traditional methods for removing impuri-
ties, such as hand picking, suspension permanent magnetic separator, and metal detectors.
However, with the development of the economy and increased productivity, the capacity
of some large coal preparation plants can reach 30 million tons/year. Under such high pro-
duction capacity and high efficiency production conditions, problems such as the limited
number of machines and high throughput (greatly exceeding the throughput of the hand
picking) become increasingly prominent. Moreover, under extreme conditions, the speed of
the belt conveyor can reach 7 m/s and the thickness of the material layer can reach 500 mm,
which may make the traditional means of removing impurity unsuitable. As a result, it
is possible for many impurities, including large iron and nonmagnetic materials, to enter
the crushing cavity. To remove harmful materials such as iron, it is crucial to classify and
identify the crusher feeding materials.

In the enclosed environment of crushing chamber, traditional sensors for image recog-
nition, such as image sensors, industrial cameras, and color sensors, cannot be easily
installed, and can be disturbed by coal dust. Therefore, a deep learning operating status
monitoring and fault diagnosis system combined with sound and vibration signals is
proposed as an effective solution. In this case, sound pressure and vibration signals are
collected as two types of observation signal. The vibration signals are supplemented by the
characteristics of the sound signals, and the mixed signal samples are used as the object of
study to solve the problems of high belt speed, thick material layers, and insufficient data.

Some researchers have conducted a series of studies on the faults of different crushers.
Targeting sensor signals such as the vibrations during the working process of the crusher,
Zak et al. [3] used Alpha-stable distribution for analysis and Jha et al. [4] studied coal
ring crushers by measuring the horizontal vibrations of the coal crusher. Furthermore,
Liu et al. [5] proposed a new hierarchical fault diagnosis strategy that incorporates recon-
struction and dynamic time warping for the diagnosis of feeding anomalies in an industrial
cone crusher. Obuchowski et al. [6] studied the identification of cyclic components in
presence of non-Gaussian noise for damage detection in crusher bearings. In addition,
Wylomanska et al. [7] discussed the identification and stochastic modeling of sources in
copper ore crusher vibrations. With the maturity of fault diagnosis theory, more and more
signal processing methods, such as Fuzzy Logic [8,9], Hilbert Transform [10], Impulsive
Noise Cancellation Method [11], Ensemble Patch Transformation (EPT) [12], RBF Neural
Network [13], Ant Colony Algorithm, and BP Neural Network [14], have been introduced
to deal with the problems of signal monitoring, identification and diagnosis in the crushing
process. On this basis, the corresponding fault diagnosis system [4,15,16] came into being.
Additionally, MMD and DOSCO in the UK, Krupp and Aubema in Germany, ABON,
Schenck and McLanahan in Australia, Pennsylvania in the USA, SMAN in India, and
Sandvik in Sweden have developed various forms of crushing equipment. All of the above
researchers and organizations have conducted relevant research in the area of crushing
equipment fault diagnosis and have used proven and reliable algorithms to process and
analyze the collected signals, which can be used to detect equipment faults. However, there
are still limitations, such as time-lagging problems of equipment fault diagnosis, subjective
artificial feature selection, and the lack of the communication and intellectualization of
the equipment.

In recent years, the study and application of Deep Learning and Convolutional Neural
Networks (CNNs) in mineral engineering has become a new trend, and CNNs have the
advantages of being able to process multidimensional data and automatically extract
features, making them attractive to many researchers. Park et al. [17] used various machine
learning models to diagnose the problems in truck ore transport operations in underground
mines. Li et al. [18] used DexiNed-Based Neural Network to process the images of rock
size distribution. Jia et al. [19] performed mineral photo recognition based on feature
fusion and online hard sample mining. Iwaszenko et al. [20] applied deep learning in
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petrographic coal image segmentation. In addition, Chow et al. [21] used computer vision
for automatic gemstone classification. With the help of deep learning and CNNs, the
following contributions can be made to operating status monitoring and fault diagnosis
systems for crushers:

• Monitoring and identification of the feed materials of crushers under crushing condi-
tions involving high belt speed, high throughput, and invisible iron;

• Timely diagnosis and early warning for early failure of crushing plants;
• CNNs are used instead of manual feature selection to ensure the objectivity of fea-

ture selection;
• Combining mineral engineering and computer technology to promote communication

and intellectualization between pieces of crushing equipment.

In this paper, the sound and vibration signals are collected in real time by the state of
the crusher feeding stage. After denoising and processing the collected signal, the CNN is
used to classify the feeding feature images. As a result, the system of the crusher, based on
the above classification model, is able to monitor and identify the entry of harmful feeding
materials such as iron, so as to reduce the failure rate of the crusher and ensure the safety
of the equipment and process operation.

2. Methods
2.1. Feature Selection

By collecting, processing, and analyzing the signal of the crusher in operation state,
the feeding material classification and fault diagnosis of the crusher are studied. In this
process, the first key thing to do is feature selection. The features we selected need to satisfy
the following requirements:

(1) Significant difference. The typical features of the different feeding materials should
have a significant difference, which contributes to improving the classification effec-
tiveness and greatly reducing the calculation amount.

(2) Easy availability. Both data acquisition and analysis algorithms should be simple and
easy to obtain, which allows rapid response to fault signals.

(3) Broad applicability. The algorithm proposed in this paper aims to be applicable to not
only different types but also different working conditions of two-tooth roll crushers.
Broad applicability is the focus in the field of crusher fault diagnosis.

Over the last few years, some researchers have focused on feeding material classifica-
tion. Pan [22] studied the audio signal of iron, wood and coal individually in the crusher
cavity, and sorted the signals using a Back Propagation (BP) neural network. On this basis,
Chen [23] transformed a one-dimensional raw audio signal into a two-dimensional matrix
sequence, and then the classification accuracy of the signal grayscale, time-frequency dia-
gram, and wavelet transform was compared on the basis of LeNet-5. Yan [24] considered
the time domain signal of the audio signal to build a calculation model for the feeding ma-
terial classification. Previous research has shown that the composition of feeding materials
can be classified to some extent, but there is potential for improvement in accuracy and
processing efficiency. Table 1 compares a selection of salient features of the above studies.

On the whole, the audio signals during the crushing have some distinguishing features
in the time domain and frequency domain; however, they are not very accurate, and there
is also a lot of noise interference. Therefore, in this paper, a multi-sensor system including
two acceleration sensors and one sound pressure sensor is used to reduce the monitoring
error and the image of wavelet transform which includes the time-frequency domain
characteristics of the collected signal is selected as a typical feature to classify the feeding
materials with the help of CNN.
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Table 1. Related research on feeding classification in recent years.

Articles Signal Type Selected Features Classification
Algorithm

Pan et al. [22] AS

Amplitude at a frequency of 360 Hz
in the power spectrum

BP neural
network

Amplitude wave peak in the
middle frequency band

Standard deviation of logarithmic
amplitude in high frequency

Chen et al. [23] SPS
Short-term energy Linear su-

perpositionShort-time magnitude
Power spectrum

Yan et al. [24] AS

Signal gray-scale

LeNet-5
Time-frequency diagram of the
short-time Fourier transform
Time-frequency diagram of

continuous Wavelet Transform

(AS—Audio Signals, SPS—Sound Pressure Signals)

2.2. Spectral Subtraction

Whether in laboratory or factory environments, monitoring and fault diagnosis of
crushers during equipment operation is always accompanied by environmental noise.
Therefore, it is necessary to preprocess the sensor signals collected by spectral subtraction
to reduce the signal interference.

As a stand-alone noise suppression algorithm, spectral subtraction is able to reduce
the spectral effects of acoustically added noise in speech [25]. By subtracting an estimate
of the noise spectrum from the noisy speech spectrum, an estimation of the clean speech
signal spectrum can be obtained [26]. Generally, the estimation of the noise spectrum can be
perceived during the no-load test before material feeding. According to the study reported
in [27], the formula for spectral subtraction is as shown in Equation (1).

let D(x) = Ps(x)− αPn(x)

P′s(x) =
{

D(x), i f D(x) > βPn(x)
βPn(x), otherwise

with α ≥ 1, and 0 < β << 1

(1)

where x is the input signal, P′s(x) is the modified signal spectrum, Ps(x) is the spectrum of
the input noise-corrupted speech, Pn(x) is the smoothed estimate of the noise spectrum, α is
the subtraction factor and β is the spectral floor parameter. In this way, a great reduction in
background noise can be achieved with very little effect on the intelligibility of the speech.

In recent years, spectral subtraction has been used widely in the field of sound source
separation [28], fault detection [29], speaker identification [30], speech enhancement [29],
encrypted speech [31], and random noise reduction [26].

2.3. Continuous Wavelet Transforms

As a standard mathematical tool, wavelet transform (WT) is used for data analysis
where features vary over different scales, and are primarily created to address the limita-
tions of the Fourier Transform [32]. A base wavelet is needed in order to realize wavelet
transform. The wavelet is a small wave that has an oscillating wavelike characteristic and
has its energy concentrated in time. WT is based on decomposing signals into shifted and
scaled versions of a wavelet and can be classified into two broad classes: the continuous
wavelet transform (CWT) and the discrete wavelet transform (DWT) [33].

The CWT is a time–frequency transform, which is ideal for the analysis of non-
stationary signals. Additionally, it can be used to analyze transient behavior, rapidly
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changing frequencies, and slowly varying behavior, which is very suitable for the research
object of this article.

The CWT of a signal x(t) is defined as shown in Equation (2) [34,35].

Wψ(s, τ) =
1√

s

∫ ∞

−∞
x(t)ψ∗

(
t− τ

s

)
dt (2)

where s represents the scale parameter, τ represents the time or translation parameter, ψ(·)
represents the wavelet function with scale s and position offset τ, and ψ∗(·) is the complex
conjugate of ψ(·).

In this paper, the CWT is used to process vibration signals after spectral subtraction
and to obtain the scalogram images, which correspond to the absolute value of the CWT
coefficients of a signal.

2.4. Deep Learning and Convolutional Neural Networks

Nowadays, when it comes to problems of image recognition and classification, CNNs
are regarded as the first choice for solving them [36]. Developed from machine vision,
they are able to extract image features and build models automatically, overcoming the
subjective influence of researchers. Moreover, they are able to improve on the accuracy and
efficiency of image classification with the characteristics of weight sharing and local linking,
and they have already been applied in image classification tasks in many fields, such as face
recognition [37], iris recognition [38] in the biological field, license plate recognition [39] in
the autonomous driving field, and to determine the concentrate ash content in coal flotation
prediction [40], wet coal image classification [41], and in applications in the mining field.

In particular, CNNs are a type of back propagation neural network with a deep
structure that conducts classification tasks utilizing convolutional computation with trans-
lation invariance. Convolutional computation in the network can act as a substitute for
fundamental matrix multiplication in CNNs.

CNNs primarily consist of input layers, convolutional layers, normalization layers,
activation layers, pooling layers, fully connected layers, and a classification layer. In the
network, different input and output layers are connected in parallel to capture image
information, automatically update weights, and fulfill classification models. The specific
composition is as follows:

(1) Input layers: This layer mainly pre-processes the original image data. In addi-
tion, mean-subtraction, normalization, PCA whitening, and local contrast normalization
are some of the common pre-processing tools utilized. Because PCA whitening may en-
hance data noise, most CNN models just employ a basic mean-subtraction (and possibly
normalization) step as a pre-processing step. The scaling and shifting accomplished by
mean-subtraction and normalization are beneficial to gradient-based learning.

Specifically, mean-subtraction is used to make the mean value of the pixels at each
position in all training images equal to zero. Given N training images, where x represents a
single sample, the mean-subtraction step as shown in Equation (3).

x′ = x− x̂ , where x̂ = 1
N

N
∑

i = 1
xi (3)

where x represents the input signal, N is the number of the input samples, and i is an index.
The normalization function is employed so that the data will be at the same scale. To

normalize the standard deviation to a unit value, the input data are divided by the standard
deviation of each input dimension determined on the basis of the training set. This can be
represented as shown in Equation (4).

x′ =
x√

∑N
i = 1(xi − x̂)2

N − 1

(4)
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where x represents the input signal, N is the number of the input simples, and i is an index.
(2) Convolutional layer: A convolutional layer is made up of a series of convolutional

kernels, and each convolutional kernel can be regarded as a feature extractor. Different
convolutional kernels extract different features in a complex way. The convolutional kernel
is generally initialized in the form of a random decimal matrix, and reasonable weights are
acquired in the process of training the network. The local receptive field is a region with
the same size as the convolutional kernel in the input layer, and the convolutional result
between the two is the value on a feature graph. The neuron of each convolutional layer
usually contains several feature graphs, and the number of feature graphs is the depth of
the convolutional kernel.

(3) Normalization layer: Batch normalization [42] is used to normalize the mean and
variance of the output activations from a CNN layer so that it follows a unit Gaussian dis-
tribution [43]. The normalization of this distribution can be used to optimize the variance
size and the mean position, and transfer the output value to the activation layer, which ef-
fectively improves the accuracy, prevents the gradient from disappearing or exploding, and
accelerates network convergence. The batch normalization operation can be implemented
as a layer in a CNN, as shown in Equation (5).

x̂i =
1
σi
(xi − µi)yi = γx̂i + θ (5)

where x is the input of the layer, i is an index, µ is the mean, σ is the standard deviation, x̂i
is the standard score, and λ and θ are learnable variables.

(4) Activation layer: The activation function introduces a nonlinear factor to the
neuron, meaning that the neural network can approach any nonlinear function arbitrarily,
and thus the neural network can be applied to many nonlinear models. The Rectified Linear
Unit (ReLU) activation function is the most commonly used activation function, due to its
advantages of fast convergence speed, high efficiency, unilateral inhibition, relatively wide
excited boundary, and better sparsity, as shown in Equation (6) [44].

ReLU(x) = max(x, 0) =
{

0, x < 0
x, x ≥ 0

(6)

(5) Pooling layer: the pooling layer in the middle of the continuous convolutional layer
is able to compress data and reduce the number of parameters, thus reducing over-fitting,
and can actually be considered to be a down-sampling operation. The commonly used
pooling operations are max-pooling and average-pooling. Max-pooling can be defined as
the selection of the largest element value from a locally related element set, while average-
pooling is defined as the calculation of the average from a set of locally relevant elements,
and returning it.

Briefly, max-pooling retains texture features, while average-pooling retains the overall
data features. Therefore, max-pooling was selected in order to preserve more background
information of the image and provide strong model robustness in this paper.

(6) Fully connected layer: The fully connection layer connects the features of all
previous layers to form output values and transmits them to the classifier. In addition, it
is actually the convolutional operation where the convolutional kernel size is equal to the
upper feature size.

(7) Classification layer: The classification layer performs the final classification decision,
and its main function is to output the probability that the object belongs to each class. For
binary classification issues, the Sigmoid function is usually employed, as shown in Equation
(7), while for multi-classification problems, the Softmax function is commonly utilized, as
shown in Equation (8).

Sigmoid(t) =
1

(1 + e−t)
(7)
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where t is the output value, and the value range of Sigmoid is (0, 1).

Softmax(pi) =
epi

k
∑

k=1
epk

, i = 1, · · ·, m
(8)

where pi is the output value, k is the number of outputs, and the value range of Softmax
is [0, 1].

In this paper, considering that the research object involves coal, wood, and iron, the
Softmax function will be preferred. However, because the data analysis in the testing
process also studies the dichotomy problem, the two functions need to be used separately.
To realize the comparison of classification results, the Softmax function is selected for the
final training classification.

2.5. Residual Neural Network

Residual Neural Network (ResNet) [45], which is extensively used in image classifica-
tion, was chosen as the model for this experiment based on the scalogram classification of
the feeding materials and the quantity of the feeding material image data.

The remarkable feature of the residual network architecture is the shortcut connection,
as shown in Figure 1. When an input x is given, the CNN weight layers implement a
transformation function on this input, depicted by F(x). In the residual blocks, the original
input is added to this transformation using a direct connection from the input, which
bypasses the transformation layers.
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In ResNet, the layers are reformulated as learning residual functions with reference
to the layer inputs, instead of learning unreferenced functions, and the results show that
these residual networks are easier to optimize, and possess improved accuracy as a result
of their considerable increase in depth [45–47]. Therefore, ResNet is widely used in image
classification [48], image recognition [49], fault diagnosis [50], and so on.

2.6. Data Augmentation

When image classification is carried out by deep learning, a large amount of data is of-
ten needed to ensure the accuracy of the training results and to conduct deeper exploration
and research on the classification mechanism. However, the feeding classification of double-
toothed crushers faces the problem of an insufficient amount of data when conducting
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network training due to the low level of intelligence of the crushing equipment, the lower
number of feeding signals obtained, and the lack of standard, unified and generalized
open-source datasets.

One of the most common and effective ways of solving these problems is data aug-
mentation [43]. Especially in cases where the number of training examples is relatively low,
data augmentation can be used to enlarge the datasets to allow more robust training of
large-scale models. Therefore, in the feeding material recognition task, this approach can
be used to generate some new images by flipping, rotation, scaling, and clipping, with the
aim of increasing the amount of data while preventing over-fitting [51].

3. Study Case

The experiment was divided into six parts, including sample preparation, signal acqui-
sition, image transformation, datasets preparation, model development, and classification
effect evaluation, as shown in Figure 2. Firstly, sample preparation involves sample type se-
lection, quantity preparation, and size processing. Secondly, by putting the sample into the
crusher, the sound pressure and vibration signals of different feeding materials are collected
by the multi-sensor system. Thirdly, wavelet transform is applied to the original signals
to produce scalograms, which represent the feeding feature images. Next, to develop the
datasets, the picture of feeding characteristics is pre-processed for image augmentation.
Then, the ResNet-50 model is utilized to establish the crusher feeding classification model,
and the feeding characteristic images are trained and tested. Finally, the classification
performance is analyzed and evaluated by using confusion matrix.
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3.1. Experimental Settings
3.1.1. Sample Preparation

To collect signals during the crushing process of different kinds of materials, coal,
wood and iron were selected as the normal material, interference material and harmful
material, respectively. Furthermore, in this experiment, the coal sample used in this test was
Taixi anthracite, and the wood used was common pine wood cubes. Considering the actual
situation of industrial production with respect to the shape and size of the feeding materials,
the feeding size was not strictly controlled, and this paper only gives an approximate size
for statistical convenience. In this experiment, more attention was paid to the collected
signals. Additionally, we used Q235B carbon steel to weld a hollow cylinder. The size of
this cylinder was controlled not to be bitten, and it was able to bounce up and down slightly
on the broken teeth in order to provide an impulse signal for iron entering the crushing
chamber. Pictures of some materials are shown in Figure 3, and the measured quantity, size
and mechanical properties of the aforementioned materials are shown in Table 2.
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Figure 3. The feeding materials. (a) Taixi coal; (b) pine cube; (c) Q235B hollow cylinder.

For the determination of quantity and size, the approximate size was estimated with
reference to the equipment parameters of the experimental crusher (which will be described
in Section 3.1.2). Considering that the test was divided into single particle crushing and
mixed crushing, and the number of samples required for training was large, we chose
500 groups of coal and wood. The mean and standard deviation of the validation validation
accuracy for different sample sizes after 20 pre-tests are shown in Table 3. Model classi-
fication performance was best when the data size was 500. According to the mechanical
properties of coal, wood, and iron, it can be found that coal and wood are more similar to
each other than to iron, while in terms of tensile strength and modulus of elasticity, iron is
not on the same order of magnitude as the other two materials.

Table 2. Physical and mechanical parameters of the feeding materials.

Sample Taixi Coal Pine Q235B

Quantity 500 500 1
Size/mm 45~55 50 × 50 × 50 Φ 200 × 250 × 10

Density/g·cm−3 1.450 0.519 7.830
Tensile Strength/MPa 0. 953 102.8 (parallel to grain) 375~500

Elastic Modulus/MPa 3.40
16.30 (x)

2100.57 (y)
1.10 (z)

Poisson Ratio 0.201
0.570 (xy)

0.2740.310 (yz)
0.420 (xz)
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Table 3. The effect of training data size on the model performance.

Data Size Mean Validation Accuracy Standard Deviation

100 73.89% 2.6411
200 81.28% 2.1089
300 83.00% 1.4856
400 82.56% 0.8589
500 84.24% 0.5925
600 81.19% 0.9979

3.1.2. Test Device and Data Acquisition

The layout of the test system is shown in Figure 4, and includes three parts: the
execution system, the acquisition system, and the processing system. The execution system
includes a motor (1), a crushing gear roller (2), feeding materials (3), and other crusher
components. The acquisition system is composed of the multi-sensor system and the data
acquisition instrument (4), (5) and (6). The processing system includes the supporting
software of the data acquisition instrument in the computer and the signal processing and
analysis system for recognizing the feeding materials.
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As shown in Figure 5, the main structure of the execution system is a ZKB-II shear
crusher [52]. The motor current frequency is 30 Hz, and the motor speed is 864 r/min. In
addition, the reduction ratio of the reducer is 71. The basic technical parameters of the
machine are presented in Table 4. The crushing materials for the test are single particles of
coal, wood, and iron, respectively placed in the same position of the crusher in order to
reduce interference from irrelevant variables.
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Table 4. The basic technical parameters of the ZKB-II shear crusher [52].

Technical Parameters Value

Feed Size/mm 300 × 200 × 3
Product Particle Size/mm 20 × 20
Boundary Dimension/mm 1366 × 466 × 485

Operating Weight/kg 320
Maximum Current/a 6.8

Power/kw 3
Supply Voltage/v 380

Input Speed/r·min−1 1420

So that the sample value would fully display the waveform variation law, a higher
sampling frequency was necessary. The sampling frequency selected for this test was
10,240 Hz. A YSV 5000 IEPE sound pressure sensor with a sensitivity of 40 mV/Pa and a
frequency response range of 20 Hz–20,000 Hz was selected to measure sound pressure. The
sound pressure sensor was installed at the axial center line of the two crushing rollers, in
order to avoid noise sources (such as motor, coupling, etc.) to the greatest extent possible.
In addition, by means of voltage changes on the electret membrane in the sensor, the
sound information of the feeding material during the working process is transmitted to the
acquisition instrument. We selected two YA19T IEPE acceleration sensors with a sensitivity
of 100 mV/g and a range of 50 g, and these were installed on the bearing seats at both ends
of the crusher to guarantee the accuracy of the monitoring data. These sensors formed
a multi-sensor system for monitoring and collecting sound and vibration signals during
the feeding process of crushing. In addition, the YSV 8008 signal acquisition analyzer
collected these signals to be stored in the computer. The system described above is the
signal acquisition system.

3.1.3. Image Transformation

Due to the sample input requirements of CNNs, the collected data need to be trans-
formed from one-dimensional signals into multidimensional images. The processing system
was based on Python, which pre-processes the collected signals obtained from the crusher
with different feeding materials by means of spectral subtraction, as shown in Figure 6, and
subsequently carries out feature extraction of the denoising signals. In order to generate
an image of the material that includes both sound and vibration signal characteristics, the
commonly used method is to perform wavelet transform on the original signals.
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Figure 6. Enhanced signals of (a) coal, (b) wood, and (c) iron.

In this paper, CWT was used to convert multidimensional signals, because it can be
used to analyze transient behavior and describe the rapidly changing frequency character-
istics, which are similar to those of the actual situation in industrial production. Specifically,
the filter bank employs the analytic Morse (3,60) wavelet [53,54], which is intended for sig-
nals consisting of 10,240 samples. Furthermore, the size of the highest-frequency passband
was set to be half of the peak value at the Nyquist frequency. The image transformation
results from the sensor signals are shown in Figure 7.
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(c) vibration signal 2.

By means of the above signal processing, the feature images and labels of three types
of materials were obtained to be imported into the CNN for training and learning.

3.1.4. Dataset Preparation

After image transformation and data augmentation, a total of 560 coal images, 570 iron
images, and 410 wood images were collected. In this experiment, data augmentation was
only used in the image training set. In addition, the quantities of the training set, the
validation set, and the test set were in the ratio 7:2:1.
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Firstly, on the basis of what can be heard, the sound of coal feeding is relatively stable
and low, while wood will produce a splitting sound in the process of crushing, and the
sound of iron collision is loud and clear.

Secondly, as shown in Figure 6, the 1 s no-load signal was selected for spectral subtrac-
tion of the original signal, and the continuous signal was split into small segments with
a time length of 1 s (considering the reaction time for monitoring the feeding material in
production). The results show that in the time domain, the coal and wood amplitudes were
close to 400, which is much larger than the amplitude of iron. On the basis of the waveform
analysis, it can be observed that the iron signal has a certain periodicity, while the coal is
more continuous, and the wood has an obvious spike.

According to Figures 7 and 8, the scalogram of coal presents the shape of continuous
small spikes, and the energy distribution extends over time, with most being in the range
100–1000 Hz, and the maximum energy can reach 0.16. Compared with coal, the scalogram
of wood, with a similar frequency, is not continuous in time, and is in the shape of a
bigger spike, which can be considered to be influenced by the differences in the physical
and mechanical properties of wood in the horizontal and vertical directions. Under the
same experimental conditions, the iron scalogram image is more obvious, forming a bright
vertical strip and having high energy in the short time frequency distribution, because the
collision between the iron and the crushing tooth within a very short time occurs at high
frequency and generates a lot of energy, which can reach up to 0.35.

 Minerals 2022, 12, x FOR PEER REVIEW  15 of 25 
 

 

Secondly, as shown in Figure 6, the 1 s no‐load signal was selected for spectral sub‐

traction of  the original signal, and  the continuous signal was split  into small segments 

with a time length of 1 s (considering the reaction time for monitoring the feeding material 

in production). The results show that in the time domain, the coal and wood amplitudes 

were close to 400, which is much larger than the amplitude of iron. On the basis of the 

waveform analysis, it can be observed that the iron signal has a certain periodicity, while 

the coal is more continuous, and the wood has an obvious spike.  

According to Figure 7 and Figure 8, the scalogram of coal presents the shape of con‐

tinuous small spikes, and the energy distribution extends over time, with most being in 

the range 100‐1000 Hz, and the maximum energy can reach 0.16. Compared with coal, the 

scalogram of wood, with a similar frequency, is not continuous in time, and is in the shape 

of a bigger spike, which can be considered to be influenced by the differences in the phys‐

ical and mechanical properties of wood in the horizontal and vertical directions. Under 

the same experimental conditions, the iron scalogram image is more obvious, forming a 

bright vertical strip and having high energy in the short time frequency distribution, be‐

cause the collision between the iron and the crushing tooth within a very short time occurs 

at high frequency and generates a lot of energy, which can reach up to 0.35.  

   

   

 
(a) 

   

   
Figure 8. Cont.



Minerals 2022, 12, 380 15 of 24 Minerals 2022, 12, x FOR PEER REVIEW  16 of 25 
 

 

 
(b) 

   

   

(c) 

Figure 8. The typical feature images of (a) coal, (b) wood, and (c) iron. 

In summary, the feature pictures are able to reveal certain differences (e.g., time, fre‐

quency,  energy, and waveform),  thus providing  the basis  for  image  classification and 

recognition of feeding materials for crushers during subsequent operation. 

Figure 8. The typical feature images of (a) coal, (b) wood, and (c) iron.

In summary, the feature pictures are able to reveal certain differences (e.g., time,
frequency, energy, and waveform), thus providing the basis for image classification and
recognition of feeding materials for crushers during subsequent operation.
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3.2. Model Development
3.2.1. Model Building

For the feeding material image classification task, we built a 50-layer CNN model that
was a variant variants of ResNet-50 [45,46]. It has 48 convolutional layers along with 1 max
pool and 1 average pool layer.

This model is divided into 5 stages, as shown in Figure 9. The first stage has a relatively
simple structure and can be regarded as the pre-processing of inputs. In addition, the last
four stages are composed of bottlenecks and have similar structures.

Firstly, this model requires feature images that have a height, width, and channel
of 224, 224 and 3, respectively. After a 3 × 3 zero padding, the results are entered into
the pre-processing layer. In this layer, feature images are successively passed through the
convolutional layer, the BN layer, the ReLU activation function, and the max pooling layer
to obtain an output of 56 × 56 × 64. To be specific, the 2-D convolutional has 64 filters with
dimensions of 7× 7 and a convolutional kernel stride of 2. Additionally, the BN layer refers
to batch normalization and max pooling using a 3 × 3 window and a 2 × 2 stride. In Layer
1, the convolutional block uses three sets of filters, and the numbers of 1 × 1, 3 × 3 and
1 × 1 filters are 64, 64 and 256, respectively. The two identity blocks also use three sets of
filters, and the numbers of 1 × 1, 3 × 3 and 1 × 1 filters are 64, 64 and 256, respectively. In
addition, Layers 2, 3 and 4 have the same structural principles as layer 1, and thus will not
be described in detail in this paper, and the output size of layer 4 is 7 × 7 × 2080. Finally,
2-D average pooling is used to process the input features with window dimensions of
2 × 2, and through the fully connected layer and the Softmax layer, the input samples are
classified and output.

In this experiment, the described models were developed, trained, and tested indi-
vidually for the classifications of coal–iron–wood, coal–iron, and coal–wood, with model
parameters as shown in Table 5.

Table 5. Model Operation parameters.

Model Input
Pooling

Layer Active
Function

Fully
Connected

Layer Active
Function

Parameter FLOPs

224 × 224 ReLU sigmoid 25.5 × 106 4.1 × 109
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3.2.2. Implementation Setting Details

The model training environment and preset hyperparameters are shown in Table 6.

Table 6. Training hyperparameters.

Parameter Name Selected Value

Optimization

Optimization name SGDM
Learning rate 1 × 10–3

Momentum 0.9
Loss function Cross entropy loss

Fitting Batch size 32
Epochs 30

Environment
GPU NVIDIA GeForce RTX 2060

Platform Python 3.8

The models used in this experiment were built based on Python 3.8 using Pytorch
1.10.0 toolbox. The Stochastic Gradient Descent Momentum (SGDM) optimizer was used
in the model; the learning rate was 1 × 10–3; the momentum was 0.9, and the loss function
was cross-entropy loss. During training, the batch size was 32, and the number of epochs
was 30. Additionally, the model was trained in NVIDIA GeForce RTX 2060 and CUDA 10.2,
cudnn 8.0.2 environments.

3.3. Result Analysis
3.3.1. Model Evaluation

The accuracy and loss value of the CNN models for the feed feature images of different
classification modes are shown in Table 7, presented as the mean and standard deviation
(SD) of 20 training results.

Table 7. Accuracy and loss of CNN models.

Feed
Materials Train Loss SD Train

Accuracy SD Valid Loss SD Valid
Accuracy SD

Coal, Wood
& Iron 0.2271 0.0784 89.38% 5.4486 0.5925 0.0476 84.24% 0.6107

Coal & Iron 0.0002 0.0003 100% 0 0.2262 0.0337 93.78% 0.4464
Coal & Wood 0.2619 0.0816 84.69% 5.1254 0.5380 0.0630 80.07% 0.9597

For the classification of coal, iron and wood, the model achieved a classification
accuracy of 84.24%, which is not a very desirable training result. As a consequence, the
classification of coal–iron and coal–wood needs to be further studied. According to the
processing results, the model of coal–iron classification achieved an excellent classification
accuracy of 93.78%. However, the model of coal–wood classification only achieved a
classification accuracy of 80.07%, which was due to the lack of significant features for coal.

On the basis of previous studies in the literature [22], combined with the results of
this experiment, it was assumed that this classification result was due to the fact that
coal and wood are brittle materials compared to iron and are more easily destroyed in
the crushing chamber; hence, the instantaneous crushing energy is more concentrated,
whereas iron cannot be easily bitten into and only bounces periodically on the crushing
teeth, which makes its characteristics more distinct than those of the other two incoming
materials. In particular, as the physical and mechanical properties of coal and wood are
more similar to each other, they could not be easily distinguished by means of a single
feature, and additional classification features and sample sizes are required to further
improve classification accuracy.
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In summary, the classification performance of coal–iron was excellent, and was able to
meet the production needs of crushers to monitor and minimize the presence of harmful
iron, while the classification of coal, iron and wood was not very satisfactory due to the
closer feeding characteristics of coal and wood, thus necessitating further exploration in
future studies.

3.3.2. Confusion Matrix

The confusion matrix [55,56] was introduced as the evaluation index to more intuitively
represent the classification of coal–iron, coal–wood, and coal–wood–iron in the CNN model,
as well as to assess the misjudgment rate and the factors of misjudgment.

The confusion matrices of feeding datasets with different classified objects are shown
in Figure 10, and the evaluation index of confusion matrix is shown in Table 8.
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Table 8. Evaluation index of confusion matrix.

Materials Accuracy Precision Sensitivity Specificity F1-Score

Coal-Iron-Wood

Coal
84.0%

75.1% 86.3% 83.7% 80.3%
Iron 98.1% 88.3% 99.0% 92.9%

Wood 80.0% 74.8% 93.2% 77.3%

Coal-Iron

Coal
93.5%

88.8% 99.4% 87.7% 93.8%
Iron 99.3% 87.7% 99.4% 93.1%

Coal-Wood

Coal
80.1%

81.3% 85.1% 73.2% 83.2%
Wood 78.3% 73.2% 85.1% 75.7%

In Table 8, the accuracy is the proportion of all samples with correct predictions.
Precision is the proportion of all outcomes predicted by the model as COAL, IRON or
WOOD that were correct. Sensitivity is the proportion of all samples of COAL, IRON or
WOOD that were correctly predicted by the model. Specificity is the proportion of all
samples that were not COAL, IRON or WOOD that were correctly predicted by the model.
In addition, F1-Score is defined as the harmonic average of precision and recall.

Firstly, the results show that the accuracy of the coal–iron–wood classification model
was 84.0%. In terms of precision, the values of 75.1%, 98.1% and 80.0% for coal, iron and
wood, respectively, indicate that the model predicted iron correctly at a higher rate. The
sensitivity of coal, iron and wood was 86.3%, 88.3% and 74.8%, respectively, which shows
that coal and iron were more easily detected compared to wood. Considering that the
objective of the test was to remove harmful iron from the feed, further observation of the
iron specificity and F1-Score suggests that the former indicates that the prediction accuracy
for materials other than iron can reach up to 99.0%, while the latter indicates that the model
has excellent classification performance for iron (the closer the indicator is to 100%, the
better the classification performance).

Secondly, when the classification focus is placed on coal–iron, it can be found that the
accuracy of the classification model can reach up to 93.5%, while the other four indicators
were significantly improved compared with the first classification group, where it can
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be seen that the performance of the model was able to meet the needs of monitoring
and discriminating iron in industrial production when only coal–iron was classified and
identified. The reason the accuracy of the first group classification model was not high
enough is most likely due to the mixing of wood, which leads to the low accuracy of coal
and wood classification, and thus affects the overall performance index. In this paper, an
attempt was made to test this hypothesis on the basis of coal–wood classification.

Finally, by comparing the coal–wood classification results, it can be concluded that the
accuracy of coal–wood classification was not too high, at only 80.1%. This is because the
material properties of coal and wood are relatively close to those of iron, and they can be
easily broken in the crushing cavity, producing obvious sound and vibration signals, thus
leading to the differentiability of the data signals collected during the test not being very
high. In addition, the single selection of judging indicators and the lack of data volume may
also be a reason for this observation. However, considering the small influence of wood
entering the crusher, this was not further explored in this paper, and wood was only used
as a disturbance term in coal–iron classification in order to test the accuracy and sensitivity
of iron identification; a more in-depth study of this aspect will be conducted in future.

In summary, with the feature images and models selected in this paper, both in the
classification of coal–iron–wood and in the classification of coal–iron, the classification
accuracy of iron was very high, and was able to meet the realistic demands of monitoring
and recognizing iron in the crushing chamber of crushers during industrial production,
while the classification performance of coal and wood was not outstanding due to the
similarity material properties, thus requiring further exploration and research in the future.

4. Conclusions

To exert its advantages and potential, image classification technology based on deep
learning was applied to the field of mineral processing machinery in order to solve the
problem of crushing equipment feed classification and to establish a system for status
monitoring and fault diagnosis in crushing machine operation. In this paper, a CNN
model was used to classify and judge different types of crushing feed material. First, the
physical and crushing characteristics of different feed materials were investigated, and
coal, iron, and wood were used as research objects. Secondly, the sound and vibration
state signals of the crusher during the crushing of feed materials was obtained using signal
acquisition equipment and processed by spectral subtraction and image transformation.
Thirdly, different classification models were built for the three materials with the help of
the ResNet of the CNN model to achieve the purpose of identifying the iron entering the
crushing chamber. Finally, the classification model performance was evaluated using a
confusion matrix to analyze the variability and the reason for the existence of different
feeding feature images.

The detailed conclusions are as follows:

(1) Referring to Resnet-50, the image classification model based on deep learning estab-
lished in this experiment has good classification performance for typical crushing
equipment feeding materials of. However, when wood was present in the classifica-
tion object, the similarity between coal and wood led to a decrease in accuracy. The
accuracies of coal–iron–wood classification, coal–iron classification and coal–wood
classification obtained in this paper were 84.0%, 93.5% and 80.1%, respectively.

(2) A comparative analysis of the three classification cases revealed that iron had higher
precision, sensitivity, specificity, and F1-Score in the confusion matrix, indicating that
the feeding characteristics of iron were more obvious than those of the other materials.
In addition, coal–wood classification accuracy was lower, considering that due to
their having similar mechanical properties and physical characteristics, and the fact
that both are more likely to be crushed and generate large amounts of energy at the
moment of crushing, these characteristics cannot be easily distinguished by a single
indicator alone. The reason that this affects the accuracy of the three classifications
lies in the fact that coal and wood cannot be easily separated.
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(3) To improve the accuracy of coal–wood classification, in-depth research based on
increasing the number of feature indicators and the volume of data is needed in the
future. Considering production demand, the accuracy of the current classification
model is able to fully satisfy the purpose of excluding harmful iron from the crushing
chamber and provide technical core support for the design of a system for crusher
operating status monitoring and fault diagnosis. In the future, deep learning can be
further combined with mineral engineering to try to explore the problems of mineral
processing and machinery from a new perspective.

As the feeding identification of crushers is at a preliminary stage of exploration, there
are still many limitations in current research. Firstly, the training data are not sufficient,
and the training model can be further improved. Secondly, research on classification
mechanisms needs further testing. In addition, the classification features of coal will be the
focus of future study. In addition, an industrial test is required to verify the generalization
of the model. In the future, we will carry out a study to build an intelligent communication
and fault diagnosis system for mining machines, improving work efficiency and ensuring
the safety of the production process.
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