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Abstract: Fault systems are characteristically one of the main factors controlling massive sulfide
mineralization. The main objective of this study was to investigate the relationship between fault
systems and host lithology with massive sulfide copper mineralization in the Sahlabad area, South
Khorasan province, east of Iran. Subsequently, the rose diagram analysis, Fry analysis, lineament
factor (LF) map analysis and multifractal technique were implemented for geological and geophysical
data. Airborne geophysical analysis (aeromagnetometric data) was executed to determine the
presence of intrusive and extrusive masses associated with structural systems. Accordingly, the
relationship between the formation boundaries and the fault system was understood. Results indicate
that the NW-SE fault systems are controlling the lithology of the host rock for copper mineralization in
the Sahlabad area. Hence, the NW-SE fault systems are consistent with the main trend of lithological
units related to massive sulfide copper mineralization in the area. Additionally, the distance of copper
deposits, mines and indices in the Sahlabad area with fault systems was calculated and interpreted.
Fieldwork results confirm that the NW-SE fault systems are entirely matched with several massive
sulfide copper mineralizations in the area. This study demonstrates that the fusion of lineament factor
(LF) map analysis and multifractal technique is a valuable and inexpensive approach for exploring
massive sulfide mineralization in metallogenic provinces.

Keywords: fault system analysis; massive sulfide copper exploration; airborne geophysical analysis;
Fry analysis; multifractal technique

1. Introduction

The spatial distribution of mineral reserves is controlled by various parameters [1,2].
The most important controllers of ore mineralization distribution at regional scale are
host-rock lithology, intrusive or extrusive masses and structural systems [3,4]. Therefore, to
identify areas of mineral potential, determining the relationship between mineralization
and structural features is of great importance [5–7]. Numerous studies analyzed the rela-
tionship between structural features controlling mineralization and the spatial distribution
of mineral resources [7–11]. The purpose of these studies was to extract exploratory keys to
identify new high-potential areas [8]. The relationship between structural features such as
the fault system and ore mineralization has been identified through various methods such
as fractal analysis, fault density mapping and combining this information with geochemical
layers and remote sensing data [9–13]. In the regions where field information has not
been collected, remote sensing surveys are used to identify lineaments such as faults and
fractures [13–15]. Simultaneous use of aeromagnetic data analysis with remote sensing data
helps to generate an accurate structural map [16–20]. In the case of structural field data col-
lected and mapped by geologists, the analysis of behavior and impact of structural systems,
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especially major faults in the spatial distribution of mineralization, could be performed
using analytical methods such as fault density mapping and the analytic hierarchy process
(AHP) decision method in combination with other information layers [21]. Multifractal
analysis, rose diagram analysis and Fry analysis were used in fault interpretation and
determining the relationship between mineralization and the fault system [22–26].

Massive sulfide mineralization is typically associated with regional fault systems,
which are documented in many regions such as the Main Urals Fault (MUF), South Urals,
the Selwyn Basin, Canada and the North Australian Craton [27–29]. The Sahlabad area
located in South Khorasan province, east of Iran, has a large number of copper mines,
deposits and indices (Figure 1A). Mesgaran ore deposit is one of the biggest copper mineral-
izations (Cyprus-type massive sulfide) in the study area, in which the regional fault system
acts as a controlling structural factor for copper mineralization [30–32]. According to the
volume, extent and trend of their distribution in the region, to identify the mineralization
potentials of copper in this area, structural controlling factors and their relationship with
mineralization zones need to be determined.

In the present study, in order to analyze the relationship between the fault system
and massive sulfide copper mineralization in the Sahlabad area, rose diagram analysis,
Fry analysis, multifractal technique and lineament factor (LF) map were implemented. To
investigate the host-rock lithological trend, aeromagnetic data analysis was also used. Thus,
the main faults controlling the host lithology trend and playing a key role to determine the
spatial distribution of mineralization were identified. Finally, fractal analysis was used to
extract more detailed characteristics of the relationship between the fault system and the
mineralization distribution in the area. Consequently, high-potential areas were categorized
in terms of control by the fault system and the relationship of each mineralization point
with the map of the nearest community of high-intensity LFs. This approach provides
innovative and valuable information about the fault systems controlling massive sulfide
copper mineralization in the study area. The main objectives of this investigation were:
(1) to provide a rose diagram analysis for fault systems in the region including major
faults, minor faults, inferred faults, thrust faults; (2) to apply Fry analysis to the spatial
distribution of mineralization points in the region; (3) to perform airborne magnetometric
analysis to identify deep faults controlling the host lithology trend; and (4) to generate a
lineament factor (LF) map and concentration–area (C-A) fractal analysis to classify different
LF communities.

2. Geology of the Study Area

The Sahlabad area is located in the east of Iran and South Khorasan province. It is
positioned between longitudes 59◦30′ E to 60◦ E and latitudes 32◦ to 32◦30′ N (Figure 1A,B).
The study area is completely located in the flysch belt and ophiolite melange in the Sistan
structural zone of eastern Iran [33]. This structural zone is situated between the Nehbandan
fault (in the west) and Harirod fault (in the east) and is 800 km long and 200 km wide [34,35].
Based on the geological map of Sahlabad, the regional faults of the area are divided into
four categories: major faults, minor faults, inferred faults and thrust faults. This zone
has undergone evolutionary stages from oceanic to continental crust and is one of the
derivations of the “young Tethys” type [35–37]. In this area, igneous, metamorphic and
sedimentary lithological units related to the Late Cretaceous to Neogene are exposed [38].
The Sahlabad area is entirely located in the flysch and colored melange belt of eastern Iran.
The geological formations observed in the area include rocks with the characteristics of this
belt, which are attributed to the Upper Cretaceous and Lower Tertiary, and the volcanic
cover and younger Tertiary sediments [36].
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Figure 1. (A) Geological map of Sahlabad area (scale of 1:100,000) (modified [39]). Abbreviations:
An = Andesite, Ba = Basalt, Co = Conglomerate, Dd = Dacitic dyke, Lm = Limestone, Lv = Listwanite,
Ml = Ophiolite melange, Mt = Metadiabase, Qt = Quaternary sediments, Tu = Tuff, Ub = Ultrabasic
rocks, Sch = Schist, Sh = Shale and sandstone. (B) Geographical location of Sistan structural zone
in Iran.

2.1. Regional Tectonics

The Sahlabad area belongs to the ophiolitic melanges and flysch belts of eastern Iran
and is located in the Lut structural block. The main trend of the belt is north-south, which
gradually changes to the southeast-northwest. The intense folding of the flysch deposits
and the irregular structure of the melange complexes indicate high compaction in the
area [40]. The most severe crustal deformation has occurred at the southwestern tip of
the region, where a narrow zone of thrust and metamorphosis (metamorphic ophiolitic
melanges) indicates the close connection of the flysch and ophiolitic melanges belt to the
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Lut structural block. Folding and crushing, along with tilting, which results in a random
mixing of different types of rock, characterize the ophiolitic melange complexes of the
region [41]. Narrow and intense folding and longitudinal faulting with post-Middle Eocene
(Oligocene) age have affected the volcanic and sedimentary formations of the Paleogene.
The Cretaceous-era Zar-Kooh mountain flysches are trusted on the Eocene sediments of
Bezo Mountain in a southwesterly direction [37,38]. The uniform tectonical motions create
a system of parallel mountain ranges and the depressions between them that characterize
the current topography. Neogene deposition in the depressions has led to moderate folding
and minor faults [33,36]. Andesites and basalts, as representative of the youngest volcanic
rocks (Neogene, probably Early Quaternary), show soft tilt (with a slope of about 20◦) in
the lower units and with a semi-real position in the higher units [34,35].

2.2. Copper Mineralization in the Study Area

Due to the diversity of lithology consisting of ultrabasic, alkaline-based volcanic,
intermediate and acidic rock units, metamorphic rocks, listwanites and other rock units in
the Sahlabad area, there are mineralization potentials for copper, gold, nickel, chromium
and magnesite. Old mining activity and excavations have been reported in the study area.
Copper mineralization in the study region (mines, deposits and indices) was investigated
and classified from various reports obtained from exploratory studies in the Sahlabad
area, such as geological map reports, economic geology reports, preliminary and detailed
exploration reports of mineral areas, etc., [39,42–46]. The location of copper mines, deposits
and indices in the Sahlabad area are marked on the geology map (Figure 1A). Copper min-
eralizations such as malachite, chalcopyrite and chalcocite were observed and documented
in the study area. Figure 2A–F show polished sections of copper mineralizations selected
from the Mesgaran deposit, Chah-Rasteh deposit and Zahri deposit. Classified information
about 14 copper mineralization zones in the Sahlabad area is presented in Table 1.

Table 1. Classified information of 14 copper mineralization points in Sahlabad area.

Row
Copper

Mineralization
Name

Anomaly Center
Coordinates Anomaly

Area
(Km2)

Alteration Lithology
(Host Rock)

Cu Dominant
MineralLongitude

(E)
Latitude

(N)

1 Mesgaran
Deposit 59◦52′49′′ 32◦18′58′ ′ 8 Phy + Arg + Pp + Chl +

Qtz Ba + Anb Cpy + Mch

2 Chah-Rasteh
Deposit 59◦46′15” 32◦

21′19′′ 4 Phy + Arg + Pp + Chl +
Cab An + Anb Ch + Mch

3 Zahri Deposit 59◦32′52′′ 32◦00′50′′ 2 Phy + Arg + Pp + Hem Ub + Sch Cpy + Ch + Mch

4 Kasrab
Abandoned Mine 59◦ 59′45′′ 32◦21′05′′ 3.8 Phy + Arg + Pp + Sep Ub Mch

5 Cheshme-Zangi
Abandoned Mine 59◦59′08′′ 32◦25′02′′ 2.5 Phy + Arg + Pp +

Silicification
Limestone shale

+ Listwanite Cpy + Mch

6 Shir-Shotor
Indice 59◦53′50′′ 32◦14′28′′ 1 Arg + Pp + Sep An +

Serpentinite (Ub) Mch + Az

7 Dastgerd Indice 59◦43′39′′ 32◦21′03′′ 2 Arg + Pp + Sep + Hem Harzburgite Mch

8 Torshaab Indice 59◦59′56′′ 32◦28′48′′ 5 Phy + Arg + Pp + Hem
+ Lm Sch Mch + Az

9 Chah-Anjir
Indice 59◦53′37′′ 32◦15′44′′ 2 Pp + Sep Serpentinite (Ub) Mch + Az

10 Zargaran Indice 59◦47′09′′ 32◦21′14′′ 1 Phy + Arg + Pp + Lm +
Goe + Hem An + Db Mch + Az

11 West Mesgaran
Indice 59◦52′26′′ 32◦19′36′′ 1.5 Arg + Pp + Hem + Lm Mtd Cpy + Mch + Az

12 Mirsimin Indice 59◦ 54′58′′ 32◦17′53′′ 9 Arg + Pp + Hem Db Cpy + Mch + Az
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Table 1. Cont.

Row
Copper

Mineralization
Name

Anomaly Center
Coordinates Anomaly

Area
(Km2)

Alteration Lithology
(Host Rock)

Cu Dominant
MineralLongitude

(E)
Latitude

(N)

13 Kuharod Indice 59◦50′31′′ 32◦18′01′′ 1 Phy + Arg + Pp + Hem Db Mch

14 Barghan Indice 59◦ 39′38′′ 32◦09′05′′ 2 Arg + Pp + Lm + Geo +
Hem Db + Limestone Mch

Abbreviations: Cpy = Chalcopyrite, Py = Pyrite, Mch = Malachite, Ch = Chalcocite, Az = Azorite, Ba = Basalt,
An = Andesite, Anb = Andesite-Basalt, Ub = Ultrabasic, Sch = Schist, Db = Diabase, Mtd = Metadiabase,
Chl = Chlorite Alteration, Qtz = Quartz Alteration, Cab = Carbonate Alteration, Pp = Propylitic Alteration,
Arg = Argillic Alteration, Phy = Phyllic Alteration, Sep = Serpentine Alteration, Hem = Hematite Alteration,
Lm = Limonite Alteration, Goe = Goethite Alteration.
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Figure 2. Selected polished sections prepared from collected samples of copper mineralizations in
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Malachite and Fe-hydroxide; (C) Chah-Rasteh Deposit: Fracture Filling Malachite; (D) Chah-Rasteh
Deposit: Chalcocite, Fe-hydroxide and Chalcopyrite; (E) Zahri Deposit: Fracture Filling Malachite
and Fe-hydroxide; (F) Zahri Deposit: Chalcopyrite, Malachite and Chalcocite.

3. Materials and Methods
3.1. Geology and Geophysical Data

Geological data, including lithological map of area, structural features (fault system
and lineaments) and location of copper ore deposits, old mines and indices were collected
from the reports of the Geological Survey of Iran (GSI) as well as the Ministry of Industry,
Mines and Trade of Iran [39,42,47]. Network data of 7.5 km of Iranian airborne magnetom-
etry between 1974 and 1976 were commissioned by the Geological Survey of Iran (GSI)
by the American company Aero Service, one of the largest companies active in the field
of airborne geophysics at that time. The distance between the flight lines was 7.5 km, the
fixed flight altitude was 300 m above the ground, and the distance between the vertical flight
control lines was 40 km. The aircraft used to record this data was a twin-engine aircraft with a
cesium vapor magnetometer mounted on it (with sensitivity of 0.002 nT). This data collection
was performed in 62 separate flight blocks and was presented at an acceptable level in terms
of quality [48]. An overview of methodological flowchart is presented in Figure 3.

Minerals 2022, 12, x FOR PEER REVIEW 6 of 19 
 

 

Deposit: Chalcocite, Fe-hydroxide and Chalcopyrite; (E) Zahri Deposit: Fracture Filling Malachite 

and Fe-hydroxide; (F) Zahri Deposit: Chalcopyrite, Malachite and Chalcocite. 

3. Materials and Methods 

3.1. Geology and Geophysical Data 

Geological data, including lithological map of area, structural features (fault system 

and lineaments) and location of copper ore deposits, old mines and indices were collected 

from the reports of the Geological Survey of Iran (GSI) as well as the Ministry of Industry, 

Mines and Trade of Iran [39,42,47]. Network data of 7.5 km of Iranian airborne magne-

tometry between 1974 and 1976 were commissioned by the Geological Survey of Iran (GSI) 

by the American company Aero Service, one of the largest companies active in the field of 

airborne geophysics at that time. The distance between the flight lines was 7.5 km, the 

fixed flight altitude was 300 m above the ground, and the distance between the vertical 

flight control lines was 40 km. The aircraft used to record this data was a twin-engine 

aircraft with a cesium vapor magnetometer mounted on it (with sensitivity of 0.002 nT). 

This data collection was performed in 62 separate flight blocks and was presented at an 

acceptable level in terms of quality [48]. An overview of methodological flowchart is pre-

sented in Figure 3. 

 
Figure 3. An overview of methodological flowchart used in this study.



Minerals 2022, 12, 549 7 of 19

3.2. Rose Diagram Analysis

Rose diagram is a type of circular histogram used to display directional data and the
repetition rate of each category. This diagram is used in structural geology to show the
trend of faults, fractures, lineaments and dykes [49,50]. In this study, rose diagram analysis
was used to investigate the trend of faults in the Sahlabad region, which was subsequently
compared to copper mineralization information as well as the host lithology trend. By
analyzing the trend of faults and lithology, as well as the trend of copper mineralization in
the area, it is possible to find out the effect of controlling faults [51,52].

3.3. Fry Analysis

Fry analysis is a complementary method in structural geological studies, which can
be used to study the distribution of mineralization in a region and its relationship with
linear structures. In other words, the application of Fry analysis method is useful in linear
and directional analysis. This analysis is used to investigate the patterns of mineralization
dispersion at the regional scale and also to describe mineralization zones, such as the
direction of mineralization, for high-grade zones and the distribution of grade at a deposit
scale [53–55]. Spatial distribution of mines, deposits and mineral indices is affected by
factors such as formation environment, host rocks and other mineralization factors as well
as structural controllers such as faults. Considering the importance of information about the
spatial distribution of mineralizations, which is an important factor in regional exploration
and mineral potential detection, in this study, the role of structural controllers in the spatial
distribution of copper mineralization in Sahlabad area was investigated [56–58].

3.4. Airborne Magnetometry Analysis

Airborne magnetic data of Sahlabad region were isolated from these data and were
used after corrections. In this study, gradient tensor method was used to analyze airborne
magnetic data. The purpose of analyzing airborne magnetic data is to identify the po-
sition and trend of intrusive masses and to investigate their relationship with regional
faults. There are various methods for analyzing magnetometric geophysical data, which
use gradient analysis to detect geological lineaments. Some methods use only dx and
dy horizontal gradients or only dz vertical gradients. However, in the gradient tensor
method, horizontal gradients and vertical gradients are used simultaneously (dx, dy and
dz). It provides more accurate and acceptable results in detecting lines on the border of
magnetic anomalies [6,16]. For this purpose, using the gradient tensor method, a map of
the residual magnetic intensity was prepared, and the faults associated with these masses
were investigated.

3.5. Concentration–Area (C-A) Fractal Analysis

Fractal is a geometric structure that is obtained by enlarging each part of this structure
in a certain proportion to the original structure. In other words, a fractal is a structure whose
every part is the same as its whole. Fractals are seen from the same distance and closeness.
This feature is called self-similarity [59,60]. Fractals are one of the most important tools in
computer graphics and can be used in many ways [61,62]. The purpose of concentration–
area fractal analysis is to examine the parameters related to the concentration and the area
occupied by it. An exponential equation is given below for the aggregation of materials or
fractal properties.

A(≥ν) ∝ ν−α (1)

A(≥ν) is the cumulative area enclosed by contours whose corresponding degree is
greater than or equal to ν. The value of α represents dimension of fractal corresponding to
different amplitudes [63,64]. In this study, in order to classify the results of the lineament
factor (LF) map, concentration–area (C–A) fractal analysis was used. The result of this
analysis is the presentation of different groups that have different degrees of importance in
the control of mineralization by faults.
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4. Analysis and Results
4.1. Rose Diagram Analysis

In this study, in order to study the trend of faults in the area, rose diagrams of faults
were generated. Rose diagrams for each type of fault are shown in Figure 4. A rose
diagram of all the faults in the area is shown in Figure 5. The distance between the classes
is 5 degrees; the average direction angle of faults is 129.8◦ (230.2◦) with a confidence
interval of 2.9◦ (95%). Figure 5 shows the frequency percentage of faults in the extended
intervals. Faults are divided into three categories based on frequency percentage: low
frequency, medium and frequent, which are distinguished by blue, yellow and red colors,
respectively. As shown in the diagram, the main direction of the faults in the area is in the
range of 115 to 135 degrees, which can be understood that the main extension of the faults
is northwest-southeast.
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4.2. Fry Analysis

After analyzing the rose diagram of regional faults and detecting the trend of the
fault system in the region, which was identified as northwest-southeast. Fry analysis was
performed to determine the mineralization trend of copper in the Sahlabad region. One
of the main purposes of this study was to compare the trend of the fault system and the
mineralization trend in the area. The locations of 14 mines, ores and mineral indices of
copper in the Sahlabad area were drawn as dots on a separate layer, and then Fry analysis
was performed on it. The result of this analysis is presented in Figure 6.
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Based on Figure 6 as the result of Fry analysis, the mineralization trend of copper in the
Sahlabad area is mostly northwest-southeast. By comparing the result of Fry analysis and
Rose diagram analysis of faults in the Sahlabad area, it is evident that the mineralization
trend in the area conforms to the dominant trend of faults. Therefore, in order to identify
areas with high potential for copper mineralization, the study of faults is of great importance
and is considered as a valuable exploratory key. Considering that the trend of copper
mineralization is coincident with the trend of the Sahlabad fault system, in order to confirm
the control of mineralization by faults, other trends such as host mineralization lithology
and hydrothermal alterations should be examined.

4.3. Lithology Trend Analysis

Using airborne magnetic data of the Sahlabad area, a residual map of the magnetic
intensity was produced. Figure 7 shows the residual magnetic map of the Sahlabad area.
Results show that there is a magnetic dipole with a northwest-southeast trend, which
according to the geological map of the area, is related to basaltic, andesitic, granite and
ophiolite melange units in the area. In this regard, there are effects of serpentinization and
a high probability of alteration effects due to the proximity of carbonate masses with basic
and ultrabasic masses. According to airborne geophysical evidence and the geological map,
there is a possibility of copper mineralization in this area, especially in the central parts of
the area.

In this analysis, the purpose of analyzing airborne magnetic data was to identify
faults that are associated with intrusive masses in the area. In other words, these faults,
in addition to having an older formation time than other faults, also play a major role
in controlling the lithological trend in the area. Using the gradient tensor method and
intensity magnetic field map of the area, geological lineaments related to intrusive masses
were identified. Figure 7 shows the geological lineament obtained from the magnetic
field intensity map of the Sahlabad area. The lineaments identified by this method are in
accordance with the faults in the geological map (see Figure 1). Since the main purpose of
the magnetometric study was to study intrusive masses, the faults shown in Figure 7 are
considered deep faults that have defined the boundary and trend of igneous masses.

The main fault trend, which extends from the northwest to the east of the map,
generally defines the boundary of the ophiolitic melange unit with basaltic, ultrabasic
and andesitic massifs. Expansion and formation of ophiolitic melanges in the Sahlabad
region (northwest-southeast) have occurred in the direction of this fault. Therefore, it can
be considered as the main fault that controls the lithology trend in the area. The faults north
of the map are also located at the boundary of basaltic and andesitic units, and thus the
elongation of these massifs is evident along the faults. Other faults that are shorter than the
others also show control over the extension of intrusive masses in the area. It is noteworthy
that because the faults were identified based on airborne magnetic analysis, the boundary
of the intrusive masses in the area plays an essential role in the final result. Therefore, they
are clearly shown linearly and based on the boundaries of geological units.
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4.4. Lineament Factor (LF) Map Analysis

The lineament factor (LF) map scores various parameters related to faults based on
their degree of importance and finally shows the areas that are important in terms of fault
activity. The parameters used in this study were: (i) frequency of faults, (ii) length of the
faults and (iii) number of fault intersections. Initially, the network of the Sahlabad area
was divided into 100-square-meter cells in order to study the faults and draw an LF map
using the RockWorks software package. The scores of these factors were considered from
top to bottom 1, 2 and 3, respectively [51,65]. The frequency of fault intersections plays
an important role in the formation of magmatic and hydrothermal deposits because these
intersections create a suitable space for mineralization in the bedrock [66]. However, the
length of faults is also an important factor in the formation of hydrothermal deposits and
leads to fluid conduction. The frequency of faults including structures before and after
mineralization is the least important among the mentioned factors [67,68]. The lineament
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factor map is presented in Figure 8. According to the lineament factor map, based on the
above-mentioned scores, the effect of fault control on copper mineralization in the Sahlabad
area is shown. The importance of fault control in copper mineralization, from gray (lowest)
to red (highest), is shown in the LF map. In order to determine the threshold of the impact
of faults on copper mineralization, grouping was performed using fractal methods.
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LF Map Classification by Fractal Modeling

Based on the map presented in Figure 8, the fractal diagram of the concentration–area
(C–A) of the faults was produced. According to the LF values shown in Figure 8, the area
associated with lower LF values to higher LF values was calculated using Surfer software.
Then, based on the concentration–area (C–A) fractal methodology, logarithmic values were
examined and are shown in Figure 9. The C–A fractal diagram is shown in Figure 9. The
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diagram shows the multifractal nature of faults in the Sahlabad area. The results of the
fractal classification of faults are presented in Table 2.
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Figure 9. Concentration–area (C–A) fractal diagram of faults in the Sahlabad area. The trend change
is indicated by colored lines, and each sub-community is marked with the letters A to G, respectively.

Table 2. Range of lineament factor values obtained from the concentration–area (C–A) fractal model
of faults in the Sahlabad area.

Communities Background Medium Intensity High Intensity

Sub-Communities A B G D E F G

LF Threshold Less than 12 12–15 15–22 22–26 26–30 30–41 More than 41

According to Table 2, three communities and seven sub-communities were identified
in terms of the LF concentration of faults in the area. The first community is the background
in which the cell counts in this class are calculated from 12 to 25. The second community
shows the average intensity of the LF concentration of faults in which the range of cell
values is 15 to 30. The third community, which is introduced as the community of a high-
intensity concentration of LFs, includes values above 30. Now, based on the map presented
in Figure 8, the important areas in terms of fault activity can be easily distinguished and
studied. The distance of each of the existing copper mineralizations (mines, ores and
indices) from the regional faults and the LF high-intensity community of the faults is
presented in Table 3.
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Table 3. Copper mineralization distance from regional faults and LF high-intensity community.

Distance from LF High-Intensity
Community (Km)

Distance from Regional Faults
(Km) Copper Mineralization Row

1.9 1.1 Mesgaran Deposit 1
4.1 0.95 Chah-Rasteh Deposit 2

0.45 Coincident Zahri Deposit 3
4.3 Coincident Kasrab Abandoned Mine 4

Coincident Coincident Cheshme-Zangi Abandoned Mine 5
2.79 Coincident Shir-Shotor Indice 6
3.67 1.64 Dastgerd Indice 7
1.8 Coincident Torshaab Indice 8

1.52 0.8 Chah-Anjir Indice 9
3.5 1.49 Zargaran Indice 10

1.34 1.25 West Mesgaran Indice 11
Coincident Coincident Mirsimin Indice 12

1 Coincident Kuharod Indice 13
1.59 Coincident Barghan Indice 14
1.99 0.51 Average Distance (Km)

4.5. Field Evidence

In order to conduct a field check, some points were selected as the target. These
points are typically andesite-basalt and ultrabasic rocks, which are the host rocks of copper
mineralization in the Sahlabad area. Generally, surface exposures of copper mineralization
in the form of malachite and azurite were observed in the faults and fractures associated
with andesitic-basaltic outcrops. An overview of copper mineralization in the faults and
fracture zone is shown in Figure 10A–D. The reason for choosing these points as control
points was the presence of andesite-basalt and ultrabasic rock units and the conformity
of this lithology on one of the parts of the community in the high-intensity LF map (see
Figure 8). Moreover, these zones are in line with the copper mineralization trend (analyzed
by Fry analysis) on a regional scale. As shown in Figure 10, copper oxide mineralization is
widespread in the outcrops of these areas.
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basaltic bedrock. (A–C) Malachite-azurite mineralization in field survey (high-intensity LF); (D) an
overview of fracture zone in field check points.

5. Discussion

The exploration of massive sulfide mineralization involves specific, robust and tailored
exploration techniques, which can be further developed using geology and geophysical
data. Massive sulfide deposits are diligently related to low-angle detachment faults [27,29].
They are typically hosted in various altered ultramafic rocks (tectonic melange) and are
enriched in Au, Ag, Co, Cu, Zn, Ni [28]. Because of their complex tectonic settings,
these deposits are difficult to explore. In this study, using analytical methods such as
the rose diagram, Fry analysis, lineament factor (LF) map, multifractal technique and
aeromagnetic data analysis, the regional trend of faults systems and the trend of massive
sulfide copper mineralization in host rock were investigated in the Sahlabad area, South
Khorasan province, east of Iran. Due to the boundary of lithologies of mineralization
host rock in the Sahlabad area, which can be seen from the residual magnetic field map
and geological map, the fault system has played an important role in orienting the host
lithology.

The concentration–area (C-A) multifractal technique, which was applied on the lin-
eament factor (LF) map, divided the fault lineament factor community into seven sub-
communities. In order to simplify the results, these sub-communities were divided into
three general communities, which are background, medium intensity and high intensity.
Then, in order to investigate the relationship between copper occurrences (deposits, mines
and indices) with the fault system, the distances of these anomalies to the LF high-intensity
community of faults were measured. According to Table 3, about 60% of these anomalies
are coincident with the fault system, and on average, all copper occurrences in the Sahlabad
area are within 500 m of regional faults and 2 km from the LF high-intensity community.
The main development of the present study, compared to previous studies, is the fusion
of airborne (aeromagnetic) geophysical data with the regional fault system information
derived from geological data. It is worth mentioning that before this research, no study had
been conducted on the relationship between the fault system and copper mineralization in
the Sahlabad area. The NW-SE fault systems are, along with the main trend of lithological
units, related to massive sulfide copper mineralization in the area. Field evidence estab-
lished that the NW-SE fault systems are matched with a number of massive sulfide copper
mineralizations.

6. Conclusions

In this study, the relationship between the fault system and copper mineralization in
the Sahlabad area, South Khorasan province, east of Iran, was identified. The lineament
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factor (LF) map was generated, and multifractal analysis was implemented. The main
achievements of this research are:

• In general, the trend of faults at the regional scale is northwest-southeast, which is
consistent with the trend of lithology units related to mineralization.

• Based on the classified information related to faults in mines, deposits and copper
indices of the Sahlabad area, it is observed that in most cases, mineralization has taken
place at the fault systems that have a trend perpendicular to the faults in the area.

• Studies on airborne magnetometric data indicate that the faults identified by this
method are faults associated with intrusive masses, and thus the faults control the
lithology trend in the area.

• Overall, it can be said that the faults in the area control the bedrock lithology and the
source of massive sulfide copper mineralization in the region, while the regional faults
(on a mining scale) in mines, deposits and indices control the mineralization in the
region.

The distance of copper mineralization in the Sahlabad area from regional faults and
also from the community of high-intensity lineament factors (LFs) is on average 500 m and
2 km, respectively. It is noteworthy that a number of mineralizations correspond exactly to
the regional faults as well as the high-intensity linear factor community.

In conclusion, the approach developed in this study is a valuable and inexpensive tool
for exploring massive sulfide mineralization in metallogenic provinces.
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