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Abstract: This study takes the Dongguashan Copper Mine as its engineering background. Based on
the mechanical model of the mine wall under the trapezoidal load of the backfill, a comprehensive
evaluation index is proposed, and its calculation equation is derived. On this basis, an orthogonal test
is designed to explore the influence of mining design parameters on mine wall stability. The results
show that the width of the mine wall is the main factor affecting its stability, and increasing the width
of the mine wall can significantly improve its stability. When the width of the mine wall is kept above
4 m, its stability is better. When the mechanical parameters of the backfill are poor, the mine wall is
prone to overturning failure. The width of the mine room has an influence on the multi-directional
loading of the mine wall, but the influence on the stability of the mine wall is low. According to
the regression equation calculation, the mine wall safety factor is about 1.46 under the design of G5
mining of Dongguashan Line 52, the stability of the mine wall is good after actual mining and the
engineering application effect is ideal, which can provide a theoretical basis for the design of isolation
pillar mining in deep mines.

Keywords: mine wall stability; Platts arch; safety factor; orthogonal experiment; regression analysis

1. Introduction

With the continuous development and utilization of resources, the mining of mineral
resources has developed towards a deeper level and a larger span, and deep mining has
become the mainstream trend in mining [1–6]. As a mining method, fill mining can make
full use of tailings resources and control the deformation of surrounding rock effectively,
and it is widely used in deep mining [7,8]. After the goaf is filled, the backfill body can
support the rock formation and control the stope pressure activities. In order to improve
the utilization rate of mineral resources, the ore pillars in the stope often need to be mined
after the goaf is filled. During the mining of the ore pillar, in order to ensure the stability
of the backfill and the goaf, mine walls are often left on both sides of the pillar. The wall
can improve the stability of the backfill and play a temporary supporting role to avoid the
collapse of the backfill and the falling of the roof during the mining of the pillar, which
increase dilution losses from mining techniques. Therefore, it is of great significance to
carry out research on the stability of the mine wall and optimize the structural parameters
of the mine wall, which is of great significance to reduce the loss of mine wall ore volume
and ensure the safety of mining pillar.

At present, many scholars have achieved a lot of research results through theoretical
calculation, reliability analysis and numerical simulation [9–13]. Elasticity theory, thin plate
theory and catastrophe theory have been widely used in the study of mine wall stability.
Wei [14] improved the limit equilibrium method by applying the stress area superposition
method, in which the stress distribution of the elastic area and the inelastic area of the
pillar was obtained and the stability of the pillar in the strip-mining process was analyzed.
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Huang [15] established a mechanical model of mine wall bending failure; the critical
bending stress of the mine wall was calculated by the energy method and the stability
changes in its size were obtained and the correctness of the theoretical analysis was verified
by numerical simulation. Xu [16] proposed the concept of stripping degree and established
a corresponding secondary stripping model to analyze the stability of hyperbolic coal
pillars. He considered the critical condition of pillar instability under the influence of coal
pillars and high temperatures. Based on the instability theory and cusp catastrophe model,
Wang [17] deduced the roof deflection curve under the condition of the unequal span of
adjacent stopes, and then the pillar instability condition under the condition of asymmetric
mining was determined. Based on reliability analysis, Idris [18] introduced the method of
using an artificial neural network in pillar stability research. The pillar reliability index and
failure probability were calculated, and he analyzed the influence of variation coefficient on
pillar stability and determined it according to the minimum acceptable risk of pillar failure.
The optimal pillar size was determined. Liu [19] studied the failure mechanism of the pillar
group by using the method of the renormalization group, and the safety factor of the pillar
system was obtained. The safety of the pillar group scheme was analyzed with the fuzzy
comprehensive evaluation theory, and the pillar structure design in seabed mining was
optimized. Ding [20] used the Stochastic Gradient Boosting (SGB) model to analyze pillar
stability and established an evaluation index system based on five factors: pillar width,
pillar height, pillar aspect ratio, rock uniaxial compressive strength and pillar stress. The
parameter sensitivity was studied based on the relative variable importance, and the main
variables affecting the pillar stability were obtained. With the development of computers,
numerical simulation has also become an important means of research on pillar stability.
Zhang [21] studied the relationship between various factors in multi-coal strip mining
and the vertical displacement of the pillar based on FLAC numerical simulation software.
Zhang [22] used the layered cover model for pillar design and stability analysis, eliminating
the influence of boundary effects on the analysis results, and determined the main factors
affecting pillar stability. Yang [23] combined the experimental data and the research method
of numerical simulation, studied the pillar size of the Zhaozhuang Coal Mine in Shanxi
Province, and proposed differentiated support technology, which improved the bearing
strength of the pillar and effectively reduced the deformation of the surrounding rock.

In general, there are many research methods for mine wall stability analysis, and
research results have also been obtained. Among them, reliability analysis can compre-
hensively consider the influence of various factors on the stability of the mine wall, and
it is widely used in engineering. However, the current stability and reliability analysis
of the mine wall is mostly related to unidirectional vertical load; the main consideration
is the yield failure form of the mine wall, ignoring the influence of backfill on mine wall
stability [24,25]. Furthermore, the backfill method is mostly used for mining in deep mines.
As well as the yield failure of the overlying surrounding rock, overturning failure may also
occur under the lateral load of the backfill, so existing research results are not suitable for
the mine wall design of the backfill stope. Therefore, taking the Dongguashan Copper Mine
as an example, this study analyzes the backfill-wall bearing mechanism after the isolated
pillar is mined. The expression of the safety factor of the mine wall under the action of
overlying strata and backfill is deduced, and orthogonal experiments are designed to study
the influence of different parameters on the stability of the mine wall. The equation for cal-
culating the comprehensive safety factor of the mine wall is obtained. The research results
are expected to provide a reference for the design of isolated pillar mining in deep mines.

2. Project Overview

The Dongguashan Copper Mine is located in Tongling, Anhui Province. It is a typical
deep deposit with a burial depth of −690 to −1000 m, a main ore body of 1810 m in
length, 500 m in width and an average thickness of 20 to 50 m. The main ore body of
the Dongguashan Copper Mine strikes NE35−40◦, the average dip angle is 20◦, and the
maximum dip angle is located on the two sides of the ore body, about 30–40◦. The middle
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part of the ore body is relatively gentle, and the lateral angle is less than 15◦. The ore-
bearing rock mass is mainly copper-bearing skarn and copper-bearing magnetite. The
roof-surrounding rock has good properties; the surrounding rock is mainly composed of
marble, and the floor surrounding rock is mainly composed of siltstone and diorite.

Due to the deep burial of the ore deposit and the high stress state of the surrounding
rock, the mining period of the ore rock is long and the mining is difficult. In order to achieve
the goals of efficient, safe, and low-cost mining, the main ore body adopts the “temporary
isolation of the pillar stage and the subsequent filling mining method”. The method is
characterized by dividing the panel along the strike direction of the ore body; the panel
span is 100 m, and the panel size is length (ore body width) × width (100 m) × height (ore
body thickness), and there are temporary isolation pillars in each panel interval to achieve
independent mining of each panel. The stopes are divided every 18 m along the vertical
ore body strike (the width direction of the ore body) inside each panel. The mining process
is carried out in three steps. First, the one-step stopes are mined according to the method of
“interval mining”. After the one-step stope is mined, full tailings are used for cementing
and filling. After the first-step stopes are filled, the stopes are recovered and filled in a
two-step process. At this stage, the one-step and two-step stopes’ mining work has been
completed. In order to fully recover the mineral resources, it is necessary to carry out
three-step mining for the isolation pillar between the panel. After the isolation pillar is
mined, mine walls are left on both sides to prevent a large number of backfill in the stope
from collapsing. Figure 1a is a top view of the stope layout and Figure 1b is a vertical
cross-section view of the stope layout.
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Figure 1. (a) Top view of Dongguashan stope layout. (b) Vertical cross section view of Dongguashan
stope layout.

3. Analysis of Mine Wall Safety Factor

Mine wall instability includes various failure forms, among which are mainly brittle
failure, ductile failure and weak plane shear failure [26,27]. The mine wall is simultaneously
subjected to the load of the overlying surrounding rock and the backfill, which may cause
brittle compression failure under the action of the overlying surrounding rock or shear
failure under the lateral load of the backfill [28–31]. In addition to the above-mentioned
strength failure, the mine wall may also suffer from overturning failure. Combined with
the actual situation of Dongguashan, this study takes the comprehensive safety factor as an
evaluation index of mine wall safety. Among them, when the safety factor value is greater
than 1, it means that the mine wall is in a stable state. When the safety factor is equal to
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1, it means that the mine wall is in a critical state. When the safety factor is less than 1, it
means that the mine wall is in an unstable state.

3.1. Mine Wall Mechanics Model

According to Platts’ ground pressure theory, when excavation is carried out, the
original initial stress state of the surrounding rock will be destroyed, and the stress will be
redistributed [29]. When the stress field becomes stable again, a pressure arch containing
the plastic zone will be formed, namely the Platts arch [30]. After the mining room is mined,
the self-weight of the surrounding rock in the upper arched plastic area is borne by the
backfill, which is denoted as G1. Taking the isolated ore pillar as the research object, when
the isolated ore pillar is mined, the rock body above the goaf will cave in, and a temporary
stable caving arch will gradually form. The self-weight of the surrounding rock of the
caving arch is G2. Figure 2a shows the bearing mechanism diagram of the backfill–mine
wall system. Considering the backfill as a homogeneous medium, the effect of the backfill
body on the mine wall increases linearly along the depth direction. When the backfill bears
the direct upper load, the initial value of the top load on the backfill is not 0, and there is an
initial lateral effect on the top of the mine wall. This study considers the force form of the
mine wall under the trapezoidal lateral load. The mechanical model of the mine wall is
shown in Figure 2b.
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In Figure 2a: GT is the total weight of the overlying surrounding rock of the backfill–
mine wall system; G1 is the self-weight of the upper surrounding rock for the backfill;
G2 is the self-weight of the caving surrounding rock in the isolated pillar goaf; RP0 is the
equivalent radius of the plastic zone of the backfill–mine wall system; RP1 is the equivalent
radius of the upper plastic zone of the backfill; RP2 is the equivalent radius of the plastic
zone in the upper part of the goaf; l0 is the span of the backfill–mine wall system; l1 is the
width of the mine room; l2 is the span of the goaf.

In Figure 2b: p is the initial upper load; q is the initial lateral load; λ is the lateral
pressure coefficient; γ1 is the bulk density of the backfill; γ is the bulk density of the mine
wall; h is the height of the mine wall; b is the width of the mine wall, x is the vertical distance
from the origin of the coordinates, y is the lateral distance to the origin of the coordinates.
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According to our previous research [31–33], the stress expression of the mine wall un-
der trapezoidal load was obtained by the semi-inverse solution method of elastic mechanics:

σx = − 2λγ1y
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In Equation (1): σx is the vertical stress of the mine wall, σy is the lateral stress of the
mine wall, τxy is the shear stress of the mine wall.

According to Platts’ theory, the plastic zone radius correction coefficient ξ is [26,27]:

ξ =

[
(γ2H0 + Ct cos ϕ1)(1 + sin ϕ1)

Ct cos ϕ1

] 1−sin ϕ1
2 sin ϕ1

(2)

The dead weights of the backfill–mine wall system, the backfill, and the caving sur-
rounding rock in the goaf are, respectively,
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√(h
2
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Then, the initial vertical load of the mine wall p is:

p =
GT − 2G1 − G2

Nb
(6)

The initial lateral load q is calculated by the Rankine earth pressure equation:

q =
λG1

l1
= tan2

(
45− θ

2

)√(h
2

)2
+

(
l1
2

)2
ξ − h

2

γ2 (7)

where γ2 is the bulk density of the roof rock; H0 is the mining depth; Ct is the cohesion of
the roof rock; ϕ1 is the friction angle of the roof rock; N is the number of pressure-bearing
mine walls; θ is the friction angle of the backfill.

3.2. Compression Safety Factor Kσ

The compressive safety factor represents the compressive capacity of the mine wall,
and its calculation equation is the ratio of the compressive strength of the mine wall to the
maximum compressive stress on the mine wall. The maximum compressive stress on the
mine wall is the maximum value of σ in Equation (1). For the value of the compressive
strength of the mine wall, some scholars have deduced a variety of calculation equations
for the bearing strength of the mine wall. Among them, the empirical equation proposed
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by Bieniawski [34] is more accurate and widely used. The equation for calculating the
compressive strength of the mine wall is:

σp = σc

[
0.64 + 0.36

(
b
h

)]α

(8)

In Equation (8): σp represents the compressive strength of the mine wall; σc represents
the uniaxial compressive strength of the complete rock mass; b represents the width of the
mine wall; h represents the height of the mine wall; α is a constant, and its value depends
on the size of the mine wall. When the ratio of the width to height dimension of the mine
wall is greater than 5, the value of α is 1.4, and when the aspect ratio is less than 5, the value
of α is 1.0.

Therefore, the calculation equation of the mine wall compression safety factor is:
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3.3. Shear Safety Factor Kτ

The mine wall shear safety factor is an index reflecting the size of the mine wall shear
resistance, and its calculation equation is the ratio of the shear strength of the mine wall
shear plane to the maximum shear stress on the mine wall. The maximum shear stress
on the mine wall is the maximum value of τxy in Equation (1). The shear strength of the
mine wall can be calculated by the Mohr–Coulomb strength criterion, and its calculation
expression is:

τp = σ0 tan ϕ + c (10)

where σ0 is the normal stress in the normal direction of the shear plane of the mine wall; ϕ
is the friction angle of the mine wall; c is the cohesion of the mine wall.

Therefore, the calculation equation of the mine wall shear safety factor is:

Kτ =
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3.4. Overturning Safety Factor Kc

The overturning safety factor is the anti-overturning ability of the mine wall, and its
calculation expression is the ratio of the anti-overturning moment of the mine wall to the
force and bending moment of the backfill on the mine wall. According to the force of the
mine wall, the expression of the anti-overturning moment of the mine wall is:

MK =
b
2
(
Gp + G

)
(12)

In Equation (12): MK is the anti-overturning moment of the mine wall; Gp is the load of
the overlying surrounding rock on the mine wall and its calculation equation is: Gp = pb; G
is the gravity of the mine wall per unit thickness, and its calculation equation is: G = γhb.

The force of the backfill on the mine wall can be calculated by Rankine earth pressure
Equation (13):

Fy = qh +
1
2

λγ1h2 (13)
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The pressure of the backfill on the side of the mine wall is linearly distributed in a
trapezoid shape. According to the moment calculation, the action point can be obtained
3qh+λγ1h2

3(2q+λγh) from the bottom surface, so the overturning safety factor of the mine wall is:

Kc =
b
2
(
Gp + G

)(
qh + 1

2 λγ1h2
)

3qh+λγ1h2

3(2q+λγh)

(14)

3.5. Comprehensive Safety Factor K

Considering the various failure forms of the mine wall, the comprehensive safety
factor is used as an index to evaluate the stability of the mine wall, and its calculation
equation is as follows:

K = min{Kσ, Kτ , Kc} (15)

In Equation (15): K is the comprehensive safety factor, when K = Kσ, the main failure
form of the mine wall is compression failure; when K = Kτ , the main failure form of
the mine wall is shear failure; when K = Kc, the main failure form of the mine wall is
overturning failure.

4. Analysis of Factors Affecting Mine Wall Stability

According to Equation (15), the factors affecting the stability of the mine wall mainly
include the width of the mine wall, the height of the mine wall, the friction angle of the
backfill, the bulk density of the backfill, the width of the mine room, the mining depth,
the uniaxial compressive strength of the mine wall and the mechanical properties of the
surrounding rock. Combined with the current mining situation of the Dongguashan
Copper Mine. Since the mining depth, mine wall height, mine wall uniaxial compressive
strength and mechanical properties of the overlying surrounding rock are determined by
the mine geological conditions, it is difficult to artificially design and adjust, so the main
consideration of mine wall stability is the width of the mine room, the width of the mine
wall, the friction angle of the backfill and the bulk density of the backfill.

According to the measured data of the mine, the mining depth H0 = 700 m, the
uniaxial compressive strength of the mine wall σp = 104.5 Mpa, the thickness of the
ore body is about 20–50 m. and the weighted average thickness is about 40 m. For the
convenience of calculation, we equivocate it with a model with a height of 40 m, therefore
h = 40 m. Furthermore, the mechanical parameters of the mine wall and the overlying
surrounding rock are shown in Table 1.

Table 1. Mechanical parameters of mine wall and overlying surrounding rock.

Name Bulk Density/KN·m−3 Poisson Cohesion/Mpa Friction/◦

Roof rock 27.1 0.2087 36.50 35.3
Mine wall 32.2 0.3124 21.43 50.21

The above four factors are analyzed by the orthogonal range analysis method, com-
bined with the actual situation of the Dongguashan project. Each factor is assigned within
an appropriate range, and the calculation results of the mine wall safety factor under the
conditions of each mine wall mining design scheme are shown in Table 2. The stability
coefficient range results are shown in Table 3.

From the orthogonal test results in Table 2, it can be seen that the comprehensive
safety factor of the mine wall is mostly the compression safety factor or the overturning
safety factor. The main form of wall instability is brittle compression failure or overturning
failure. According to the extreme difference of each factor in Table 3, the important factors
affecting the stability of the mine wall are the width of the mine wall, the bulk density of
the backfill, the friction angle of the backfill, and the width of the mine room. In order to
further study the variation law between the factors affecting mine wall stability and the
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mine wall safety factor, the research factors are regarded as variables and other factors are
regarded as quantitative, and the quantitative relationship between each factor and the
mine wall comprehensive safety factor is studied by the control variable method.

Table 2. Orthogonal test table of mine wall safety factor.

Test Number l1/m b/m ϕ/◦ γ1/KN·m−3 Kσ Kτ Kc K

1 60 2 20 20 0.3870 1.9867 0.7080 0.6863
2 60 3 28 32 0.7225 2.5390 0.8276 0.7225
3 60 4 36 24 1.9760 4.9425 2.2466 1.9760
4 60 5 24 36 1.5123 2.7669 1.0465 1.0465
5 60 6 32 28 3.2470 4.9980 2.4223 2.4223
6 65 2 36 32 0.4456 2.6540 0.6855 0.4456
7 65 3 24 24 0.8124 2.3587 0.9161 0.8124
8 65 4 32 36 1.2796 3.0240 1.0286 1.0286
9 65 5 20 28 1.6343 2.5561 1.1373 1.1373

10 65 6 28 20 3.6705 4.7018 2.7559 2.7559
11 70 2 32 24 0.4952 2.3765 0.7222 0.4952
12 70 3 20 36 0.5020 1.4942 0.4386 0.4386
13 70 4 28 28 1.3959 2.7750 1.0948 1.0948
14 70 5 36 20 3.3561 5.2323 2.7465 2.7465
15 70 6 24 32 2.3529 2.9248 1.2510 1.2510
16 75 2 28 36 0.3050 1.5236 0.3536 0.3050
17 75 3 36 28 1.0779 2.9706 0.9955 0.9955
18 75 4 24 20 1.6238 2.5372 1.1667 1.1667
19 75 5 32 32 2.1605 3.2314 1.2491 1.2491
20 75 6 20 24 2.6039 2.6640 1.3099 1.3099
21 80 2 24 28 0.3370 1.3522 0.3552 0.3370
22 80 3 32 20 1.2449 2.6173 1.0063 1.0063
23 80 4 20 32 0.9804 1.6180 0.5517 0.5517
24 80 5 28 24 2.4243 2.9227 1.2762 1.2762
25 80 6 36 36 3.2303 3.8513 1.4194 1.4194

Table 3. Stability coefficient range analysis results.

The Mean of K l1/m b/m θ/◦ γ1/KN·m−3

K1 1.3707 0.4538 0.8248 1.6723
K2 1.2360 0.7951 0.9227 1.1739
K3 1.2052 1.1636 1.2309 1.1974
K4 1.0052 1.4911 1.2403 0.8440
K5 0.9181 1.8317 1.5166 0.8476
R 0.4526 1.3779 0.6918 0.8284

4.1. Quantitative Relationship between Mine Wall Safety Factor and the Width of the Mine Wall

Other factors affecting the safety factor of the mine wall are regarded as fixed values,
and study the relationship between the safety factor of the mine wall and the width of the
mine wall, the width of the mine room l1 = 70, the friction angle of the backfill θ = 28◦,
and the bulk density of the backfill γ1 = 24 KN·m−3. Figure 3 is a diagram showing the
relationship between the safety factor and the width of the mine wall.

As shown in Figure 3, with the increase of the width of the mine wall, the bearing
strength and the anti-overturning capacity of the mine wall will increase. Therefore, the
mine wall compression safety factor, shear safety factor and overturn safety factor all
increase with the increase of the width of the mine wall. Analysis of the change rate of
the safety factor shows that with the increase of the width of the mine wall, the increase
rate of the shear safety factor and the overturning safety factor is basically stable, and the
increase rate of the compression safety factor increases, which indicates that the width of
the mine wall has the most significant effect on the compression safety factor. Under the
value level of the above factors, when the width of the mine wall is less than 3 m, the mine
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wall comprehensive safety factor is less than 1, the mine wall is in an unstable state, and
the main failure forms are compression failure and overturning failure. With the increase
in the width of the mine wall, the mine wall compression safety factor increases sharply.
When the width of the mine wall is greater than 4 m, the mine wall safety factor is greater
than 1, the mine wall compression safety factor is greater than the overturning safety factor,
and the backfill has a more significant effect on the mine wall bending.
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4.2. Quantitative Relationship between Safety Factor of Mine Wall and Bulk Density of the Backfill

The width of the mine wall is taken as 4 m, the width of the mine room is taken as
70 m, and the friction angle of the backfill is taken as 28◦. The quantitative relationship
between the safety factor of the mine wall and the bulk density of the backfill is studied.
The results are shown in Figure 4.
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It can be seen from Figure 4 that the mine wall compression safety factor, shear safety
factor and overturning safety factor all decrease with the increase of the bulk density of
the backfill, but the decreasing rate of all three decreases gradually. Comparing the mine
wall compression safety factor and the change rate of the overturning safety factor, we
can see that the overturning safety factor of the mine wall changes faster with the bulk
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density of the backfill. Therefore, when considering the influence of the bulk density of
the backfill on the stability of the mine wall, the overturning failure form of the mine wall
should be considered.

4.3. Quantitative Relationship between the Mine Wall Safety Factor and the Friction of the Backfill

Controlling other variables, the variation law of the mine wall safety factor with the
friction angle of the backfill is analyzed. The width of the mine wall and the width of the
mine room are 4 m and 70 m, respectively, and the bulk density of the backfill is 24 KN·m−3.
Figure 5 is a diagram showing the relationship between the mine wall safety factor and the
friction angle of the backfill.
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It can be seen from Figure 5 that with the increase of the friction angle of the backfill,
the safety factor of the mine wall increases, and the increase rate of the compression
safety factor remains basically unchanged, while the increase rate of the shear safety factor
and the overturning safety factor gradually increases. The analysis shows that when the
friction angle of the backfill increases, the lateral pressure coefficient decreases, the effect
of the backfill on the mine wall decreases, and the safety factor of the mine wall increases
accordingly. Because the friction angle in the backfill mainly affects the side of the backfill
on the mine wall. Therefore, the shear safety factor and the overturning safety factor are
more affected by the friction angle of the backfill.

4.4. Quantitative Relationship between Mine Wall Safety Factor and the Width of the Mine Room

The width of the mine wall is 4 m, the bulk density and friction angle of the backfill
are 24 KN·m−3 and 28◦, respectively, and the variation law of the safety factor of the mine
wall with the width of the mine room is studied. The results are shown in Figure 6.

With the increase of the width of the mine room, the load of the overlying surrounding
rock on the backfill increases, the load on the overlying surrounding rock on the mine
wall decreases, and the lateral load of the backfill increases. Therefore, with the increase
in the width of the mine room, the compression safety factor of the mine wall increases
gradually and the shear safety factor and overturning safety factor of the mine wall both
decrease, which is consistent with the trend shown in Figure 6. At the level of the above
factors, when the width of the mine room exceeds 80 m, the mine wall comprehensive
safety factor is taken as the overturning safety factor and the mine wall is more prone to
overturning failure.
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4.5. Multi-Factor Analysis of Mine Wall Safety Factor

In order to comprehensively analyze the variation law of the comprehensive safety
factor of the mine wall with the width of the mine wall, the width of the mine room, the
bulk density of the backfill and the friction angle of the backfill, a regression equation of
the safety factor including four factors was established, and the quantitative relationship
is used to quantitatively reflect the change of the comprehensive safety factor of the
mine wall. According to the orthogonal experimental calculation results in Table 2, a
multiple regression equation is constructed by the Matlab data processing software and the
expression of the regression equation can be obtained as:

y = 1.5513− 0.0227x1 + 0.3452x2 + 0.0425x3 − 0.0495x4 + ε (16)

In Equation (16): the dependent variable y represents the comprehensive safety factor
of the mine wall; x1 represents the width of the mine room (m); x2 represents the width of
the mine wall (m); x3 represents the friction angle of the backfill (◦); x4 represents the bulk
density of the backfill (KN·m−3); ε represents the residual.

The complex correlation coefficient of the regression equation in Equation (16) R = 0.8848
shows that the regression equation fits well, and F = 38.4076, p = 0.0000 shows that the
explanatory variable (xi) is significant for the coefficient test. Figure 7 is the residual of the
regression equation. It can be seen that there is only one abnormal point, which also shows
that the regression effect is good.

According to the independent variable coefficient sign of the regression equation of
the comprehensive safety factor, the comprehensive safety factor of the mine wall changes
in the same direction as the width of the mine wall and the friction angle of the backfill.
The increase in the width of the mine wall or the friction angle of the backfill will increase
the comprehensive safety factor of the mine wall. The comprehensive safety factor of the
mine wall changes inversely with the width of the mine room and the bulk density of the
backfill, which is the same as the above quantitative analysis results. According to the size
of the independent variable coefficient of the expression of the regression equation, the
important factors affecting the stability of the mine wall are: the width of the mine wall,
the bulk density of the backfill, the friction angle of the backfill, and the width of the mine
room, which are the same as those shown in Table 3. At the same time, according to the
independent variable coefficient value of the expression of the regression equation, the
influence weight of each factor on the comprehensive safety factor of the mine wall can be
quantitatively analyzed.
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5. Engineering Examples

According to the design scheme of isolated pillar mining in the Dongguashan Copper
Mine, the width of the mine wall is 4 m, the width of the mine room is 78 m, and the filling
scheme of the mine room uses full tailings cement filling. Experiments show that the bulk
density of the backfill is 24 KN·m−3 and the friction angle is about 34.6◦. According to
Equation (15), the comprehensive safety factor of the mine wall is 1.39, and the comprehen-
sive safety factor of the mine wall calculated by the regression equation of Equation (16)
is 1.46; the error rate is less than 6%. Furthermore, the comprehensive safety factors of
the mine wall obtained by the two equations both exceed the critical safety factor of 1.00.
Theoretical calculation shows that under this mining design scheme, the mine wall is in a
stable state.

According to the above design scheme, the isolated pillar is mined. After the mining is
completed, the CMS goaf detection technology is used to scan the pillar back to the mined
area to observe the retention of the mine wall [35], and use the BGK-A3 displacement
meter to monitor the deformation of the roof rock during the mining process [36]. The
triaxial stress meter is used to monitor the stress change of the mine wall. Figure 8 is a
cross-sectional view of the scanning results of the open area after the mining of the 52-line
isolated pillar G5 is completed.
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It can be seen from Figure 8 that after the G5 isolation pillar is mined, the integrity of
the top of the mine wall remains relatively good, no overturning failure occurs, no fracture
occurs at the bottom of the mine wall and the pressure bearing performance is good. The
integrity of the left mine wall is good, but there is over-mining in the middle of the right
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mine wall. The maximum span of the goaf is 16.6 m, and there is no large amount of
backfill mixed in the gob scanning and ore mining. The maximum displacement of the roof
surrounding rock measured by the BGK-A3 displacement meter is only 32 mm, and the
deformation is in a controllable range. During the mining of the isolated pillar, the relative
change of the maximum principal stress of the mine wall is 1.16 Mpa, the change of the
intermediate principal stress is 1.17 Mpa, and the minimum change of the principal stress is
2.05 Mpa. The change in the stress value of the mine wall is small and it is in a stable state.
The reliability of the mine wall is good, which is consistent with the theoretical calculation
results and meets the mining requirements. In addition, according to the existing research
results [15,37,38], this article analyzes the stability of the mine wall under this parameter
by the energy variation method, the cusp catastrophe theory and the thin plate theory.
The calculation results are consistent with the above situation, which further verifies the
theoretical analysis results and improves the reliability of the research results.

6. Conclusions

In this study, according to the mining situation of an isolated pillar in the Dongguashan
Copper Mine, the bearing mechanism of the backfill–mine wall system is analyzed, and the
influence of backfill mechanical parameters on the stability of the mine wall is considered.
Based on the failure forms of the mine wall under multi-directional loads, the comprehen-
sive evaluation index of the mine wall stability is proposed, the calculation equation of
the comprehensive safety factor is deduced, the orthogonal test is designed to analyze the
sensitivity of the influencing factors of the mine wall stability, and the following research
results are obtained:

1. The important factors affecting the stability of the mine wall are the width of the mine
wall, the bulk density of the backfill, the friction angle of the filling body and the
width of the mine room. Among them, the width of the mine wall mainly affects the
bearing strength and the stress distribution state of the mine wall. The bulk density of
the backfill and the friction angle mainly affect the lateral load of the mine wall, and
the width of the mine room affects both the vertical load and the lateral load of the
mine wall.

2. The main forms of mine wall failure are brittle compression failure and overturning
failure. Increasing the width of the mine wall can significantly improve the mine wall
compression safety factor. Reducing the bulk density of the backfill and increasing
the friction angle of the backfill can improve the mine wall overturning safety factor.
The increase of the mine width increases the compression safety factor and reduces
the overturning safety factor of the mine wall.

3. According to the regression equation calculation, the comprehensive safety factor of
the 52-line G5 mine wall is about 1.4, which is close to the theoretical equation and
the actual situation of engineering exploration. It provides ideas for the optimization
of mine wall design and filling scheme in the process of deep isolation pillar mining.
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