
Citation: Falaciński, P.; Szarek, Ł.

Potential Use of Municipal Waste

Incineration Ash as a Hardening

Slurry Ingredient. Minerals 2022, 12,

655. https://doi.org/10.3390/

min12050655

Academic Editors: Eugeniusz

Mokrzycki and Alicja

Uliasz-Bocheńczyk
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Abstract: In recent years, there has been a marked increase in the amount of municipal waste
generated in Poland. In the context of circular economy assumptions, the key is the availability of
technologies that would make it possible to safely process and reuse waste, especially when it is
difficult to manage. One such direction is thermal waste treatment. In 2020, 21.6% of all municipal
waste was subjected to this process. Consequently, the amount of ash generated is significant
(approximately 2,823,000 tons annually). One of the uses of waste materials is the sealing of earth
hydrotechnical facilities, such as flood embankments, water dams, and embankments of waste
landfills. For this purpose, cut-off screens made of hardening slurries are used. In order to improve
the tightness and corrosion resistance of hardening suspensions, combustion by-products are added
to their composition. The article presents an assessment of the possibility of using ashes from
municipal waste incineration as an additive to hardening slurries. It also discusses the technological
and operational parameters of hardening slurries with the addition of the ashes in question. Binding
requirements for hardening slurries used for the construction of cut-off walls is also defined. The
experiment showed that the tested hardening slurries meet most of the suitability criteria. Further
research directions are proposed to fully identify other properties of hardening slurries in terms of
their environmental impact.

Keywords: municipal solid waste; fly ash; hardening slurry; cement-bentonite slurry; cementitious
materials; circular economy

1. Introduction

Municipal waste (MW) management is a challenge, even for highly developed coun-
tries, since there is a positive correlation between the economic growth of a country and
the amount of generated waste [1]. According to SP (Statistics Poland) data [2], a more
than 14% growth in the amount of generated MW was recorded in Poland in the years 2015
to 2018. This translated to an average of 325 kg waste collected per capita (MW is waste
critical to the waste management system in Poland [3]). This value is significantly lower
than the EU average (489 kg per capita in 2018 [4]). A similar situation can be observed in
other countries of the region: Romania, Latvia, Slovakia, Estonia and the Czech Republic. It
seems that this issue is directly associated with two phenomena—illegal landfills and waste
burning in household furnaces [5]. Gradual tightening of the MW collection system and
the growing environmental awareness of citizens suggest that the amount of MW collected
in Poland will increase.

The Polish MW management system is governed by, among others, the Waste Act [3],
which implements a number of EU directives in the field of waste management and envi-
ronmental protection within Polish legislation [6–21]. The Act introduced a waste handling
hierarchy, with “preventing waste generation” at its peak, followed by “preparation for
re-use”, “recycling”, “other recovery processes” and “neutralization”.
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Thermal treatment of municipal waste (TTMW) aimed at energy recovery is classified
within the recovery group [22]. Indeed, 23% of all MW was managed in Poland in 2018 in
this way [2], and a tendency to build new incineration plants has been observed. Cement
plants could also play an important role in the incineration of municipal waste; however,
using waste for this purpose is restricted by the limited amount of waste suitable for
alternative fuel production and by the poorly developed waste processing industry in
Poland [23].

The TTMW process should supplement re-use and recycling processes due to eco-
nomic, technical and organizational reasons [4], which would enable closing the circulation
at the level of recovery of energy contained in waste. Process by-products include slags, as
well as bottom and fly ash, which in accordance with the circular economy (CE) concept
and the waste handling hierarchy [22] should be managed in a way that they constitute a
valuable product and are no longer treated as waste (currently, such waste is dumped, at
a great cost for TT plants). It is expected that this will contribute to reduced greenhouse
gas emissions and natural raw material consumption, as well as strengthening the process
aspects of CE. For this purpose, it is necessary to identify the properties of generated waste
and its applicability. In the literature on the subject, attempts are made to use ash from
municipal solid waste in, among other things, building materials, especially in cement and
concrete technology and in geotechnical applications [24–29].

This article aimed to research hardening slurries with two types of TTMW waste, which
are designated 19 01 07* and 19 01 13* (* sign indicates hazardous waste) in accordance
with [30]. The studies focus on the utilization of TTMW by-products in slurries dedicated for
cut-off walls and the fundamental material properties in this respect, as shown in Table 1.

A hardening slurry is a thixotropic mix (suspension) of water, binder and clay material,
as well as, depending on the intended use, other ingredients (e.g., blast furnace slag and
fly ash), used for the construction of building structures in the ground substrate or when
filling gaps and openings in the ground [31–34].

Elements with a hardening slurry can be executed using single- or two-phase meth-
ods [31,33]. In the case of a single-phase method, a liquid hardening slurry in a narrow
trench exerts hydrostatic pressure, ensuring excavation stability when deepening, and its
components seal excavation walls, hence preventing slurry penetration into the ground.
After reaching an assumed depth, the slurry remains in the excavation. Owing to binder
content, the hardening slurry settles and turns into a porous body.

In contrast, the two-phase method uses expansion slurries, most usually bentonite-
based, without added binder. The nature and conditions of excavation of narrow trenches
are similar to the single-phase method, except for the fact that after reaching the design
excavation depth, the expansion slurry is replaced with a hardening slurry, which leads to
achieving greater structure homogeneity.

In particular, hardening slurries are used to build cut-off walls. Cut-off walls are
employed to protect excavations against the inflow of groundwater, in embankments, dam
substrates and levees, and to seal landfills (prevention of contaminants penetrating into
the soil and groundwater) [31,35–37]. Table 1 shows specific requirements in terms of the
properties of the hardening slurries used for cut-off walls in levees, as based on domestic
experiments, together with their determination methods.
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Table 1. Selected properties of hardening slurries used in cut-off walls in levees [38,39].

Properties Unit Value Marking
Method

Properties in liquid state

Bulk density

– diaphragm method
(narrow-space excavation)

g/cm3

1.15–1.40

[40]– Deep Soil Mixing—DSM 1.30–1.50

– vibration method (Jet Grouted
Diaphragm Wall—JGDW) 1.50–1.60

Conventional viscosity (marsh funnel
runoff time) s ≤50 [40]

Daily water loss % ≤4.0 [41]

Structural strength after 10 min Pa 1.4–10.0 [40]

Properties after hardening after 28 days of curing

Compressive strength MPa 0.5–2.0 [42]

Filtration coefficient k m/s ≤10−8 Laboratory methods as for
cohesive soils

2. Materials and Methods
2.1. Hardening Slurries

The following materials were employed in developing hardening slurry recipes:

- tap water,
- sodium bentonite,
- portland cement CEM I 42.5 R cement,
- ash from the incineration of municipal waste deemed 19 01 07*—P1,
- ash from the incineration of municipal waste titled: 19 01 13*—P2.

The recipes of the designed hardening slurries are shown in Table 2.

Table 2. Recipes of designed hardening slurries per 1000 dm3 of water.

Recipe

Component Indicator

Tap Water
(dm3)

Bentonite
(kg)

Cement
(kg)

Ash P1
(19 01 07*)

(kg)

Ash P2
(19 01 13*)

(kg)

Water/Dry
Matter
w/dm

Cement/Ash
c/a

R1P1 1000 25 400 175 – 1.667 2.286
R2P1 1000 20 400 200 – 1.613 2.000
R3P1 1000 25 375 225 – 1.600 1.667
R4P1 1000 20 350 225 – 1.681 1.556
R5P1 1000 20 325 250 – 1.681 1.300
R1P2 1000 25 400 – 200 1.600 2.000
R2P2 1000 25 400 – 225 1.538 1.778
R3P2 1000 25 375 – 250 1.538 1.500
R4P2 1000 25 350 – 275 1.538 1.273
R5P2 1000 20 325 – 300 1.550 1.083

2.2. Municipal Solid Waste Ash

Additives to the slurry were MSW ashes listed as 19 01 07* (solid flue gas treatment
waste—P1) and 19 01 13* (fly ash containing hazardous substances—P2) in accordance
with [30], generated due to MW incineration in a grate furnace. Flue gas treatment pro-
cesses involved flue gas denitrification by primary methods and a secondary selective
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non-catalytic nitrogen oxide reduction (SNCR), as well as flue gas treatment using the
semi-dry method with limewash slurry combined with the flux and ash method using
activated carbon (aimed at reducing acidic contaminants, ash, heavy metals, dioxins and
furans). Flue gas dedusting employing a fabric filter was also applied.

Ash labelled 19 01 07* is an odourless, homogeneous light-grey material, with a
very fine homogeneous grain fraction. It exhibits dusting properties and a tendency
toward lumping. Ash termed 19 01 13* is characterized with a heterogeneous structure
(Figure 1), with a coarser grain size than the 19 01 07* ash. In this, unburned combustion
process residues are present. Table 3 shows the chemical composition and selected physical
properties of the tested ash.
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Figure 1. Ash designated as 19 01 07* (a) and 19 01 13* (b).

Table 3. Selected chemical and physical properties of ash.

Properties

Ash

P1—19 01 07* P2—19 01 13*

Mass Share (%)

SiO2 5.43 ± 1.09 23.56 ± 4.71
Al2O3 2.09 ± 0.42 0.64 ± 0.13
Fe2O3 0.64 ± 0.13 3.06 ± 0.61

SiO2 + Al2O3 + Fe2O3 8.16 ± 1.64 27.26 ± 5.45
TiO2 0.54 ± 0.108 2.119 ± 0.424
MnO 0.040 ± 0.008 0.139 ± 0.028
MgO 1.31 ± 0.26 3.08 ± 0.62
CaO 39.16 ± 7.83 34.91 ± 6.98

Na2O 1.78 ± 0.36 1.16 ± 0.23
K2O 1.39 ± 0.28 0.44 ± 0.09
P2O5 0.430 ± 0.086 1.423 ± 0.285
SO3 4.11 ± 0.82 1.9 ± 0.38
Cl 5.213 ± 1.043 0.376 ± 0.075
F 0.18 ± 0.04 0.10 ± 0.02

Loss on ignition [43] 21.4 ± 2.14 11.1 ± 1.11
Fineness [44] 17.81 ± 1.66 78.82 ± 1.72

Water demand [43] (%) 108 107
Activity ratio [43] (%) 51 33

Water extract reaction [45] (-) 12.2 12.5

The oxide composition of ash was determined using samples made molten using
wavelength dispersive x-ray fluorescent spectrometry (WD-XRF). References to the research
methods applied when testing selected physical properties of ash can be found in Table 3.
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The tested ash cannot be classified as fly ash when used in concrete, not only due
to its origin, but also because of its physical properties and composition [43,46,47]. It
is characterized by low total silicon, aluminium and iron oxide content (19 01 07*, in
particular), which are the main ingredients of cement in addition to calcium oxide.

Loss on ignition that can impact the effectiveness of air-entraining admixtures is
slightly above class C according to [43] in the case of the 19 01 13* ash, while exceeding
this class almost twofold in the case of the second ash. Despite the significant variation
of fineness test results, we observed no large differences in the workability of mortars
with the added ash and no significant differences in the water demand (elevated in both
cases). On the other hand, both ash types are characterized by a low hydraulic (despite the
relatively high calcium oxide content—resulting from the flue gas desulfurization process)
and pozzolanic (especially low silicon dioxide content in the 19 01 07* ash) potential, which
is depicted by the very low activity indicators that were revealed after 27 days of slurry
curing, based on the tested ash.

Unfortunately, the oxide and phase composition of the MW incineration ash is very
variable [48–51] and depends on the incineration methods, as well as the quality and
composition of the incinerated MW, which is impacted by, among others, quality and
advancement of selective waste collection, recycling advancement degree, and environ-
mental awareness and habits of the residents. This is why it is important to determine ash
parameters experimentally, rather than basing this on literature sources.

Figure 2 shows selected morphology images of the tested ash acquired using the
SEM technique with EDS analysis. Both tested ash types are characterized by varying
morphology. In the case of the ash designated 19 01 13* (b), the visible spherical grains
are not the zones constructed of aluminosilicate glass known from fly ash for concrete, but
zones primarily consisting of iron. In the case of the ash listed as 19 01 07* (a), the zone is
characterized by an element composition typical for ash.
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The conducted studies indicate that the application of ash in concrete technology
will cause problems. As a result, the authors suggest using them in the hardening
slurry technology.

2.3. Hardening Slurry Testing Methods

Liquid slurries were tested in terms of process properties related to

- Bulk density, important due to preserving narrow-space excavation stability and
the displacement of the slurry by the target material (in the event of a two-phase
incorportation method). Bulk density was determined using a Baroid arm scale [40].

- Conventional viscosity, important due to hardening slurry production and transport
technology (e.g., pumping), excavation hollowing ease under its cover and its dis-
placement from the excavation. Conventional viscosity was determined using a flow
viscometer (Marsh funnel [52]). The time (in seconds) for the outflow of a 1000 mL of
liquid slurry was measured (in a 1500 mL slurry poured into a funnel) [40]. The Type
B uncertainty [53] for this type of measurement was estimated at 1.2 s.

- Daily water loss, which is a percentage measure of slurry sedimentation (segregation
tendencies), homogeneity and stability. Daily water loss was determined as a per-
centage share of water volume spontaneously escaping from a 1.0 dm3 slurry after a
motionless day in a calibrated measuring cylinder [41]. The Type B uncertainty [53]
for this type of measurement was estimated at 0.6%.

- Structural strength (highest value of shearing stress, at which the dispersion system
structure is destroyed), primarily responsible for excavation wall stability. This prop-
erty counteracts separation of soil grains and ensures the required stability of slurries
contaminated with worked soil [31]. Structural strength was determined using a
shearometer after a 10 min motionless standstill of the slurry [40].

After 28 days of curing in tap water, hardening slurry samples were tested for perfor-
mance properties related to

- Compressive strength, which is one of the basic hardening slurry parameters on which
a material is based. Compressive strength was determined using cubic samples in
accordance with [42]. If required, sample bases in contact with the universal testing
machine head were levelled with plaster.

- Hydraulic conductivity k10 (filtration coefficient), which is a property that is partic-
ularly important when using the slurry to seal the substrate. The hardening slurry
filtration coefficient (at a water temperature of +10 ◦C) was determined with a vari-
able hydraulic gradient. The method was selected due to the relatively low slurry
conductivity (similarly to cohesive soils), which ensured the long time required to
obtain equilibrium between water inflow and outflow to/from the samples, necessary
when testing conductivity using a method with a constant hydraulic gradient. The test
with a variable gradient involved determining, at specified times t1, t2, etc., the values
of hydraulic pressures h1, h2, etc., exerted by the water column in the supply tube,
with a sectional area a, during liquid flow through a sample with a height (length) Li
and a cross-sectional area Ap. Under these conditions, hydraulic conductivity kT (at a
temperature of T) was calculated using Formula (1), which after taking into account
the impact of the filtration liquid temperature, could be converted into hydraulic
conductivity k10 (at a temperature of +10 ◦C) and according to Formula (2).

kT =
a·Li

Ap ·∆t
ln

h1

h2
, (1)

k10 =
kT

0.7 + 0.03T
(2)

where kT—hydraulic conductivity at a temperature of T (m/s); k10—hydraulic conductivity
at a temperature of +10 ◦C (m/s); a—supply tube sectional area (m2); Li—tested sample



Minerals 2022, 12, 655 7 of 12

height (m); Ap—sample cross-sectional area (m2) ∆t = t2 − t1—time between hydraulic
pressure measurements h1, h2 (s); h1, h2—hydraulic pressure values at t2, t1 (m); T—
filtration liquid temperature (◦C).

Figure 3 shows a diagram of a test bench for studying the filtration coefficient of
hardening slurries.
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Figure 3. Hardening slurry filtration coefficient test bench diagram.

3. Results and Discussion

Processing properties of the tested hardening slurries are listed in Table 4.

Table 4. Processing properties of the tested hardening slurries.

Recipe

Parameter

Density
ρ

(g/cm3)

Conventional
Viscosity

L
(s)

Water Loss
24 h
Od
(%)

Structural
Strength after

10 min
τ

(Pa)

Value
pH
(-)

R1P1 1.330 47 7.0 2.8 12.16
R2P1 1.320 42 7.0 2.1 12.12
R3P1 1.320 52 3.0 5.3 12.03
R4P1 1.315 42 5.0 6.7 11.96
R5P1 1.310 48 2.0 6.0 11.96
R1P2 1.340 57 6.0 8.5 12.58
R2P2 1.350 58 5.0 12.0 12.57
R3P2 1.315 42 7.0 5.0 12.59
R4P2 1.360 49 2.0 8.0 12.56
R5P2 1.345 44 2.0 6.5 12.56

Liquid slurry density is at a level sufficient to ensure stability of the hollowed ex-
cavation (Tables 1–4). The increase in the hardening slurry density occurs together with
increasing cement/ash (c/a) ratio, only for recipes with the P1 ash (19 01 07*). The densities
for these slurries range from 1.31 to 1.33 g/cm3. No relationship between waste dosage
and slurry density was observed for the P2 ash (19 01 13*). The highest density value
of 1.36 g/cm3 was recorded for the R4P2 recipe, while the R3P2 recipe demonstrated the
lowest value of 1.315 g/cm3.

In reference to the assumptions adopted at the slurry recipe stage [31], conventional
viscosity shall fall within a range that enables hydraulically transporting the slurry to
the incorporation location; see Table 1 and Figure 4. The highest viscosity is achieved by
slurries obtained with added P2 ash (R1P2 and R2P2). There is no clear correlation between
this parameter with composition indicators (w/dm or c/a). It should be noted that three
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recipes are evaluated negatively from the perspective of the presented criteria (Table 1):
R3P1, R1P2 and R2P2.
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Figure 4. Conventional viscosity of the tested hardening slurry samples.

Daily water loss (Table 4, Figure 5) in the tested hardening slurries ranges from 2.0%
to 7.0%. It is evident that this parameter is significantly impacted by the amount of added
ash. In the case of high ash content (P1 or P2), the slurry composition (in general) recorded
lower loss values. Only the R3P1, R5P1, R4P2 and R5P2 recipes were evaluated positively
according to the criteria (Table 1).
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Figure 5. Daily water loss in tested hardening slurry recipes.

When analysing the results showing structural strength after 10 min (Table 4), it can
be seen that only one recipe (R2P2) recorded a value higher than 10.0 Pa (the limit value
according to the criterion from Table 1). The other recipes satisfy the requirement set out
in Table 1. It can be noted that this parameter is significantly impacted by the amount of
added cement.

The pH values shown in Table 4 range from 11.96 (R5P1 recipe) to 12.59 (R3P2 recipe).
These values prove the high alkalinity of the tested slurries. Higher pH values were
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recorded for the recipes with the P2 ash (12.56 to 12.59), which contains more alkali (Table 2).
In addition, slightly higher ash and cement doses (600–625 kg) were used in the case of the
recipes with the P2 ash, compared to the slurries that incorporated P1 ash (575–600 kg).

When analysing the values obtained during the study of the hardening slurry process
parameters (density, conventional viscosity, daily water loss and structural strength), it can
be concluded that only three recipes, R5P1, R4P2 and R5P2, satisfied the set-out criteria and
are suitable for use as a cut-off wall material constructed using the most common methods,
i.e., in narrow-space excavation (diaphragm method), deep soil mixing (DSM) or using the
vibration method (narrow-space method) [31].

Basic performance parameters of the tested hardening slurries (after hardening) are
listed in Table 5. The values in parentheses are standard deviation (for fc) and variation
coefficient (for k10).

Table 5. Performance parameters of the tested hardening slurries.

Recipe

Parameter

Compressive Strength
fc

(MPa)

Hydraulic Conductivity
k10

(m/s)

R1P1 0.53 ± 0.03 1.40 × 10−8 (±6%)
R2P1 0.52 ± 0.07 5.02 × 10−8 (±12%)
R3P1 0.42 ± 0.07 1.34 × 10−7 (±9%)
R4P1 0.32 ± 0.02 1.70 × 10−7 (±15%)
R5P1 0.28 ± 0.03 2.10 × 10−7 (±8%)
R1P2 0.33 ± 0.04 1.47 × 10−7 (±8%)
R2P2 0.28 ± 0.02 1.39 × 10−7 (±6%)
R3P2 0.21 ± 0.03 2.86 × 10−7 (±4%)
R4P2 0.22 ± 0.01 2.88 × 10−7 (±7%)
R5P2 0.21 ± 0.01 1.01 × 10−6 (±18%)

Compressive strengths of the tested hardening slurries range from 0.21 to 0.53 MPa.
Higher fc values were recorded for slurries with the P1 ash: 0.28–0.53 MPa. Figure 6 shows
compressive strength fc of hardening slurries, depending on the c/a (cement/ash) ratio
for the developed recipes. The figure reveals an increase in the fc value, together with
increasing c/a ratio, for all analysed hardening slurry recipes (regardless of the ash type).
A strong correlation between the c/a ratio and the compressive strength fc can be noted.
A positive correlation is confirmed by the Pearson correlation coefficient calculated at an
assumed confidence interval of 95%. Owing to the value of the r coefficient, the fc = f (c/p)P1
and fc = f (c/p)P2 correlations for hardening slurries, with the coefficient value of r(P1) = 0.95
and r(P2) = 0.91, respectively, can be deemed statistically significant. A slightly higher value
of the activity ratio (Table 2) in the P1 ash resulted in greater fc values relative to slurries
that were based on P2 ash. However, due to the low activity ratio values in the case of both
ash types, the main component impacting the fc values obtained for the tested hardening
slurries is the cement used. Only the two following recipes were evaluated positively,
according to the criteria for slurries set out in Table 1: R1P1 and R2P1.

Hydraulic conductivity k10 of the tested hardening slurries ranged from 1.01 × 10−6

to 1.40 × 10−8 m/s. Significantly lower k10 values were recorded for slurries with added
P1 ash. Figure 7 shows the hydraulic conductivity k10 of the tested hardening slurries
in relation to the c/a (cement/ash) ratio. A relationship between the c/a ratio and the
hydraulic conductivity k10 can be observed. A negative correlation is confirmed by the
Pearson correlation coefficient calculated at an assumed confidence interval of 95%. The
resulting r coefficient value allows designation of the k10 = f (c/p)P1 correlations for hardening
slurries with added P1 ash as statistically significant. In this case, r(P1) = −0.99. In terms of
the requirements set out in Table 1, only the R1P1 recipe is close to satisfying them.
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Figure 6. Compressive strength fc of the tested hardening slurries depending on the cement/ash
(c/a) ratio.
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4. Conclusions

The conducted analysis involving the properties of hardening slurries developed using
municipal waste incineration ash combined with CEM I 42.5 Portland cement indicates
that slurries incorporating P1 ash (19 01 07*) achieved more favourable parameters. The
R1P1 slurry recipe was the closest to meeting all requirements associated with its use for
the construction of flood embankments through following different execution technologies.
The limit 24 h water loss value was not obtained in the case of process properties. How-
ever, this is not an insurmountable barrier, and, to some extent, it depends on a detailed
specification of the dedicated slurry material. The simplest way to improve this param-
eter may be to increase the amount of bentonite or its activity. With regard to hydraulic
conductivity, the obtained value slightly exceeded the required criterion. Hence, a slight
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modification of ingredient proportions—higher binder content, in particular—should lead
to a successful outcome.

The conducted study demonstrated that municipal waste incineration ash designated
as 19 01 07* and 19 01 13* exhibits the potential to be an additive to hardening slurries,
despite its specific properties and morphology.

Due to the difficulties with utilizing such waste in other types of building materials,
the research on its applicability in relation to the hardening slurry technology should be
continued as an expansion to environmental studies, i.e., leaching of hazardous compounds
and their immobilization.
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Kalińska, A.; Rucińska, J.; Szczygielski, T. Condition of Circular Economy in Poland. Arch. Civ. Eng. 2020, 66, 37–80.
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