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Abstract: Shale reservoirs, the most important unconventional resource, are difficult to character-
ize. Shale formations require detailed interpretation of geological, petrophysical, and geochemical
analyses, and an integration of these disciplines. In terms of geological interpretation, the commonly
used sequence stratigraphy analysis includes a lithofacies analysis. The application of sequence
stratigraphy to shales facilitates the ability to relate between lithofacies and mineral composition,
petrophysical parameters, and kerogen contents, which are affected by depositional setting. The
classification of lithofacies is indispensable for reservoir quality prediction. In this study, porosity,
permeability, and TOC content largely depend on lithofacies, and their correlation coefficient is
relatively high. The sequence stratigraphic interpretation shows that organic carbon content usually
increases within the maximum flooding surfaces and decreases stepwise. However, the relationship
between total organic carbon contents and systems tract is less direct and redox dependent.

Keywords: shale sequence stratigraphy; marine shale; Horn River Formation; Horn River Basin

1. Introduction

Shales are a common source of hydrocarbons and can act as reservoirs of oil and gas
deposits. The reservoir quality of the shales is complex due to their heterogeneity, which
is related to the lithofacies and depositional environments [1,2]. Understanding shale
reservoirs can be assessed in the framework of sequence stratigraphy, through integrating
diverse data of geological, geophysical, and geochemical features. It helps to correlate
and explain the relationship between lithofacies and their geological character, because
porosity, permeability, total organic carbon (TOC) content, and mineral composition of shale
reflect spatiotemporal variation of fine-grained deposits. Most studies have recognized
reservoir quality in relation to relative sea-level fluctuation within a sequence stratigraphic
analysis [3–6]. Despite their overall importance, the relationship between reservoir quality
and lithology is poorly studied.

The Horn River Formation, deposited in the Western Canada Sedimentary Basin, is one
of the well-studied mudstone deposits in Canada. It is composed of an alternating sequence
of siliceous mudstone, argillaceous mudstone, and calcareous mudstone [7–10]. Those
are divided into the Evie Member, the Otter Park Member and the Muskwa Formation,
in ascending order. The geological characteristics of the Horn River Formation have
been studied based on sedimentological descriptions, geochemical analysis, wireline log
analysis, and sequence stratigraphic analysis [8,10–12]. There have been several sequence
stratigraphic interpretations of the Horn River Formation [8,10–12]. The Evie Member was
interpreted as deposited during a second-order highstand stage [8,10], and consists of a
third-order transgressive systems tract (TST) and an overlying regressive systems tract
(RST) [11]. The Otter Park Member is interpreted as a second-order lowstand stage in the
middle Devonian carbonate, and a transgressive stage in its upper part [8,10], consisting
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of a third-order T–R cycle [11]. The overlying Muskwa Formation formed during the
following second-order transgressive stage [8,10], accompanying a third-order TST and an
overlying RST [11]. Existing sequence stratigraphic interpretations were worked out by
integrating sedimentology, ichnology, and geochemistry, which are marked by a gradual
increase in clay contents above the basal surface of forced regression [12]. Previous study
defined depositional sequence stratigraphy, including the falling stage systems tract [12].

Sequence stratigraphy analysis is the chronostratigraphic division of sedimentary strata
into time-equivalent, genetically related units, with distinct stacking patterns [13,14]. This
method has become increasingly important in reservoir and shale gas reservoir characteriza-
tion [15,16]. This study focuses on lithofacies description, sequence stratigraphy analysis,
and petrophysical characterization of the sweet spot from the core and wireline log data.

2. Geological Overview

The Horn River Formation was deposited in the Western Canada Sedimentary Basin
during the middle to late Devonian (Givetian–Frasnian) period [17,18]. This shale is
chronostratigraphically equivalent to the Besa River Formation in the Liard Basin, the
Canol Formation in Yukon, and the Duvernay Formation in Alberta [19,20] (Figure 1). The
Horn River Formation is overlain by the Fort Simpson Formation, which is poor in organic
matter [18]. The southern part of the Horn River Formation was deposited proximal to the
paleo-shoreline deposits, whereas the northern part was deposited relatively distal to the
paleo-shoreline deposits [11,12]. Stratigraphically, this shale section is subdivided into three
members on the basis of lithology, mineral composition and detailed well log correlation:
the Evie Member, the Otter Park Member, and the Muskwa Formation, representing the
Givetian to early Frasnian stages, respectively (~392 to 384 Ma) [21]. Although the age of the
Canol Formation ranges from the late Givetian to middle Frasnian stages (383.2–367.7 Ma),
the geologic age of the Horn River Formation is still disputed [19,22].
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with the XRD (45 samples) and ECS data in order to classify the Horn River Formation in 
detail. This analysis resulted in nearly continuous (10 to 20 cm intervals) proxy records of 
the mineralogical composition of the core, including total clay, total carbonate, and QFM 
(quartz, feldspar, and mica). 
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bility were obtained from a tight rock analysis by TerraTek. Porosity was determined 
through bulk and grain volumes, obtained by the mercury immersion method and the 
helium pycnometry method [25]. Permeability was determined by analyzing pressure de-
cay on a crushed sample. 

Although the TOC content can be analyzed directly from geochemical data, it can 
also be derived from the wireline data. The TOC obtained through geochemical analysis 
is compared with results from the Schmoker density log method and the Passy ΔlogR 
method [26,27]. The Schmoker method assumes that the density of the formation depends 

Figure 1. Well location in the Kiwigana Field of the Horn River Basin. Note the relationship between
the Horn River Basin and the Liard Basin in terms of their location and stratigraphic cross section [15].

The Evie Member is calcareous mudstone that overlies the shallow marine carbonates
of the Lower Keg River Formation [8,23]. It is up to 75 m thick near the Presqu’ile barrier
and thins to less than 40 m to the west [23]. The well log response is characterized by
a high gamma ray signature and high resistivity. The Evie Member has a high TOC
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content [7,18,24]. The Otter Park Member is characterized by light gray to dark gray,
pyritic, and calcareous to non-calcareous mudstone [7,11]. This member is thicker than the
underlying Evie Member and the overlying Muskwa Formation and is up to 270 m thick in
the south-eastern part of the Horn River Basin [23].

Organic content of the Otter Park Member is lower than that of the Evie Member
and Muskwa Formation [7,18]. Siliciclastic and carbonate sediments of three members
have been supplied from the southern part to the northern part [11,18]. The Otter Park
Member becomes less calcareous towards the north and west, away from the distal parts of
the basin [7,11]. The Muskwa Formation is comprised of a gray to black siliceous, pyritic,
organic-rich shale, which overlies the Otter Park Member [7,23]. It varies in thickness from
50 to 90 m [17]. The organic carbon content of the Muskwa Formation is higher than that of
the Otter Park Member, but lower than that of the Evie Member [7,23].

3. Materials and Methods
3.1. Data

The study area in the Kiwigana Field is located in the north-western part of the Horn
River Basin, where seismic data, three logged wells, and one cored well are available
(Figure 1). Wireline log data and core samples cover the sedimentary successions of
the Muskwa Formation, Otter Park, and Evie Members of the Horn River Basin. Both
conventional and advanced log data (for example, elemental capture spectroscopy (ECS))
were acquired at Well A. A TOC analysis was conducted on 145 rock samples using a
LECO instrument. X-ray diffraction (XRD) analysis and thin section observations of 95
rock samples were performed by TerraTek in Calgary, Canada and at the KIGAM (Korea
Institute of Geoscience and Mineral Resources in Daejeon, Korea) to obtain information on
the biotic content and mineralogy.

3.2. Analytical Method

The cores were described in terms of lithological, sedimentological, and paleontolog-
ical features in millimeter and centimeter scales. The geochemical data were integrated
with the XRD (45 samples) and ECS data in order to classify the Horn River Formation in
detail. This analysis resulted in nearly continuous (10 to 20 cm intervals) proxy records of
the mineralogical composition of the core, including total clay, total carbonate, and QFM
(quartz, feldspar, and mica).

The 38 samples were analyzed for porosity and permeability. Porosity and perme-
ability were obtained from a tight rock analysis by TerraTek. Porosity was determined
through bulk and grain volumes, obtained by the mercury immersion method and the
helium pycnometry method [25]. Permeability was determined by analyzing pressure
decay on a crushed sample.

Although the TOC content can be analyzed directly from geochemical data, it can
also be derived from the wireline data. The TOC obtained through geochemical analysis
is compared with results from the Schmoker density log method and the Passy ∆logR
method [26,27]. The Schmoker method assumes that the density of the formation depends
on the presence or absence of low-density organic matter (1.0 g/cm3). The ∆logR method
is applied to the sonic and resistivity log.

The brittleness index (BI) is a key parameter to determine how ductile or brittle a rock
formation is, which is commonly calculated based on its mineral composition. This study
calculates BI according to the following equation:

BI = quartz/quartz + carbonate + clay (1)

We interpreted 3D seismic data (12.8 × 9.2 km2) and plotted a 3D grid of seismic
data to analyze seismic facies and petrophysical modeling of the study area. This process
enabled us to understand the property distribution and heterogeneity of the shale reservoir.
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4. Results
4.1. Lithofacies Description and Mineral Components

Six lithofacies were identified and interpreted based on texture, bedding style, color,
and mineral composition along the depth interval of 2307–2470 m. These include: faintly
laminated siliceous mudstone (FLSM), homogeneous siliceous mudstone (HSM), laminated
siliceous mudstone (LSM), laminated mixed mudstone (LMM), argillaceous mudstone
(AM), and calcareous mudstone (CM). XRD and ECS log data are incorporated to quantify
mineralogical abundance within each of the lithofacies (Table 1). Details of each of the
facies and their characteristics are summarized in Figure 2.

The dominant facies are: FLSM: 39.9%, LMM: 33.7%, and HSM: 16.7%. The other
three subordinate lithofacies are: LSM: 3.9%, AM: 1.9%, and CM: 3.9% (Figure 3). FLSM
and HSM are characterized by a dark gray color, having higher QFM and TOC contents
than the other lithofacies (Figure 3). The high QFM contents affect hydraulic fracturing,
and the TOC content is related to gas volume [28,29]. These two organic-rich shale facies
therefore tend to be brittle. Two other shale lithofacies, LMM and LSM, have thin or thick
laminations and low TOC contents (Figure 3). AM contains the highest clay percentage and
an average TOC content of 2.39 wt%. CM is a relatively carbonate-rich lithofacies within
the studied core interval and possesses an average TOC content of 3.67 wt% (Figure 3).

Table 1. Mineralogical compositions of the six core facies. FLSM: faintly laminated siliceous mudstone.
HSM: homogeneous laminated siliceous mudstone. LSM: laminated siliceous mudstone. LMM:
laminated mixed mudstone. AM: argillaceous mudstone. CM: calcareous mudstone.

QFM Contents (wt%)

Facies FLSM HSM LSM LMM AM CM

min 27.3 37.0 55.2 34.0 37.3 1.7
max 88.7 87.6 84.6 70.0 45.7 37.4
avg 64.5 72.2 59.9 43.1 42.7 22.5

Carbonate Contents (wt%)

Facies FLSM HSM LSM LMM AM CM

min 0.6 0.9 8.1 0.6 0.6 51.7
max 38.6 48.6 24.8 54.4 12.6 85.1
avg 4.2 6.6 10.9 22.1 4.0 71.9

Clay Contents (wt%)

Facies FLSM HSM LSM LMM AM CM

min 65.2 8.3 15.4 55.4 45.1 0.3
max 3.5 43.8 33.9 13.4 62.7 10.9
avg 31.4 21.3 29.1 34.8 53.3 5.5

4.2. Sequence Stratigraphic Interpretation of Horn River Formation Succession

A previous study [12] suggested that the Horn River Formation formed in response
to a combination of temporal and spatial cycles of base-level movement [30,31]. The
key stratigraphic surfaces, which are correlated with stratigraphic discontinuities, were
identified by changes in lithofacies, uranium logs, and Th/U ratios. Following this, gamma
ray logs are correlated with the stratigraphic key surface of the existing depositional
sequences [12]. Three depositional sequences of the Horn River Formation in the study
area are as follows (Figure 4).
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lamination dominantly planar and parallel, but locally 
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Homogeneous siliceous 
mudstone (HSM) 

 

Absence of primary structures including bioturbation, 
except occassional faint lamination; transitional 

boundary; black to dark gray. 

Laminated siliceous 
mudstone (LSM) 

 

Thinly laminated with discontinuous or indistinct 
laminae; transitional boundaries; lamination identified 

by discontinuous trains of light-colored particles; coarse 
particles oriented horizontally; commonly occuring 

pyrite layers; light-colored unit vertically changing into 
a homogeneous unit. 

Laminated mixed 
mudstone (LMM) 

 

Well-developed lamination by alternation of light-
colored, clay-rich laminae and dark-colored, organic-

rich laminae; thickness or vertical spacing of individual 
lamina, 0.5 mm, but nonsystematic vertical change; 

dominantly planar and parallel lamination, but rarely 
X-laminated or having small-scale soft sediment 

deformation (by loading). 

Argillaceous Mudstone 
(AM) 

 

Absence of primary structures including bioturbation; 
occasional intercalation of lamina, layers, or lenses of 
pyritic grains; transitional boundaries, but some thin 
units showing a sharp lower boundary and a more or 

less transitional upper boundary; light gray. 

Figure 2. Cont.
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Figure 4. Sequence stratigraphic interpretation of Well A that is correlated with the depositional
sequences of [12]. GR: natural gamma ray. Th/U and U: derived from the spectral gamma ray log.
TOC points: geochemical analysis, Pyrite: XRD data, porosity, and core facies (see the legend for
details).

Sequence 1: This is an incomplete sequence comprising of a highstand systems tract
(HST) overlying the transgressive systems tract (TST). The highstand systems tract can be
separated from the transgressive systems tract based on the cyclic pattern of the gamma
ray log, representing a change from upward decrease to upward increase. The uranium
logs are high in the upper-part, and there is a high Th/U ratio in the lower-part of this
sequence. Styliolinids are occasionally observed in this sequence, which may indicate a
more argillaceous nature, suggesting quiet offshore conditions [32]. Devonian Styliolinids
indicate pelagic sedimentation [33]. The lithofacies in this sequence are comprised of two
parts: upward coarsening (from LMM/HSM to LSM), and upward fining (from LMM to
HSM facies) trends (Figure 4).

Sequence 2: This sequence comprises the whole depositional sequence. It is bounded
below by sequence boundary one (SB1) and above by sequence boundary two (SB2). This
sequence comprises the lowstand systems tract (LST), transgressive systems tract, the
highstand systems tract, and the falling stage systems tract (FSST). It shows a general
decrease in gamma and uranium log responses (Figure 4). The upper contact of this
sequence is characterized by a dominant lithofacies change from LMM to FLSM. This
sequence has low TOC (avg. 1.55 wt%), uranium (avg. 9.7 wt%), and total gamma ray
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log responses (avg. 172 API). The lower part of this sequence shows subtle bioturbation
(Figure 4). The uranium logs are much higher in the HSM and FLSM facies than in the LMM
facies. The upward-decreasing uranium log pattern represents a retrogradational stacking
pattern that contains a facies change from FLSM to LMM, whereas the upward-increasing
uranium pattern represents a progradational stacking pattern that contains a facies change
from LMM to FLSM/HSM.

Sequence 3: This sequence comprises the lowstand systems tract, transgressive systems
tract, and the highstand systems tract. It shows a general decrease in gamma and uranium
log responses in the HST and an upward increase in gamma and uranium log responses in
the TST (Figure 4). The HST is generally dominated by the FLSM facies. The transgressive
systems tract is intercalated with LMM, LSM in HSM, and the lower part with FLSM,
whereas the lowstand systems tract is intercalated with AM in the FLSM facies (Figure 4).
The transgressive systems tract represents high TOC and pyrite contents with high porosity.
The abundance of pyrite influences brittleness, and therefore affects the completion quality
and reservoir reserve estimates [34].

Lamination is suggested to be critical in reconstructing redox conditions [35]. The
anaerobic to dysaerobic transition is characterized by faint laminations, whereas the anaer-
obic zone is suggested by well-developed laminations under pycnocline conditions [35].
The laminae are assumed to have formed in response to small-scale fluctuations within a
single flow or depositional event, such as boundary layer bursts, sweep under currents,
wave-oscillation currents, and the seasonal growth of planktonic or benthic organisms [36].
The continuity of the laminae decreases dramatically at 2356 m depth, accompanied by a
change in the dominant facies from LMM to FLSM.

4.3. Structure Map of Sequence and Petrophysical Modeling

On a seismic profile, four lithostratigraphic units and three sequences are recognized
based on distinct seismic horizons (Figure 5a). Well-to-seismic ties suggest that SB1 corre-
lates to the top of the Otter Park horizon and SB2 correlates to the top of the Evie horizon.
Figure 5b–d provides the sediment thickness distribution trends of three sequences. Each
sequence has a distinctive thickness distribution pattern (Figure 5b–d). The thickness of
Sequence 1 in the study area is relatively uniform, except in the south-western part where
its thickness decreases significantly (over 10 ms). Stratal thickness of Sequence 2 gradually
decreases from east to west.

The stochastic quantitative modeling of lithofacies in three dimensions reveals de-
tailed spatial variations and helps to figure out the depositional environments and their
geological characteristics [37]. The first step in petrophysical modeling is to build the
three-dimensional lithofacies model. Six lithofacies of three wells are established, upscaled
and used as hard data for facies modeling (Figure 5e). The lithofacies modeling of the Horn
River Formation shows differing distribution patterns: Evie dominates HSM facies, Otter
Park dominates LMM facies, and Muskwa represents FLSM dominant lithofacies. These
facies modeling results are comparable with lithofacies correlation in that they are generally
diachronous surfaces.

Derived TOC and a brittleness index for petrophysical modeling would verify the
effectiveness of the lithofacies model. The TOC log was calculated by the ∆logR method
and the BI was calculated from XRD data. The derived TOC data is relevant to the verti-
cal variation of the total organic carbon, which represents the distribution of geological
characteristics of the Horn River Formation reservoir. Spatial distribution of the TOC
and brittleness index was simulated using the sequential Gaussian simulation method
to obtain a TOC and brittleness index map (Figure 5f,g). We observed that the TOC and
BI distribution maps show similar trends. A petrophysical evaluation of the Horn River
Formation indicates that a higher TOC content results in an increased BI (Figure 6).
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5. Discussion
5.1. Key Stratigraphic Surfaces of the Horn River Formation

The recognition of abrupt stratigraphic discontinuities is especially important in sedi-
mentological reconstructions and sequence stratigraphic analyses. The strata discontinuity
has been determined through spectral gamma ray logs or their ratios [38–42], because
spectral gamma rays contain more detailed information on sedimentary rocks [43]. Th/U
against the U-based method and lithofacies changes were applied to detect abrupt breaks
and stacking patterns of the Horn River Formation. Several abrupt stratigraphic breaks
were identified in the study intervals, and such features were especially prominent through
spectral gamma rays and their ratios (Figure 4). The maximum flooding surface (MFS)
shows higher uranium peaks, and the maximum regressive surface (MRS) represents a
high Th/U ratio with a lower uranium log. The sequence boundaries are characterized
by consistent Th/U ratios and uranium logs. Two sequence boundaries were identified in
the Horn River Formation. Sequence boundaries within the shale deposit tend to be very
subtle, but they are much more extensive. These key stratigraphic surfaces are correlated
based on gamma rays and match with previous results of Ayranci (2018) [12]. SB1 shows a
significant drop in the uranium log and TOC contents, and SB2 represents the change of
the dominant lithofacies from LMM to FLSM, which suggests a change in sediment type or
depositional environment. The maximum flooding surface is associated with abundant
organic matter, which gives rise to a high uranium content of organic-rich shale [44–46].
Oxidized continental sediments have higher Th/U ratios than non-oxidized marine sedi-
ments. Time equivalent portions of the Horn River Formation reveal different lithofacies,
indicative of facies transition within the system tract at the time of deposition.

5.2. Porosity, Permeability, and TOC

Porosity, permeability, and TOC parameters are largely dependent on lithofacies
(Figure 7). Porosity and total organic carbon are both important to define the geological
sweet spot [2,47]. The Horn River Formation shows considerable variation in its lithofacies
and mineral contents (Table 1), and in petrophysical properties such as porosity, perme-
ability, and TOC. The HSM and FLSM lithofacies show high porosity and permeability
with high QFM contents (>64%) (Table 1). The lowest porosities are related to LMM and
CM with high carbonate contents that are tightly compacted or cemented with carbonates
(Figure 7). The lithofacies have a strong relationship with porosity, permeability, and TOC
content, and their correlation coefficient is relatively high. In addition, the trend of higher
quartz concentration goes along with higher TOC content (Figure 3). Additionally, TOC
trends of transgressive systems are overall of higher value than those of the highstand and
lowstand systems tracts (Figure 8).
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Previous studies have tried to figure out how to expand from the change of water
depth and lithofacies type to the environmental change of redox conditions, which proves
that the change in TOC may be related to reduction conditions [48,49].

The TOC content is important for reconstructing the redox conditions and reservoir
quality [24,50]. The TOC content represents the weight percentage of carbon in the rock, and
therefore depends on the productivity and preservation of organic matter. The sequence
stratigraphic interpretation indicates that organic carbon content generally increases toward
the maximum flooding surface [3], and then decreases stepwise (Figure 4). However, the
distribution of organic matter is not significantly affected by the systems tracts. According
to the sequence stratigraphy analysis of the Horn River Formation, the transgressive
systems tract shows an overall increase in TOC content. However, the other systems
tract does not have distinctive patterns (Figure 8). According to the correlation with the
depositional sequences of earlier studies of Ayranci (2018) [12], these results indicate that
the TOC difference is influenced by other factors. As such, we consider the redox condition
from TOC variation.

5.3. Importance of Paleo Redox Condition

The effect of the sediment accumulation rate on organic matter preservation and TOC
is strongly dependent on the prevailing paleo redox condition. Most of the black shales are
accumulated beneath dysoxic or anoxic water, and organic-rich shales accumulate as a result
of enhanced preservation of organic matter in anoxic environments [51]. Dysoxic–anoxic
facies show either a largely independent or negative relationship between TOC content
and sediment accumulation rate [52–54]. According to the sequence stratigraphy analysis
in the Horn River Formation, the transgressive systems tract shows increasing TOC and
uranium contents, while the highstand systems tract shows decreasing TOC and uranium
contents (Figures 4 and 8). These features suggest that transgressive shales are organic-rich
deposits and regressive shales are organically lean [55,56]. The uranium concentration
is high through the transgressive systems tract, which implies an anoxic condition [24].
Previous work interpreted that the Evie Member, the middle Otter Park Member, and
the Muskwa Formation tend to have anoxic conditions, whereas the lower/upper Otter
Park Members tend to have suboxic conditions, based on the redox-sensitive trace element
analysis [24].

Th/U ratios have been used as a chemo-stratigraphic proxy to determine whether
the sediments originated from marine or continental environments [38,52,57,58]. Oxi-
dized continental sediments have higher Th/U ratios than non-oxidized marine sediments.
Redox conditions in the depositional sequence are classified as anoxic Th/U (<2) by Wig-
nal and Twitchett (1996) [59]. However, suboxic to anoxic conditions are confirmed by
Th/U < 0.8 [60]. Since most of the systems tracts show that Th/U < 2, the Horn River
Formation was primarily deposited in an anoxic quiescent basin plain (Figure 4). Only part
of HST2, FSST, and LST show high values, i.e., higher than 2 in the Th/U ratio.
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6. Conclusions

The Horn River Formation has been interpreted as three depositional sequences based
on sedimentological, geochemical, and petrophysical features. A sequence stratigraphic
analysis leads us to figure out the redox condition, energy regime, and petrophysical
parameters, which can be related to lithofacies characteristics that are relevant to the geo-
logical sweet spot. Individual sequences are commonly separated by distinctive relatively
low or high TOC content. The relationship between TOC trends and the systems tract is
insignificant whereas the redox condition is relevant.

The lithofacies variables, through existing depositional sequences, are comparable
to the porosity, permeability, and TOC content. A change in lithofacies represents a ma-
jor change in sedimentological conditions and may or may not be part of the sequence.
However, geological characterization of shale lithofacies, in terms of sequence stratigraphy
combined with integration of well logs and geochemical data, would be useful to find the
geologically sweeter reservoir.
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