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Abstract: With the complicated geology of vein deposits, their irregular and extremely skewed grade
distribution, and the confined nature of gold, there is a propensity to overestimate or underestimate
the ore grade. As a result, numerous estimation approaches for mineral resources have been de-
veloped. It was investigated in this study by using five machine learning algorithms to estimate
highly skewed gold data in the vein-type at the Quartz Ridge region, including Gaussian Process
Regression (GPR), Support Vector Regression (SVR), Decision Tree Ensemble (DTE), Fully Connected
Neural Network (FCNN), and K-Nearest Neighbors (K-NN). The accuracy of MLA is compared to
that of geostatistical approaches, such as ordinary and indicator kriging. Significant improvements
were made during data preprocessing and splitting, ensuring that MLA was estimated accurately.
The data were preprocessed with two normalization methods (z-score and logarithmic) to enhance
network training performance and minimize substantial differences in the dataset’s variable ranges on
predictions. The samples were divided into two equal subsets using an integrated data segmentation
approach based on the Marine Predators Algorithm (MPA). The ranking shows that the GPR with
logarithmic normalization is the most efficient method for estimating gold grade, far outperforming
kriging techniques. In this study, the key to producing a successful mineral estimate is more than just
the technique. It also has to do with how the data are processed and split.

Keywords: vein-type deposit; geostatistics; machine learning algorithms MLA–Marine Predators
Algorithm MPA; data segmentation; z-score normalization–logarithmic normalizing

1. Introduction

Since it is one of the earliest stages of a mining operation, the resource estimate is
critical in feasibility studies and mine preparation [1,2]. Incorrect resource estimation
approaches can have negative impacts, potentially resulting in a ±50% grade estimate
error [3]. Hence, choosing the optimum technique with the most effective output for a
vein-type deposit is crucial for the deposit’s financial analysis.

However, traditional approaches frequently result in the overvaluation of uneconomic
deposits and the undervaluation of payable deposits [4]. Hence, the mining industry
has embraced geostatistics to evaluate mineral resource estimations for several decades.
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Geostatistics methods give reliable tools for comprehensively simulating mineral deposits.
Furthermore, various estimating approaches may derive block estimates from the vari-
ogram model of the deposit and fit a standard model. On the other hand, the variogram is
used in kriging to show the correlation between geological distance and Euclidean distance
and weights to aid in estimating unsampled data [5]. Thus, this technique merely examines
spatial continuity as the primary issue, in contrast to traditional methods. Still, the failure
of variogram modeling, which occurs because of the non-stationarity and normalcy of the
data, remains one of the biggest problems with using geostatistics to this day.

Because of the advancements in computer technology and modernism, various ma-
chine learning algorithms (MLAs) have been developed as a substitute method for es-
timating ore grades. Thus, resource estimation has gained appeal among experts as a
trustworthy approach, one of several computational model tools. Many studies have
attempted to estimate the grade of various mineralizations by using multiple machine
learning applications. For example, artificial neural networks (ANNs) [6–9], adaptive
neuro fuzzy inference system (ANFIS) [10], random forest (RF) [11], and Gaussian process
(GP) [11,12], support vector machines (SVM) [13,14] k-nearest neighbors (kNN) [15], and
combined kNN–ANN methods [2] are the most popularly used algorithms. There have
also been some studies that employ machine learning and deep learning approaches to
identify the mineral grade and potential anomalies, according to the following publica-
tions: [16–18]. So, MLAs are becoming more popular, especially in noisy data, such as the
kind seen in vein deposits, because of their flexibility and capability to integrate nonlinear
correlations between input and output data [19,20]. Moreover, there are no assumptions
about any variable or relationship relating to the spatial variation of mineralization [21–23];
this is a fundamental advantage. No convincing evidence exists to support the superior
effectiveness of one strategy over the other. The advantage of MLAs over the conventional
kriging approach has been proved in several applications [23,24]. On the other hand, [25]
found that MLAs’ approaches were no better than classic geostatistical techniques.

The estimation issue is particularly challenging in the vein deposits, where the distri-
bution of gold is often relatively inhomogeneous and displays abrupt variations because of
the nuggety nature of gold. It results in a highly skewed distribution, which significantly
affects the number of blocks whose grades diverge from the actual grade of the deposit [26].
The mineral is concentrated in a few irregularly scattered areas, which causes a substantial
change in the statistical parameters and the experimental variogram when outlier datasets
are present [27]. So, in order to produce an accurate estimate, the outlier must be capped,
and the distribution should be much more controlled [1]. Another thing also essential to
consider while inducing appropriate predictors from this is the sparsity of the data and the
inhomogeneous distribution of the samples available for learning [28].

Numerous grade value prediction studies use data randomly divided into training
and testing subsets, omitting to account for the samples’ inhomogeneous distributions.
So, to avoid biased or skewed subsets caused by random data selection, according to
the present investigation, this is accomplished by using an integrated data segmentation
method that incorporates the marine predators algorithm (MPA) method and divides the
data into two equal subsets: training and testing. This enhanced strategy produces a
better outcome in data distribution while also making the prediction issue more realistic.
The MPA method is modern and has proven to be highly efficient in optimization when
compared to its counterparts, and this paper is the first attempt to apply it to mineral
estimation [29]. To improve network training performance and minimize substantial
differences in the dataset’s variable ranges on the predictions, it is recommended that data
vectors be normalized [30]. Therefore, two methods were chosen, namely z-score and
logarithmic normalization. This technique guaranteed that the statistical data distribution
at each input and output remained uniform, allowing for more accurate estimates.

In this research, to improve the estimate of highly skewed gold data in the vein-
type, firstly preprocessed by two normalization approaches (z-score and logarithmic),
divided into two equal subsets using an integrated data segmentation with the marine
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predators algorithm (MPA) method. Then five different machine learning algorithms were
applied, and they were compared to two traditional geostatistical approaches (ordinary
and indicator kriging). This study gave a novel perspective on choosing the optimum
technique for gold prediction and emphasized the critical relevance of preprocessing the
data, which is reflected in the model’s performance. Based on the results, the best approach
for estimating gold values in vein deposits will be presented as a state-of-the-art strategy.

2. Methods Used

Here are the methods for ore grade estimate approaches used in this study, including
geostatistical techniques and machine learning algorithms, which are presented in detail.

Machine learning (ML) and kriging are often referred to as estimation methods based
on the input data’s features and weights. In kriging, the estimates are made by multiplying
the grades at the sampled locations, which are called “input features” (xi), by the weights
(wi). The ML estimate, shown by xi, can be made with any relevant data collected at
the sampling point. The ML weights wi are figured out using optimization that uses the
known values. Kriging weights are based on a variogram model where the X, Y, and Z data
positions are in relation to the estimation location. The estimate is calculated by multiplying
the data by the weights. In ML, unlike in kriging, known values at the X, Y, and Z are used
to set the weights, which are then used to make an estimate.

ML does not need the assumption of stationarity in estimates; yet ML is a data-driven
approach and a kind of regression; as a result, data are not reproduced. This is because
ML is a data-driven method. Although kriging is a model-driven estimating method that
reproduces data in their original locations, it is necessary for kriging to assume stationarity,
which is not always true.

2.1. Geostatistical Technique
2.1.1. Ordinary Kriging

Ordinary kriging (OK) treats mean value like an unknown parameter, allowing for
more robustness if the regionalized variable has a mean value, which is locally consistent
but globally spatially changing [31]. OK, the estimator, is a suitable method for ore control
and reserve/resource estimate technique and is the geostatistical approach chosen most
often; therefore, it was selected for this research. OK serves a unique function since it is
suitable with a stationary model; it only includes the variogram and is ultimately the most
frequently utilized form of kriging [32]. Kriging aims to estimate values for a regionalized
variable at a given location, (Zk) Z* (x0), using the current values in the vicinity, Z(xi).
Specified locations are given a weighting coefficient (λi) that indicates the effect of specific
data on the final estimate value at the selected grid node. The ordinary kriging estimator is:

Z∗(x0) = ∑n
i=1 λi Z(xi) (1)

2.1.2. Indicator Kriging

As Journel (1983) proposed, the indicator kriging is a nonparametric technique for the
probability estimate of more than one particular threshold value, Zk, within spatial data [33].
The first step in utilizing the kriging indicator (IK) is to convert it into indicators [1]; this is
established by coding the grade above and below a given threshold by zeros and ones. The
explanation is the binomial coding of data in either 1 or 0, subject to its connection with the
specified cut-off value, Zk [34]. For a given value, Z(x):

i(x, Zk) =

{
1, i f Z(x) ≤ Zk,
0, i f Z(x) > Zk

(2)

Models of indicator variogram are needed for an estimate after data transformation.
The indicator variogram looks for significant variances within which a range of interest or
influence is identified for each variable. A variance of the indicator may help to find the
crucial variance (sill).
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2.2. Machine Learning Algorithms in Resource Prediction

Five ML algorithms (GPR, SVR, DTE, FCCN, and K-NN) were used in this study. These
algorithms were chosen because they do not require any assumptions, are well-established
and robust, and model non-linear relationships.

2.2.1. Gaussian Process Regression (GPR)

As non-parametric techniques in the Bayesian approach to machine learning, Gaussian
processes may be used to supervise learning issues, such as regression and classification
as well as unsupervised learning issues. The reason they were non-parametric is that,
rather than attempting to match the parameters of a specified basis function, generalized
linear models (GPs) instead attempt to infer how all the measured data are interrelated. In
statistics, a Gaussian process (GP) is described as a collection of random variables having
the feature that the joint distribution of any subset of the collection is a joint Gaussian
distribution. The GPR-based system has several practical advantages over other supervised
learning algorithms, including flexibility, the ability to provide uncertainty estimates, and
the ability to learn noise and smoothness parameters from training data. It also works well
on small datasets and can provide uncertainty measurements for the predictions [35]. It
can be directed from training data to approximate the intrinsic nonlinear connection in any
dataset; as a result, it can be used for continuous variable prediction, modeling, mapping,
and interpolation [36]. This characteristic makes it appropriate for estimating the grade
of ore.

F(x)~GP (m(x), k(x, x′)) (3)

where m(x) = E[f(x)] is the mean function at input x, and k(x; x′) = E[(f(x) − m(x))(f(x′)
−m(x′))T] is the covariance function that denotes the dependence between the function
values for different input points x and x′.

The covariance function is commonly referred to as the kernel of the Gaussian process
and implicitly specifies smoothness, periodicity, stationarity, and other model properties.
As shown in Equation (4), a simple zero mean and a squared exponential covariance
function are employed in Gaussian process regression (GPR).

K
(
x, x′

)
= σf

2 exp
(
−r
2

)
(4)

where r is equal (|x − x′|2/l2) and σf and l are hyper-parameters, which affect the GP
algorithm’s performance in a significant way. Where σf denotes the model noise, while
the ‘l’ parameter is the length scale. Regardless of the input parameters’ closeness, the
covariance between them is near; nevertheless, the covariance decreases exponentially with
increasing distance. In the GPR rational quadratic, several covariance/kernel functions may
be used to adjust the performance. The predictive distribution model may be produced by
conditioning the training data. This is provided by

p( f ∗|x∗, D) = GP
(

f ∗
∣∣∣µ∗, σ∗2

)
(5)

The average predication µ∗ can be estimated from the following equation

µ∗ = k(x∗)T
(

K(X, X) + σ2
N IN

)−1
∗ t (6)

And the variance prediction σ∗ may be calculated as

σ∗2 = σ2
N − k(x∗)T

(
K(X, X) + σ2

N IN

)−1
k(x∗) + k(x∗, x∗) (7)

where, covariance matrices K(X, X) and K(X*, X*) are used to represent the covariance
matrix of the training and testing datasets, respectively. The vector of covariance between
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testing and all training observations is denoted by k(x*), t is the joint normalcy of training
goal value and is provided by = [ti]

N
i=1, and X is the joint normalcy of training observation

and is given by X = [Xi]
N
i=1. IN is the identity matrix of size N × N. It can be shown from

the preceding equations that the mean prediction linearly combines the observed target.
The variance was independent of the observed target and only dependent on the observed
inputs. One characteristic of a Gaussian distribution is that it has this property.

2.2.2. Support Vector Regression (SVR)

Support vector regression is a non-parametric technique that analyses the data for
classification, regression, and prediction analysis. It is one of the supervised learning
models with related learning algorithms. Researchers have been paying close attention
to artificial intelligence approaches in recent years, which is not surprising. In 1990,
Vepnayk introduced and demonstrated their capacity to predict difficulties with nonlinear
systems [37]. This approach shows significant power in extending and dealing with noise
and a lack of data, as shown by the outcomes [38,39].

Support vector regression (SVR) models are like linear regression models, employing
a linear function to approximate the regression function. Whereas linear regression seeks
to minimize the squared error, which may be significantly affected by a single observation
out of phase with the general trend, SVR seeks the so-called insensitive loss function,
represented by Equation (8). One of the primary motivations for using SVR is to reduce
outliers’ impact on the regression model. An error threshold is used when considering how
each data point contributes to the overall loss. The data points of residuals that fall below
this threshold may not add to the overall loss.

Lε(y, (x)) =
{

0, i f |y− f(x)| < ε,
|y− f(x)| , i f otherwise

(8)

SVR uses a penalty term for evaluating the parameters of the model. It is possible to
describe the objective function in its whole may be represented as Equation (9).

J = C ∑n
i=1 Lε(y, f(x)) + 0.5||β ||2 (9)

For a given data point, it may show that the prediction function is

f (x) = β0 + ∑i αi xT
i xi (10)

The dot product may be substituted by a kernel function κ(xi, x), which represents the
dot product in higher dimensions and, as a result, captures the non-linear relationships in
the data.

Despite their complexity, SVR models are adaptable and somewhat resilient in the face
of outliers and sparse data. SVR can handle linear and non-linear regression problems using
various kernel functions. Despite its many advantages, the SVR has certain drawbacks,
such as the lack of a probabilistic approach to predictions, and the kernel function must
meet the criterion of being a positive definite continuous symmetric function [39].

2.2.3. Decision Tree Ensemble (DTE)

The decision tree is a well-known machine learning technique that gives decision-
makers a simple way to analyze and interpret the data. Even though decision trees can be
useful for regression problems and classification problems, the latter application is where
their popularity lies. The most frequent method for including decision trees in regression
models is to use an ensemble strategy. This investigation uses the regression bagging
ensemble approach to predict the resource estimation technique.

Decision trees are non-parametric models that perform a series of simple tests for each
case. They move through a binary tree structure until they achieve a leaf node (decision)
at the end. Because of the enormous prediction variation, the decision tree algorithm is
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unstable when dealing with high-dimensional input. It is possible to address this challenge
by constructing an ensemble of decision trees from the bagged data samples gathered.
Ensemble approaches combine several decision trees to get more accurate prediction
outcomes. An ensemble model is often used in order to create a strong learner from several
weak ones. Both Bagging and Boosting, which provide distinct results but may improve
precision and accuracy while reducing the chance of an error, describe the process.

Breiman (1996) came up with the bagging approach, which is also called “bootstrap
aggregation”. It may improve the prediction process in regression models by reducing
the variation in predictions. An ensemble regression is a type of regression algorithm
that combines the results of several base regressions to arrive at the desired final result
(regression process). Each base regressor in the ensemble method, such as a regression
decision tree or any other regressor, is trained or learned with a subset of the total training
data. The training subsets are selected randomly using a method called replacement. Then,
the estimation process is performed on every subset, and the total prediction is made by
integrating the sub-samples regression averages. This leads to a significant decrease in the
variance because of the combining procedure [40]. Consequently, the regression, or the
predicting of a new instance, is based on the highest possible number of votes by the base
regressors during the final regression process.

2.2.4. Fully Connected Neural Network (FCNN)

FCNNs are constructed of many layers of neurons that each have an input layer, a few
hidden layers as well as an output layer. Each layer has neurons that connect to the neurons
in the next layer. During the transition between layers, the matrix multiplication process
is performed, which assigns a weight to each input feature. Each neuron then produces
the total of weighted feature values and transmits them to a non-linear activation function,
which outputs the sum of weighted feature values. The activation function output is passed
to the next layer. In the model, the activation function causes the neuron to be activated
and for the model to be non-linear. The mathematical representation of a fully connected
neural network is as follows [41]:

f FCNN: = x 7→ y (11)

x signifies the input vector variable with Nin length, and y denotes the output vector
variable with Nout length. The hidden layers, numbered from i = 1, 2,..., Nhl with Nhl
designing as the total number of hidden layers, are the primary building component of
a fully connected neural network. The mathematical object in the ith hidden layer is
indicated as h(i), where Nnpl is the number of neurons in each layer. The feedforward
computing technique is the calculation of vectors in a step-by-step manner, which may
state mathematically as:

x 7→ h(1) 7→ h(2) 7→ · · · 7→ h(Nhl) 7→ y (12)

Despite the benefits that deep learning models have over standard machine learning
models, they are sometimes over-parameterized, necessitating the use of large data. Due
to data scarcity and sparsity, deep learning algorithms cannot predict material charac-
teristics accurately. Furthermore, deep learning models are challenging to comprehend
owing to a lack of pre-defined model structure a complicated hierarchy of layers and
neuron activation.

The piecewise continuous nature of the function in Equation (12) necessitates estab-
lishing a minimum of two hidden layers within FCNNs, each containing smooth activation
functions or a layer that includes both smooth and non-smooth activation functions [42,43].
This is necessary to achieve satisfactory fitting results. This study uses the non-smooth
activation function as the tanh activation function to get the desired result. The activation
functions are expressed in terms of the following Equation (13):
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Tanh: f(x) = (1 − e−2x)/(1 + e−2x) (13)

2.2.5. K-Nearest Neighbors (K-NN)

The K-NN technique is often considered a straightforward way of analyzing multidi-
mensional data. Although this approach is simple, it is also beneficial compared to many
other ways, since it allows the user to generalize based on a few training sets [44]. It is
one of the earliest and most uncomplicated learning strategies, since it is based on pattern
recognition and categorization of previously unidentified items, and it can be employed for
classification or regression [45]. KNN regression uses a local average to estimate the output
variable value, whereas KNN classification seeks to predict which class the output variable
belongs to. Fix and Hodges (1989) and Cover and Hart (1967), for example, characterized
it as a nonparametric technique for discriminant analysis (lazy similarity learning algo-
rithm). The term “k-neighbors” of a sample refers to the k samples nearest to the sample in
terms of distance from the sample. It is possible to generate a regression model’s output
as a weighted average of each of the k nearest neighbors, with each neighbor’s weight
being inversely proportional to how far it is from the input data. When using the K-NN
methodology, it is critical to choose the appropriate number of KNNs since the number
of K-NNs selected may significantly affect the prediction accuracy of the method. Using
low values of k will lead to over-fitting (high variance), while using excessive values of k
will cause very biased models. Although there are several distance functions, Euclidean
is frequently utilized. Wilson and Martinez (2000) provide the following definition of the
Euclidean distance function.

d(x, y) =
√

∑m
1 (xi− yi)2 (14)

where, x and y represent the query point, respectively, while m denotes the number of
input variables (attributes).

The algorithm predicts the new instance by comparing it to the training data. The
comparison is based on the distance metric between the new model and the previously
stored training data. Computed distance values are then put in ascending order. Lastly,
the kNN regressor’s prediction is the average of the first k numbers of the neighbors
closest to the test instance. The KNN approach has many appealing characteristics. When
compared to linear regression, this technique may provide much better results. It performs
well on datasets with limited features and a few variables. No optimization or training is
needed beyond the selection of K-NNs and the distance measure used in the analysis. The
approach uses local information and may provide decision limits that are highly nonlinear
and very adaptable. As a result, the process has a high computational and memory cost
since it requires scanning all the data available points (i.e., samples) to discover the most
similar neighbors. Calculating distances gets increasingly difficult when dealing with large
datasets with several dimensions. Despite these drawbacks, the approach is widely used
because of its implementation simplicity and the characteristics mentioned above [46]. In
the current study, the K-NN is applied to predict the resource of gold, the k parameter is
set to 3 as the best value obtained by experiments.

2.3. Marine Predators Optimization Algorithm (MPA)

The optimization approaches have been remarkable in recent years. They are more
efficient in dealing with the various optimization fields, including machine learning and
feature selection, than other existing techniques [47]. There are different optimization
algorithms, i.e., meta-heuristics algorithms, such as evolutionary algorithms (e.g., genetic
algorithms (GA)) [48] and swarm intelligence (SI) techniques (e.g., particle swarm optimiza-
tion (PSO) [49]). The marine predators algorithm (MPA) is a nature-inspired optimization
algorithm [29]. This optimization algorithm simulates the marine creatures’ behavior in
searching for prey; these inherited steps are employed to solve and optimize the problem
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and reach the optimal solution. The MPA algorithm uses foraging strategies known as Lévy
and Brownian motions in ocean predators as well as an optimum encounter rate policy for
the biological interactions that take place between predators and prey. The starting position
of an MPA may be characterized as follows:

X0 = XLower + rand (Xupper − XLower) (15)

where rand is a random vector with values between 0 and 1 that are uniformly distributed,
the lower and higher bounds of the variables are denoted by the notation XLower and
Xupper, respectively.

Top natural predators are thought to be more skilled foragers, according to the survival
of the fittest concept. As a result, the most appropriate solution is designated as a top
predator to create the elite matrix. This matrix is used to search for and locate prey based
on the prey’s location.

E =

X I
1,1 · · · X I

1,d
...

. . .
...

X I
n,1 · · · Xn

d


n∗d

(16)

where XI is the best predator vector out of n simulations used to construct the elite matrix
(E), d represents the number of dimensions, and n is the variable that specifies the number
of candidates.

There is also a matrix known as prey, which has the same dimensions as elite, and
the predators adjust their locations based on it. The initialization process results in the
generation of the first prey, from which the strongest individual (the predator) selects and
creates the elite. This is an illustration of the prey:

P =

X I
1,1 · · · X I

1,d
...

. . .
...

X I
n,1 · · · Xn

d


n∗d

(17)

where Xi,j represents the ith prey’s jth dimension. Specifically, the optimization approach is
linked to these matrices.

Predator-and-prey interactions are detailed in three parts of the MPA:

1. Prey is faster than a predator.
2. The predator is faster than the prey.
3. Predator and prey have similar speeds.

The MPA algorithm has been employed to optimize various problems in COVID-19
image classification [50] or image segmentation processes [51]. This motivated us to utilize
the MPA algorithm for the train/test split dataset to get a balanced data distribution over
the train and test dataset.

2.4. Model Validation and Performance Evaluation

K-fold cross-validation (CV), a commonly used validation approach, was applied
in this work throughout the performance assessment of the training dataset and hyper-
parameters optimization. The training data are randomly divided into k folds for the k-fold
CV. The training is carried out on (K-1) folds, with the residual one fold being utilized to
confirm the training results. K iterations of the training validating procedure are required
(with various folds of the validating fold) to accurately forecast the entire training set. For
this study, the value of k was chosen to be five because of computational efficiency.

The vein deposit data were divided into two distinct groups: training and testing.
The learning procedure is done using training datasets in any ANN architecture, while
testing datasets confirm the model’s performance. Even though cross-validation is widely
regarded as a method of evaluating model performance, it might lead to over-fitting when
applied to actual data [22,52].
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For the Quartz Ridge vein-type, the applicability of geostatistics-based models and
machine learning-based models was evaluated. The performance of machine learning
approaches was also examined using the same prediction dataset utilized in the kriging
techniques to make the predictions. It was decided to use multiple accuracy measures to
evaluate the model’s overall performance.

(i) The correlation coefficient (R) indicates how strongly two variables are related when
they change; (ii) The coefficient of determination (R2) assesses model fitting accuracy. It is
defined as the ratio of actual data variance to estimated value variance, and the linear fit
equation characterizes it. It is deemed acceptable to have a model with an R2 of at least
55%, less than 30% is thought suspicious, and over 75% is considered outstanding [53];
(iii) The root mean square error (RMSE) represents the residuals’ standard deviation (predic-
tion errors). A commonly used measure of the differences between predicted or estimated
values and observed values is ideally where the RMSE would be zero; (iv) the mean bias
error (MBE), which illustrates if a model under- or overestimates the grades, is also an
important measure to consider. Positive signs imply underestimating, while negative signs
indicate overestimation in this situation; (v) the mean absolute error (MAE) is a statistic
that quantifies the mean absolute variation between actual and predicted values; and (vi)
mean squared error (MSE) takes into consideration both the bias and the error variance but
is also more susceptible to outliers than the mean absolute error.

The accuracy and precision are represented by the RMSE, MBE, MAE, and MSE. When
these metrics are lower in value, the expected grades are closer to the actual grades [54].
The skill value (Equation (18)) test is utilized to analyze further the model performance,
which is a similar technique to that employed by [14,25]. MBE, MAE, R2, and RMSE were
used in this technique since the skill values may be subjectively determined; these tools
were selected for this strategy.

Skill value = MBE + MAE + RMSE + 100 (1 − R2) (18)

3. Case Study Area

Since ancient times, the eastern wilderness of Egypt has been renowned as a gold
mining area. The Arabian-Nubian Shield (is one of many sections of the African Continental
Crust that formed during the Pan-African Orogeny) Neoproterozoic basement rocks contain
gold in approximately 100 sites throughout the whole region covered by Precambrian
basement rocks [55–57]. The majority of these deposits were found and mined by the ancient
Egyptians (4000 B.C.), who also discovered and exploited the top portions in numerous
locations [58,59]. According to recent reports, the Sukari gold mine (SGM) is Egypt’s
first large-scale and modernized gold production operation. The gold mineralization
and accompanying mineral alteration are extensively distributed throughout the shield’s
geological history. The overwhelming bulk of the gold resources in Egypt are of the
orogenous vein-type [60]. The dominant host rocks are granites, mafic to ultramafic rocks,
metavolcanic and volcanoclastic rocks, and metasediments [61]. The primary transport
fluids are thought to be metamorphic hydrothermal fluids, while the primary source of
gold is thought to be mafic/ultramafic ophiolitic rocks [62,63].

The Quartz Ridge Vein Deposit

Quartz Ridge is a new field in the Central Eastern Desert (CED) (24◦56′ N, 34◦45′ E)
about 5 km east of the Sukari gold mine within a 160 km2 rectangular concession area. It is
important to mention that the Sukari gold mine contains resources of more than 14.3 million
ounces of gold, giving greater attention to the neighboring undiscovered prospects [64].
The Quartz Ridge area is one of the most promising areas in the Sukari concession. As a
result, it receives more attention to existing reserves and, as a result, generates a higher
income and return. The vein region is the only part of the study area being investigated.
The dominant lithology in the research region is gabbro-diorite (intermediate plutonic
rocks) with equigranular texture, which may be observed as massive and sheared; this
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host rock is impacted by shear, which provides a higher gold assay than a quartz vein
(Figure 1) [65]. The quartz vein extends along the strike for about 500 m, with a 1.5 m.
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The mineralization is contained in quartz veins across NE-trending shear zones and
their associated altered wall rocks, according to the geological context of the research region.
As for the vast majority of gold deposits in Egypt, in geochemical and geological studies of
the area that were recently published, all evidence confirms gold in the region.

4. Results and Discussion
4.1. Data Analysis and Descriptive Statistics

This case study is based on a gold mineralization deposit of the vein. This deposit
is entirely virgin because no previous mining in this specific region occurred. There are
124 exploration boreholes done in the vein region, the boreholes not in the regular grid,
total 1079 samples, with an average drilling spacing of approximately 20 m. Samples from
the boreholes were taken at varying intervals. The samples are collected from a variety of
lithological types. Diamond drilling (DD) holes and reverse circulation (RC) drill holes
have been used to sample the orebody over the last few years. Sample coordinates (easting,
northing, and elevation), sample length, rock type, and gold grade were tested. A variety
of software packages, including Microsoft Excel, SPSS, and Geovia Surpac, were utilized
to evaluate the data. In this research, Surpac was used to do modeling, statistical and
geostatistical analysis, and estimate gold.

Statistical analyses on raw data have been performed, and the results are presented
below (Table 1). In accordance with this statistical analysis, the raw samples showed a
statistically significant amount of grade variation, with a mean and standard deviation
of 0.525 and 3.671, respectively. The coefficient of variation for the gold deposit is 6.997,
indicating a significant degree of variance [66]. It demonstrates that there may be a few
outliers (up to 93.12 ppm), a significant variance (13.479), and potential estimation errors.
According to a visual examination of the histogram graph, as seen in Figure 2, the drilling
dataset consists mainly of low-grade values, with just a few extremely high-grade values in
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the data. The histogram reveals that the dataset contains over one population and that the
distribution is significantly positively skewed. When dealing with skewed distributions, a
slew of difficulties might occur. This disparity results in an imbalance in the frequencies
of sample values, which biases the estimate. Therefore, a lognormal distribution was
established for the gold assay results, and the original data values were changed by taking
the logarithm of the gold value (Figure 2). This kind of skewness is quite widespread in
the distribution of gold deposits, and it may be seen in several locations. It reveals that the
gold distribution varies from the normal distribution in several ways [67].

Table 1. Summarizes the statistical data on gold grade (Raw vs. Composited data).

Parameters Raw Data Composite Data

Number of samples 1158 1079
Min value 0.005 0.005
Max value 93.12 10

Mean 0.525 0.4065
Variance 13.479 1.499

Standard Deviation 3.671 1.224
Coefficient of variation 6.997 3.0116

Skewness 19.653 5.1019
Kurtosis 448.194 33.02

Ratio of max to mean value 117.4 24.6

Minerals 2022, 12, x  11 of 27 
 

 

0.525 and 3.671, respectively. The coefficient of variation for the gold deposit is 6.997, in-
dicating a significant degree of variance [66]. It demonstrates that there may be a few out-
liers (up to 93.12 ppm), a significant variance (13.479), and potential estimation errors. 
According to a visual examination of the histogram graph, as seen in Figure 2, the drilling 
dataset consists mainly of low-grade values, with just a few extremely high-grade values 
in the data. The histogram reveals that the dataset contains over one population and that 
the distribution is significantly positively skewed. When dealing with skewed distribu-
tions, a slew of difficulties might occur. This disparity results in an imbalance in the fre-
quencies of sample values, which biases the estimate. Therefore, a lognormal distribution 
was established for the gold assay results, and the original data values were changed by 
taking the logarithm of the gold value (Figure 2). This kind of skewness is quite wide-
spread in the distribution of gold deposits, and it may be seen in several locations. It re-
veals that the gold distribution varies from the normal distribution in several ways [67]. 

Table 1. Summarizes the statistical data on gold grade (Raw vs. Composited data). 

Parameters Raw Data Composite Data 
Number of samples 1158 1079 

Min value 0.005 0.005 
Max value 93.12 10 

Mean 0.525 0.4065 
Variance 13.479 1.499 

Standard Deviation 3.671 1.224 
Coefficient of variation 6.997 3.0116 

Skewness 19.653 5.1019 
Kurtosis 448.194 33.02 

Ratio of max to mean value 117.4 24.6 

 
Figure 2. Logarithmic histogram of gold distribution. 

Borehole samples have been examined and have been found to have an uneven 
length. It is critical to use equal support (volume) samples for all the samples in estimat-
ing. For this reason, the data were composited in equivalent size [68]. Samples data were 
constrained and composited to 1 m in length to improve relevant statistical analysis com-
parable to the mean depth range in one run—established a minimum distance of 75% of 
a composite size. The deposit of the Quartz Ridge vein has a few very high values, so to 
manage the outliers, many techniques for determining a top cut value use concepts, such 

Figure 2. Logarithmic histogram of gold distribution.

Borehole samples have been examined and have been found to have an uneven length.
It is critical to use equal support (volume) samples for all the samples in estimating. For this
reason, the data were composited in equivalent size [68]. Samples data were constrained
and composited to 1 m in length to improve relevant statistical analysis comparable to the
mean depth range in one run—established a minimum distance of 75% of a composite
size. The deposit of the Quartz Ridge vein has a few very high values, so to manage the
outliers, many techniques for determining a top cut value use concepts, such as histogram,
confidence interval, percentile, from this equation (Mean + 2 S.D.), and experience [1,69].

Furthermore, in resource evaluation, the top-cut procedure lacks defined criteria and
is susceptible to analyst judgment [70]. As a result, an upper cut-off grade of 10 ppm
was applied to the data before estimating all grades greater than 10 ppm; five samples
were identified as outliers. Samples were composited at one meter in length and capped
at 10 ppm. The summary statistics of gold composites are shown in Table 1. When the



Minerals 2022, 12, 900 12 of 26

raw data are compared to the composites after capping, the ratio of maximum to mean is
20 times lower in the raw data.

4.2. Variographic Study

A variogram and covariance functions are computed in the initial phase of using
kriging spatial interpolation techniques. The second stage is to evaluate a location that has
not been sampled.

Variograms are one of the most successful strategies for demonstrating spatial coher-
ence in geostatistical estimates [31,32]. Geostatistical estimates are based on the spatial
structure of the data. An experimental variogram is ideal for the examination of local data,
and it is created based on the fundamental measurement of heterogeneity [33]. Variograms
are measurements of spatial correlation, and they can identify anisotropy if the size of such
a spatial correlation differs with direction. To determine the anisotropy of a spatial varia-
tion, an experimental variogram must be constructed in several directions. As a result, the
anisotropic direction is established using variogram modeling in two or three orientations.
Anisotropy is divided into geometric anisotropy and also zonal anisotropy, in response to
differences in the range or domain of the variograms. Anisotropy can be used to estimate
and simulate underground conditions based on their orientation and dimensions.

4.2.1. Grade Variography Analysis for OK

A variography was initially carried out in this study to perform the resource estimates.
First, variogram analysis is constructed to confirm grade continuity using the variographic
range and find the studied element’s spatial correlation. Its use allows the identification of
the mineralization’s main directions and the subsequent creation of variograms in these
directions. Deutsch and Journel (1998) proposed that the experimental variograms were
based on three orthogonal directions. Each experimental variogram was constructed using
the mineralization envelope composite values. Establishing an omnidirectional variogram
before constructing a directional variogram was necessary to achieve a suitable sill variance
offered by the deposit.

Three different types of variograms were constructed for the Quartz Ridge vein:
omnidirectional, downhole, and directional. Table 2 shows the parameters for each of
them. The results of the modeling of the omnidirectional variogram (Figure 3) revealed
that the exponential model well represented the typical continuity for a grade of gold. With
the spherical model, the downhole variogram demonstrates distinct spatial features and
moderates variability.

Table 2. Variogram models for estimation with their characteristics.

Direction Model Model Type Nugget (ppm2) Range (m) Sill (ppm2)
Relative

Nugget Effect

Omnidirectional Exponential 0.685 26.989 0.246 0.5
Downhole Spherical 0.327 5.126 0.567 0.37
Directional Spherical 0.758 66.102 0.238 0.56

Besides improving knowledge of the deposit, the directional variogram model made it
possible to look for anisotropies in the sample. After many trials and errors, the variogram
with the best summary statistics was finally selected. After constructing these models,
the kriging method was used to estimate grades in an area not sampled. The directional
variogram model was fitted using a typical spherical model in Figure 3, and the parameters
used to construct the directional variogram are listed in Table 2. All orientations had differ-
ent mineralization continuity based on variogram models. As a result, the mineralization
was considered to be anisotropic.
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The fitted spherical model made a somewhat high nugget effect, with such a depen-
dence ratio of C0/(C0 + C1) of approximately 56 percent, indicating relatively average
variance and moderate continuity as seen in Table 2 (a percentage of the nugget to total
semivariance of between 25% and 75% shows moderate spatial dependence) [71,72].

4.2.2. Indicator Variography Analysis and Modeling

In order to assess the spatial continuity, a set of four cut-offs were utilized for the
directional indicator variograms, namely 0.3, 0.6, 0.9, and 1.5 ppm. The mine’s stated
mining cut-offs are based on waste, low, and high-grade ores. The lag spacing and angular
tolerance are chosen adequately to acquire a sufficient number of samples. Figure 4 shows
the experiment-based variograms and the models that fit them, while Table 3 shows
the parameters.

When modeling the variograms at the three different orientations, it was determined
that a spherical structure was appropriate for modeling the variograms at the three different
cut-offs (0.6, 0.9, and 1.5 ppm). However, at 0.3 parts per million (ppm), the model was
exponential, and it reported the largest range of influence (81.3 m) and the lowest nugget
effect (0.612 ppm2) of any of the four cut-offs, as shown in Table 3. Consequently, it directly
impacted the result and was associated with the lowest percentage for the relative nugget
effect (0.6), showing relatively large variation and moderate continuity.
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Table 3. Indicator variogram parameters for four specified cut-offs.

Cutoffs Variogram
Model

Nugget
Effect Sill Range Azimuth Dip

Relative
Nugget Effect
Nugget/Sill

0.3 Exponential 0.612 0.41 81.256 90 −75 0.6
0.6 Spherical 0.72 0.278 58.082 90 −75 0.72
0.9 Spherical 0.703 0.184 68.322 75 −75 0.79
1.5 Spherical 0.67 0.172 59.878 75 −45 0.79

The significant proportions of spatial variability resulting from the nugget effect show
a weak spatial correlation structure in the deposit across the studied region—the value of
the range changes in various directions, demonstrating geometric anisotropy. The fitted
spherical model (0.9 and 1.5 ppm cut-offs) had a high nugget effect, with a dependence ratio
of (sill/nugget) of approximately 79 percent, as seen in Table 3. This percentage was more
significant than 75%, which shows high variance and weak spatial dependence [71,72].

4.3. Block Modeling for Resource Estimation

Kriging gives the best estimation because it leads to the lowest standard error, the
lowest confidence interval, and the highest confidence (lowest risk) [73]. The deposit was
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well-suited to ordinary kriging as an estimated approach because the procedure worked
well enough on historical models.

Block modelling of the deposit is carried out to make resource estimation more accurate.
When a parent block was chosen, it had the following characteristics: 20 m E× 20 m N× 5 m RL.
These characteristics were chosen based on the geometry of the geological, the strategy of ex-
ploiting the spacing between the boreholes, and the compositing. The parent block covered
the interpreted mineralization domain. Sub-blocking was used to guarantee that the volume
representation was appropriate [74]. Table 4 depicts the size of the blocks used in modelling and
the coordinates boundaries. Based on the geological information available about this deposit, an
average specific gravity of 2.67 was applied to all blocks for tonnage calculations. In this study,
the grade of every block was estimated by using ordinary kriging from the vein domain.

Table 4. Shows the parameters and extents of the block model.

Measure X Y Z

Min coordinates 677,083 2,760,172 202
Max coordinates 677,703 2,760,352 342

User block size (parent) 20 20 5
Min. block size 5 5 1.25

Indicator kriging estimates were computed using ordinary kriging with parameters
derived from the indicator semi-variogram models and sample search ellipsoid, which
were defined based on the variography and data spacing.

4.4. Preparing Data for Machine Learning Approaches and Training Specifications

Several different machine learning models, including GPR, SVR, DT Ensemble, FCNN,
and K-NN, have been used to estimate the grade of the ore. These models have all been
shown to evaluate the ore grade successfully. Specifically, for grade estimation, spatial
coordinates (north (y), east (x), and (z)) and gold concentration may be utilized as the input
and output vectors for the prediction of grade, respectively. The machine learning technique
was implemented in a commercial software program in the MATLAB environment.

Using an integrated strategy that incorporates data segmentation [14] and the marine
predators algorithm (MPA), which serves as an optimization algorithm, the dataset is
separated into training and testing subsets [75]. As part of this process, the original dataset
is split into three prime segments (Seg 1, Seg 2, and Seg 3), categorized as low, medium, and
high-grade gold concentrations. These prime segments are then subdivided into sub-prime
segments; this division is carried out based on a visual analysis of the dataset histogram
plot. The data segmentation strategy is shown in a representative diagram in Figure 5.

The optimization method MPA is used to map these three data segments, namely
Seg 1, Seg 2, and Seg 3, into newly created training and testing datasets. Furthermore,
the mapping is carried out in such a way that the mean and standard deviation of the
results from the training and testing sets are similar, where the training dataset comprises
80 percent of the samples, with 863 samples, and the testing dataset comprises 20 percent of
the samples, with 216 samples. In addition, the histogram plots of the original dataset, the
training dataset, and the testing dataset are shown in Figure 6, demonstrating the similarity
in gold concentrations between the training and testing datasets, respectively.
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In order to improve network training performance, it is recommended that data vectors
be normalized. This guaranteed that the statistical distribution of data at each input and
output remained uniform, allowing for more accurate estimates [8,76]. After trial and error
with differing normalizing techniques, two preprocessing techniques can be employed for
the variables: z-score normalization and logarithmic normalization were selected because
they performed well compared to the other ways. These strategies were used to minimize
the impact of wide variations in the dataset’s variable ranges on the predictions.

The normalized observations data were randomly separated into two datasets: a
training set (which was used to iteratively construct a mapping function between both the
output and the desired output) and a test set (which was used to evaluate the mapping
function) (for network validation). Randomly dividing datasets into training and testing
sets makes sense when the datasets are significant and have an accepted nugget effect.
A network’s performance is assessed based on its generalization, which refers to how it
performs on unobserved data.

The hyper-parameters have been optimized to get the optimal parameters for each
applied ML algorithm. The optimization algorithm tries to find the suitable parameters
for each ML method (Table 5). It generates a set of initial parameters and evolves them
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to reach the best parameter values according to the prediction problem. There are sev-
eral hyper-parameters to consider, such as training iterations, learning rate, number of
hidden units, and network depth. This is a time-consuming and challenging operation.
Moreover, another significant challenge and limitation in using machine learning methods
is re-conducting the analysis with the same dataset and changing no parameters. Some
differences may be observed in the outcomes because the program randomly determines
the training and testing datasets. Bayesian optimization is a helpful method for optimizing
models, and it was chosen and used in this study [77]. A heuristic technique is used to de-
termine the optimal network, which is capable of avoiding over-fitting in terms of network
performance. For neural network training, a limited-memory Broyden–Fletcher–Goldfarb–
Shanno (LBFGS) numerical optimization technique [78] was employed to maximize the
network learning rate. However, decision tree ensembles using the bag and LSBoost ap-
proaches are used instead. In the Gaussian process regression, the rational quadratic kernel
is used. In support vector regression, the Gaussian kernel is used.

Table 5. Parameter settings for the applied machine learning algorithms.

Algorithm Parameters Settings

Common settings

Training process:
Cross validation method

A five k-folds
Algorithm parameters optimization:

Bayesian optimization algorithm
Iterations: 30

Gaussian Process Regression (GPR)

Basis function is linear
Kernel function is rational-quadratic kernel.

Kernel parameters: [0.97, 1, 1.5],
Sigma is 1.35 × 10−4.

Decision Tree Ensembles (DTE)

Ensemble method: Bag,
Minimum leaf size: 1,

Number of learners: 380,
Number of predictors: 2

Fully Connected Neural Network (FCCN)

A fully connected neural network with 290 layers
Activation function: Tanh

Maximum number of iterations: 1000
The learning rate optimizer: limited-memory

Broyden–Fletcher–Goldfarb–Shanno (LBFGS) optimization algorithm.

Support Vector Regression (SVR) Kernel function: gaussian
Kernel scale: 0.10

K-Nearest Neighbors (K-NN) K parameter is 2
Distance metric: Euclidean distance

4.5. Comparative Performance of the All Models

To ensure that the results of data analysis are as accurate as possible, it is vital to choose
a normalization method that influences the ranking issue, the range of normalized values,
achieving a uniform optimization aspect across criteria, and the validity of outcomes. The
results of a normalization procedure directly influence the outcomes of the analyses to
be done [30,79,80]. Here is a discussion of the results of the first normalization, z-score
normalization, and a comparison of those with the outcomes of the linear and non-linear
kriging procedures. Table 6 shows the results of the models run on the test dataset for
predicting the gold content of the vein deposits. The results show that all of the machine
learning and kriging algorithms performed almost equally well on the dataset.
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Table 6. Results from geostatistical analysis and the effectiveness of machine learning models for
predicting gold content (testing dataset, z-score normalization technique).

Metric GPR DTE FCNN K-NN IK OK

R 0.21 0.18 0.064 0.138 0.304 0.445
R2 0.185 0.160 0.055 0.119 0.09 0.20

MSE 0.811 0.836 0.941 0.877 1.604 1.395
RMSE 0.901 0.914 0.970 0.936 1.266 1.181
MAE 0.417 0.396 0.498 0.354 0.533 0.482
MBE −0.039 −0.094 −0.006 0.094 −0.014 −0.041

As shown in Figures 7 and 8, the values of the correlation coefficient (R) for GPR, SVR,
DTE, FCNN, K-NN, IK, and OK were 0.21, 0.18, 0.076, 0.064, 0.138, 0.304, and 0.445, respec-
tively. Compared to other models, the OK model has the highest correlation coefficient
value; on the other hand, the FCNN model has the lowest correlation coefficient value.
Similarly, the R2 values for the GPR, SVR, DTE, FCNN, K-NN, IK, and OK are 0.185, 0.160,
0.065, 0.055, 0.119, 0.09, and 0.20, respectively. This is a strong indication of the OK and
GPR’s mediocre performance when compared to other models. The FCCN had the lowest
performance of all the different kinds of models tested in this dataset. It was observed that
the R2 values for the geostatistical techniques OK and IK had deficient performance when
it comes to gold grade in the previous studies. In this study, the gold in the vein deposit has
high skewness as well as high coefficients of variation, which may explain why the model
performs so poorly, especially when compared to the findings of variogram modeling,
which showed that every variogram model had a very high nugget/sill component, mak-
ing the R2 values reasonable. Notably, the R2 values show that ordinary kriging performs
somewhat better than ML models. Nevertheless, every model’s R2 value is suboptimal,
coming in at a number lower than 0.5. There are two significant reasons for this. The first,
and most importantly, is the weak spatial correlation of the gold dataset inside the research
region and the fact that the data are extremely skewed. Another explanation shown in this
study is that the normalization approach had a significant influence only when the output
variable produced using ML was numeric.
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Similarly, the RMSE value with the GPR technique was the lowest at 0.901 and was
followed by the DTE approach with a value of 0.914, whereas the IK model had the
highest RMSE value of 1.266, making it the most accurate of all the models (Table 6).
Statistical analysis shows that the SVR algorithm performs poorly compared to the other
ML algorithms. In addition, the resulting plot in Figure 8 (the training and testing plot
for SVR) indicates that the SVR algorithm is unable to fit or understand the relationship
between the data after using the z-score normalization strategy. The modeling techniques
had modest prediction biases, except for the K-NN model, which had a high positive error
bias. The only overestimated model was the K-NN model, which had a mean error of 0.936.
The FCNN model had the lowest tendency to overestimate among the models tested, with
a mean error of −0.006.

In order to make it easier to compare the outcomes, a summary measure of perfor-
mance was developed. It enables the approaches to be ranked in terms of their overall
performance as well as their performance on the test set. It is important to note that the
skill value (Equation (18) described above) should be lower for better techniques and more
remarkable for inferior ways [14,25].

As shown in Table 7, the skill values and ranks for the various methods used on
the prediction dataset were presented. The accuracy ranking of seven methods from low
to high in the following order: OK, GPR, SVR, K-NN, IK, DTE, and FCNN. The large
variety in the R2 is responsible mainly for the disparity in skill values. In the end, the
OK model is placed first since it has the lowest skill value of all the models tested in this
study (in light of the fact that there is little difference between OK and GPR methods). As
a result, the ordinary kriging technique of geostatistics was used to estimate the resource
estimate of the Quartz-Ridge vein deposit. The OK model outperforms both the IK and the
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machine learning models. Other models’ generalization capabilities are outperformed by
the OK technique, which also delivers superior accuracy in prediction than that of other
methods. Similar observations have been made elsewhere [25], and our data are compatible
with them.

Table 7. Model performances rated according to their overall skill value.

Statistics/Methods GPR SVR DTE FCNN K-NN IK OK

Skill value 81.88 - 84.30 94.49 89.29 92.79 81.62
Rank 2 7 3 6 4 5 1

Instead of using z-score normalization, the variable preprocessing technique uses
logarithmic normalization. Logarithmic preprocessing is often used to minimize the dis-
parities between values; in this case, it applies to all the features’ values to get the desired
result. The training, testing datasets, and hyperparameters are the same as in the z-score
normalization. The further point is that both the training and test data kept their mean and
standard deviation values from the normalization technique, essentially the same as those
in the original data. Machine learning models were tested on a dataset with R2 values in
Figure 9 to prove their correctness (GPR, SVR, DTE, FCNN, and K-NN).
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When comparing both methodologies, Table 6 shows significant variances from Ta-
ble 8. The logarithmic normalization outperforms the z-score normalization in terms of
performance, and it has been shown to enhance the model while also producing the most
accurate representation of the data. The GPR model is the best in the test dataset only for
ML models using the Z-score normalization technique. Moreover, the GPR model has the
best performance and efficiency when using the logarithmic strategy and outperforms all
other models, including geostatistical methods. Meanwhile, the FCCN model maintained
the same poor performance and ranking in both comparison methodologies. As a result,
as represented by FCCN, deep learning cannot be used to assess the high skewness of the
gold vein’s resources.

Table 8. Model performance for predicting gold content (logarithmic strategy testing dataset).

Metric GPR SVR DTE FCNN K-NN

R 0.929 0.92 0.887 0.823 0.908
R2 0.73 0.70 0.58 0.34 0.66

RMSE 1.009 1.072 1.276 1.598 1.150
MAE 0.676 0.792 0.945 1.245 0.735
MBE −0.019 0.016 0.023 0.089 −0.001

It is evident that after using the logarithm technique, the R2 values have quadrupled,
with the majority of models having values of more than 55%–75%, indicating exceptional
performance [53]. As a result, adopting the logarithmic normalizing approach may increase
prediction performance and provide an advantage over other methods. Nevertheless,
the value of utilizing multiple normalization methods is not taken into consideration by
researchers. When the approach of z-score normalization was used to estimate the gold
content in this research, the unstable behavior of the SVR model was observed. On the
contrary, the findings indicated the SVR model outperformed the logarithm technique
by 70% for R2, and it is deemed the second-best model after GPR. This emphasizes the
significance of the chosen normalization strategy.

In Tables 7 and 9, based on the overall skill values, the rank of the machine learning
methods is shown to have changed from OK, GPR, DTE, K-NN, IK, FCNN, and SVR, re-
spectively, for the z-score normalization to GPR, SVR, K-NN, DTE, and FCNN, respectively,
for the logarithmic normalization. According to our research, the logarithmic approach
has superior performance and efficiency. The algorithmic methodology is used in ma-
chine learning methods to outperform traditional geostatistical techniques. The prediction
achieved using GPR was superior to those produced by all the other combined approaches.
These results are supported by those obtained using the GPR model, which has been
discussed before [11].

Table 9. Model performances rated according to their overall skill value.

Statistics/Methods GPR SVR DTE FCNN K-NN

Skill value 27.656 30.808 42.968 67.335 35.234
Rank 1 2 4 5 3

There are two reasons to expect that the outcomes will be unsatisfactory because of
the use of ordinary kriging: first, because it generates locally linear estimates, and second,
because of the smoothing effect. Smoothing happens everywhere in the model that is
produced using kriging because each grid point uses a weighted average of the samples
that are located nearby. An attempt was made to model the deposit using nonlinear machine
learning algorithms. Using the z score normalization resulted in similarly unsatisfactory
results; hence, consideration was given to a new tactic, explicitly applying the logarithmic
normalization. This investigation into Au prediction showed that ML with logarithmic
normalization performed significantly better than kriging the model. The study found the
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method itself is not the most critical factor in producing the most accurate and desirable
results when estimating the grade of highly skewed, complex geology; instead, data
processing plays the most crucial role.

Based on the findings detailed in Tables 6–9 and Figures 7–10, it is clear that the
regression method that uses a Gaussian process yields the best results overall. Figure 10
provides a visual representation of the quality of the various approaches’ estimates for
gold grade values in the western section of the Quartz Ridge vein-type. These predictions
were made using a variety of different methodologies. In conclusion, the GPR approach
is superior to the kriging method in every way. This is accomplished by supposing a
parametrized model of the covariance function and using a Bayesian technique (maximizing
the marginal probability) to estimate the optimum values for these parameters. The
Bayesian procedure achieves accurate results. Because of this, GPR uses both local and
global data. The study found the method itself is not the most critical factor in producing the
most accurate and desirable results when estimating the grade of highly skewed, complex
geology; instead, data preprocessing plays the most crucial role.
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5. Conclusions

Accurate grade prediction is crucial for effective project execution throughout the
exploration and exploitation stages of the mining process. One of the most challenging
mineralization forms to estimate and utilize economically is mineralization with a signifi-
cant nugget effect, such as gold-bearing veins. This issue was highly apparent in this study
region; hence, the research focused on estimating the vein-type deposit and applying it to
similar deposits.
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This work applied five machine learning algorithms (GPR, SVR, DTE, FCCN, and
K-NN). The machine learning algorithm’s input variables were north, east, and elevation,
while the output variable was the gold grade. Choosing the best normalizing method
was important because of the data’s sparsity and skewness. In this study, both z-score
and logarithmic normalization were used. In order to make a model and test it, two
statistically equivalent subsets were created by combining data segmentation and the
marine predators algorithm (MPA). This strategy efficiently provides subsets of data that
are statistically similar.

At the end of the study, MLA’s accuracy was compared to geostatistical approaches.
These models may be ranked by different statistical metrics based on skill levels. This
research showed that the R and R2 values improved by more than three times over at
least for all models, while an acceptable relative increase in the RMSE and MAE values
was observed, and the overall ranking is superior to the models that used the logarithmic
method. Consequently, the GPR approach outperformed all geostatistical and other ma-
chine learning methods evaluated, and it had the lowest skill value of all the strategies
investigated. In addition, the SVR model may predict gold ore sometimes. The deep
learning FCCN model cannot be relied on to be accurate. This study was used to make
improvements while preprocessing and dividing the data. In particular, this was reflected
in selecting a robust technique that can accurately estimate the gold value in a vein deposit,
ensuring a high degree of reliability and generalizability of similar deposits.
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