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Abstract: The noise suppression method based on dictionary learning has shown great potential in
magnetotelluric (MT) data processing. However, the constraints used in the existing algorithm’s
method need to set manually, which significantly limits its application. To solve this problem,
we propose a deep learning optimized dictionary learning denoising method. We use a deep
convolutional network to learn the characteristic parameters of high-quality MT data independently
and then use them as the constraints for dictionary learning so as to achieve fully adaptive sparse
decomposition. The method uses unified parameters for all data and completely eliminates subjective
bias, which makes it possible to batch-process MT data using sparse decomposition. The processing
results of simulated and field data examples show that the new method has good adaptability and can
achieve recognition with high accuracy. After processing with our method, the apparent resistivity
and phase curves became smoother and more continuous, and the results were validated by the
remote reference method. Our method can be an effective alternative method when no remote
reference station is set up or the remote reference processing is not effective.

Keywords: deep learning; convolutional neural network (CNN); adaptive sparse decomposition;
K-SVD dictionary learning; magnetotellurics; denoising

1. Introduction

The magnetotelluric (MT) sounding was proposed in the 1950s [1,2] and has become an
effective geophysical method that is widely used to study the deep underground electrical
structure [3,4]. It can penetrate highly resistive layers that are difficult to penetrate by
methods such as direct current electrical sounding, and in some exploratory work, the
detection depth may be as much as several hundred kilometers [5–7]. However, the natural
electromagnetic field observed on the earth’s surface has a very weak amplitude, strong
randomness of its components, and an extremely wide frequency range. Therefore, MT
data are easily affected by human noise, and the denoising of the observed MT data become
increasingly important [8].

There are several technologies that deal with strong electromagnetic interference, such
as the remote reference method [9], robust estimation method [10,11], and the time-series
editing method [12]. Remote reference processing is recognized as the most authoritative
method for MT data processing [13], but the method requires one or more reference stations
for synchronous observation, and the local observation data and remote reference data
must be signal-correlated while the noise uncorrelated. However, with the continuous
increase in the proportion of industrialization, it is difficult to find remote reference stations
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that meet the requirements, and the effect of the remote reference method is not always
satisfactory in practical work [14].

Robust estimation is a type of statistical method. Robust estimation and the remote
reference method are the two most commonly used methods for magnetotelluric data
processing. Generally, most robust estimation methods select data or assign different
weights to data based on the assumption that the higher the correlation, the higher the
data quality. However, most cultural noises are also correlated, and the robust estimation
method may be counterproductive when the MT data are polluted by correlated cultural
noises [15,16].

Time-series editing is a kind of direct and immediate means to remove strong interfer-
ence components from the collected data. With the continuous development of modern dig-
ital signal processing technology, time-series editing methods have received more attention,
and a series of new algorithms have been proposed, including Wavelet transform [12,17],
empirical mode decomposition [18], mathematical morphological filtering [15], sparse
decomposition [19], and their combinations. With the development of compressed sensing
technology, the sparse decomposition is increasingly used in magnetotelluric signal pro-
cessing since it has little risk of losing effective signals. Li G. et al. [19] first applied sparse
decomposition to magnetotelluric signal denoising and proposed a time-series editing
method based on sparse decomposition and mathematical morphological filtering. Later,
Li J. et al. [16] proposed a sparse decomposition method for MT data denoising based on
impulsive dictionary and niche particle swarm optimization (NPSO) to improve efficiency.
Li G. et al. [14] uses a self-learned dictionary to replace the predefined dictionary, which
improves the adaptability of sparse decomposition. Li J. et al. [20] tried to use K-SVD to
denoise magnetotelluric data and achieved good results. Sparse decomposition is also
applied to the denoising of controlled-source electromagnetic (CSEM) data. Xue et al. [21]
proposed an airborne transient electromagnetic (ATEM) data denoising method based on
K-SVD dictionary learning. Li et al. [22] proposed a wide-field electromagnetic (WFEM)
data denoising method based on shift-invariant, sparse-coding, dictionary learning. In
addition, K-SVD dictionary learning is also applied to marine CSEM (MCSEM) signal
denoising [23].

Generally, sparse decomposition performs well in MT data denoising. In particular,
the sparse decomposition method based on dictionary learning has good adaptability.
However, the stopping conditions of sparse decomposition in the existing methods are
manually determined based on experience or need to be obtained through multiple tests.
It is not only inefficient but also prone to subjective bias. In recent years, deep learning
has been widely valued in all walks of life. In the field of geophysics, deep learning
has been successfully used in palaeovalley classification by electromagnetic imaging [24],
one-dimensional electromagnetic data inversion [25,26], airborne electromagnetic signal
denoising [27], transient electromagnetic signal denoising [28], magnetotelluric signal de-
noising [29], etc. These studies show that the performance of deep learning in classification
and prediction is significantly better than that of traditional technologies. Inspired by
these developments, we plan to use deep learning to autonomously learn the features of
high-quality magnetotelluric signals from the observed data and take them as the constraint
conditions of sparse decomposition, so as to solve the problem that sparse decomposition
requires manual setting of the iteration stop conditions.

The rest of the paper is arranged as follows. Firstly, the basic principle of realizing
adaptive sparse decomposition, the whole workflow of the proposed method, and the
structure and steps of the deep convolutional neural network (CNN) are introduced. Then,
the proposed method is applied to the magnetotelluric data collected in the Lujiang–
Zongyang ore concentration area, and the validity of the method is verified. Finally,
conclusions and suggestions are given.
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2. Methods and Algorithms
2.1. Implementation of Adaptive Sparse Decomposition

Sparse decomposition usually takes the reconstruction error (RE), sparsity, or mean
square error (MSE) of the residual signal as the stop condition of iteration, and any one
that arrives first will stop. Since the natural electromagnetic signal is unknown, we cannot
calculate the reconstruction error or sparsity of the measured MT data. Therefore, MSE
is the most commonly used stop condition for sparse decomposition [16]. However, the
existing methods set MSE manually according to experience, which is the reason why
sparse decomposition can easily cause subjective deviation.

The existing literature shows that when there is pollution from human noise, there
will be significant differences in MSE, sample entropy, fuzzy entropy, and other aspects of
magnetotelluric time-series [30]. The above three parameters can be used as constraints of
sparse decomposition. However, the research results show that there is the most obvious
difference in MSE between noisy and noiseless MT data. Additionally, the calculation
of sample entropy or fuzzy entropy is quite time-consuming, which is not conducive to
the processing of massive MT data. Therefore, MSE is usually used as the constraint con-
dition of MT data decomposition [16,30]. According to the characteristics of the natural
electromagnetic source [12,31], the features of magnetotelluric time-series will not change
suddenly; that is, if there is no obvious human noise, the parameter values of the MT
time-series will not change greatly in a short time. In other words, high-quality mag-
netotelluric time-series can be used to estimate the characteristic parameters of adjacent
time-series. This is the key to our adaptive sparse decomposition; that is, we use the MSE
of adjacent high-quality time-series as the stop condition of iteration of noisy fragment
sparse decomposition.

As shown in Figure 1, we divide a section of Ex component data with 3750 sampling
points into 50 fragments. The dataset was collected in the Lujiang–Zongyang ore concen-
tration area with a sampling rate of 150 Hz. Each fragment is a sample with a length of
75 sampling points. Then, each fragment was carefully screened and marked as a high-
quality fragment or noisy fragment. Finally, the MSE of each fragment was calculated, and
the MSE scatter diagram is drawn in chronological order (see Figure 2). It is clear that the
MSE values of high-quality fragments at different time locations are very close, indicating
that the scheme of using high-quality fragments to estimate the MSE of noisy fragments is
feasible. To avoid the loss of effective signals as much as possible, we took the maximum
MSE value in the high-quality fragments as the MSE of the noisy fragments in the same
data set. In this example, the maximum MSE value of the high-quality fragments is the
tenth sample, and its MSE is 701.4. Therefore, when sparse decomposition is performed for
noisy fragments, the stop condition of iteration is that MSE is equal to 701.4. As the number
of iterations increases, the noise removed gradually increases, and the MSE of the residual
signal gradually decreases. When the MSE of the residual signal is less than or equal to
701.4 after an iteration, the iteration is stopped, and the residual signal at this time is the
denoised signal. In this way, most of the large-amplitude cultural noises can be removed,
and the loss of effective signal can be avoided as much as possible.

2.2. Method Flow

The complete process of the adaptive denoising method proposed in this paper is as
follows (Figure 3). Firstly, the deep convolutional neural network is used to classify the
observed data into noisy fragments and high-quality fragments. Then, the MSE of each
high-quality fragment is calculated. Subsequently, the maximum MSE value is taken as
the iterative stop condition of sparse decomposition, and the noisy fragment is denoised
by sparse decomposition in order to obtain the denoised fragment. Among them, the
redundant dictionary used in the sparse decomposition is K-SVD dictionary learning, and
the reconstruction algorithm is the orthogonal matching pursuit (OMP) [16].
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2.3. Deep Conventional Neural Networks (CNN)

Research on convolutional neural networks can be traced back to the neocognitron
model proposed by Fukushima [32]. He designed the neural network after imitating the
visual cortex of living things. Neocognitron, a neural network with a deep structure, is one
of the earliest deep learning algorithms [33]. Its hidden layer consists of S-layer (Simple-
layer) and C-layer (Complex-layer) alternately. The S-layer unit extracts image features in
the receptive field. The C-layer unit receives and responds to the same features returned by
different receptive fields. The S-layer-C-layer combination of neocognitron enables feature
extraction and screening, which also partially implement the functions of the convolution
layer and the pooling layer in the convolutional neural network. It is credited with the
pioneering research that inspired convolutional neural networks [34].

The CNN network constructed in this paper includes an input layer, four convolution
layers, two pooling layers, a flattening layer, two fully connected layers, a random dropout
layer, and an output layer. The specific construction is shown in Figure 4. The first
layer is the input layer where the data enter the neural network after preprocessing. The
second, third, fifth, and sixth layers are one-dimensional convolutional layers (Conv1D).
The essence of convolution is to convolve a binary function into a unary function. The
convolution operation can filter out the useless signal or noise while strengthening the
useful feature information. Multi-layer convolution is used to continuously learn the
data features of the upper layer input. After multi-layer convolution processing, complex
features of the data can be fully learned. The fourth and seventh layers are the one-
dimensional maximum pooling layer (MaxPooling1D), also known as the down-sampling
layer, which can reduce the dimensions of the data information. The dimensionality
becomes higher after convolution. Therefore, a pooling layer is established to achieve the
same amount of data feature information and reduce the dimensionality, redundancy, and
complexity of subsequent calculations. The data output by the previous convolutional layer
are filtered, and features are extracted by max pooling. The remaining eigenvalue signal
model will be simpler than the original signal model because the unwanted signals are
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filtered out, which can improve the robustness of the extracted features. The eighth layer is
the flattening layer, which converts the multi-dimensional data into one-dimensional data
and then transfers the one-dimensional data to the fully connected layer. The ninth and
eleventh layers are fully connected layers, which are mainly responsible for merging and
sorting out the feature information extraction after pooling and saving useful information.
The disadvantage is that some location information may be lost. The tenth layer is a random
dropout layer. When connected in this way, some neurons can be suspended and no longer
participate in training. On the one hand, it can simplify the neural network, and on the
other hand, it reduces the dependence between neurons to prevent overfitting. Finally,
the data are sent to the fully connected layer. The twelfth layer is the output layer, which
outputs the processed data in the fully connected layer.
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ReLU is used as the activation function in the convolutional layer. The ReLU function
has the characteristics of one-sided suppression and sparse activation, which can make the
network training faster and alleviate overfitting. The classification of magnetotelluric data
in this paper is a binary-class single-label problem; therefore, the Softmax function is used
in the last fully connected layer to be activated.

2.4. K-SVD Dictionary Learning

Dictionary learning is a kind of sparse representation method and also a class of
data-driven machine learning algorithm. Dictionary learning can be traced back to the
Sparsenet dictionary learning method proposed by Olshausen et al. in 1996 [35]. It uses the
maximum-likelihood estimation learning dictionary to realize the sparse representation
with only a few atoms. Engan et al. [36] proposed the method of optimal directions (MOD)
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dictionary learning based on the Sparsenet dictionary learning. Aharon et al. [37] proposed
the K-SVD dictionary learning method, which has the outstanding advantage of high
efficiency by alternately updating the dictionary and coefficients. The K-SVD dictionary
learning is the most commonly used dictionary learning method and has been improved
and optimized many times. It is currently widely applied in seismic signal processing, MT
signal processing, WFEM signal processing, and ATEM data processing [19,20].

K-SVD dictionary learning is a generalization of the K-means algorithm. Its essence is
to update the coefficients of dictionary and sparse representation alternately by singular
value decomposition under the restriction of sparse constraints.

Given the training data Y, each column y of Y represents a training sample. The
matrix Y = {yi}N

i=1(N � K) is a set of N training samples, and x represents the sparse
coefficient vectors corresponding to each training sample y. The matrix D represents the
overcomplete dictionary obtained by training. Therefore, the process of dictionary learning
can be expressed by an optimization problem:

min
D,X

{
‖Y− DX‖2

F

}
s.t ∀i, ‖xi‖0 ≤ T0 (1)

where Y = {yi}N
i=1(N � K) is the objective function, D ∈ R(n∗K) (N � K) is the sparse

representation dictionary, X = {xi}N
i=1 is the sparse representation coefficient. ‖•‖F adopts

the Frobenius norm estimation error; ‖•‖0 represents the 0 norm estimation error, that is,
the number of non-zero elements. T is the maximum number of non-zero elements in the
sparse coefficient.

The above optimization problem is usually implemented by alternating updates,
including two stages of coefficient solving and dictionary updating. Coefficient solving
is also called sparse coding. According to the dictionary obtained at random, the OMP
algorithm is used to solve the sparse coefficient vector xi of each training sample yi:

min
xi

{
‖yi − Dxi‖2

2

}
s.t. ∀i, ‖xi‖ ≤ T0 (2)

Since the OMP reconstruction algorithm has been presented many times in our previ-
ous papers [16], we will not repeat it here. In the step of dictionary update, fix the known
sparse coefficient vector xi and update the kth column dk of the dictionary D. Let the kth
row vector multiplied by D in the sparse coefficient X be x; then, the objective function can
be written as:

‖Y− DX‖2
F =

∥∥∥∥∥Y−
K

∑
j=1

djx
j
T

∥∥∥∥∥
2

F

=

∥∥∥∥∥
(

Y−∑
j 6=k

djx
j
T

)
− dkxk

T

∥∥∥∥∥
2

F

(3)

where xj
T is the row j in the sparse matrix X.

We define Ek as the error generated by all atoms except the kth atom; then, it can be
expressed as:

‖Y− DX‖2
F =

∥∥∥Ek − dkxk
T

∥∥∥2

F
(4)

The error can be expressed as:

Ek = Y−∑
j 6=k

djx
j
T (5)
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Definition ωk =
{

i
∣∣∣1 ≤ i ≤ K, xk

T(i) 6= 0
}

represents the index of Y using atom dk. In
order to ensure the convergence of the results, we define Ωk as a matrix of N ×ωk, where
(ωk(i), i) is a non-zero and the rest are zero. Equation (4) is equivalent to:∥∥∥EkΩk − dkxk

TΩk

∥∥∥2

F
=
∥∥∥ER

k − dkxk
R

∥∥∥2

F
(6)

where xk
R = xk

TΩk represents the row vector of xk
T with zero-valued entries removed, and

ER
k = EkΩk represents the error column of atom dk used in the coefficient encoding process.

The singular value decomposition (SVD) method is applied to ER
k , and the following

decomposition expression is obtained:

ER
k = U∆VT (7)

We first update dk in the initial dictionary by decomposing the first column of U. After
this, the sparse representation coefficient xk

R is updated by the product of the first column
of the matrix V and ∆(1, 1). Once the OMP sparse decomposition reaches the specified
threshold, we stop the iteration and obtain the output.

3. Model Training and Simulation
3.1. Sample Labeling and Model Training

Samples are datasets for model training. Good training results mainly depend not
on how good the model is, but more on the quantity and quality of the samples used for
training. Zhang et al. [29] found that the recognition accuracy of MT data is positively
correlated with the length of samples, but the training time will rise significantly with
the increase in the sample length. The study also shows that when the sample length is
64 sampling points, very high classification accuracy can be obtained with high efficiency.
The acquisition of MT data is sometimes discontinuous. Therefore, we set the sample length
to 75 sampling points, a value close to 64, in order to not destroy the timing information of
the original signal and to obtain high classification accuracy and efficiency. The observation
duration of one sample is 0.5 s at a sampling rate of 150 Hz. Figure 5 shows some typical
samples in the training set. It is found that the high-quality sample has a slow change in
signal amplitude over time and a small average amplitude. Noisy samples often have shock-
like structures with strong instantaneous energy. The average amplitude is significantly
larger than the high-quality signal. Its magnitude is sometimes even several orders larger
than the high-quality signals. It is well known that high-quality and noise-sample libraries
have obvious differences, which are easily manually labeled or learned by the machine.

The training set of this paper is obtained from the measured data of the Lujiang–
Zongyang ore concentration area. We make the training set of the electric channel data and
the magnetic channel data separately due to the obvious difference between them. The
number of electric channel samples is 14,000, including 7000 high-quality and 7000 noise
samples. The number of magnetic track samples is 11,128, which includes 5564 high-quality
and 5564 noise samples, respectively. A total of 6000 high-quality and 6000 noisy samples
were selected from the electric channel sample library as training sets. The remaining
high-quality data and noisy data were used as the validation set. The magnetic channel
training set contains 5000 high-quality samples and 5000 noisy samples. The remaining
samples were also reserved for the validation set.

The resulting sample library data were imported into the model for training. We
adjusted the model or the sample library according to the training results. The training
results of the electric channel data are shown in Figure 6a, including a training accuracy
of 99.4%, a training loss of 0.016, and validation accuracy of 99.8%, and a validation loss
of 0.015. The training results for the magnetic channel data are shown in Figure 6b. The
training accuracy was 99.72%, and the training loss was 0.019. The validation set accuracy
was 99.4%, and the validation loss was 0.014.
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Figure 6. Results of the model training. (a) The training results of electric channel samples.
(b) The training results of magnetic channel samples. The red and green solid lines represent
training accuracy and training loss, respectively; the blue and black dotted lines represent validation
accuracy and validation loss, respectively.

3.2. Simulation

We added some square-wave noise, spikes, and charge—discharge-like noise to the
simulated noise-free MT signal and then processed the noise-added signal with the pro-
posed method for a quantitative evaluation of the effectiveness. Figure 7a shows the result
of the trained model’s identification of the simulated noisy MT data. Figure 7b shows
the distribution of the MSE for each sample. Obviously, the high-quality signals are all
accurately identified, and the MSE of the high-quality signals is smaller than the noise-
containing signal. The largest MSE in the high-quality signal is the eighth sample, with an
MSE of 2.46. Therefore, in the subsequent dictionary learning, the MSE less than or equal
to 2.46 will be used as the iteration stop condition.
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We took an MSE less than or equal to 2.46 as the constraint condition of K-SVD sparse
decomposition and then denoised the noisy signal automatically. We compared this signal
with the original noise-free signal and the signal obtained by Wavelet threshold denoising
(hereinafter referred to as Wavelet). As shown in Figure 8, both Wavelet and the method
proposed in this paper could remove most of the artificially added noise. However, the
Wavelet method obviously removed some low-frequency signals because the denoised
signal became more stationary. It can be seen from Table 1 that the effect of our new method
is obvious and all-round superior to the Wavelet threshold denoising. The signal-to-noise
ratio (SNR) improved from −11.6127 dB to 8.2648 dB. The increase is more than 19.87 dB.
The MSE decreased from 8.6797 to 0.8803, the normalized cross-correlation (NCC) [22]
increased from 0.2366 to 0.9251, and the reconstruction error (RE) decreased from 3.8075 to
0.3862. The simulation results also show that our method is suitable for the suppression of
different types of noise.
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Figure 8. Denoising effect of the simulated signal. (a) Noise-free signal. (b) Noisy signal. (c) Signal
denoised by the Wavelet threshold method. (d) Signal denoised by the CNN-KSVD method.

Table 1. Statistics of denoising results with different methods.

Methods SNR MSE NCC RE

Noisy −11.6127 8.6797 0.2366 3.8075
Wavelet 5.9044 1.1552 0.8673 0.5067

CNN-KSVD 8.2648 0.8803 0.9251 0.3862

Other main parameters of K-SVD in the experiment are set as follows. The number of
atoms is 400, and the sparsity is set to 12. The influence of these parameters on the results
is much smaller than the constraint condition of MSE. The Wavelet threshold denoising
is performed at level 5 with db1. We used a hard threshold because it produced better
SNR than soft thresholds in the experiment. The threshold selection rule is ‘minimaxi’, and
single estimation rescaling is selected. All parameters were the best after many attempts.

4. Case Analysis
4.1. Time-Series Analysis

To verify the effectiveness of the proposed method in actual magnetotelluric data
processing, we applied the proposed method to the time-series with strong interference
collected in the ore-concentration areas of Lujiang–Zongyang. Figure 9 shows the recogni-
tion results of the Ex component of the real site BL14173A. It can be seen that the dataset
was polluted by very strong and persistent cultural noise. In addition, a few spikes were
marked in blue, which are noisy segments not accurately identified by the model. Since
there are few instances of unrecognized noise and they are small in amplitude, the noise
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has little impact on the results. Figure 10 presents a partial segment of the results shown in
Figure 9. Obviously, all large-amplitude cultural noises have been accurately identified.
Compared with the results of manual marking, it was found that the recognition accuracy
was as high as 95.66%.

 

2 

 
Figure 9 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9. Recognition results of the Ex component of the real site BL14173A. The red line indicates
noisy data, and the blue line indicates high-quality data.

 

3 

 
Figure 10 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. Partial display of identification results of the Ex component in the real site BL14173A. The
red line indicates noisy data, and the blue line indicates high-quality data.

As shown in Figure 11, the regular impulse waveform structure in the original signal
is obviously not an effective magnetotelluric signal, because it is inconsistent with the char-
acteristics of the magnetotelluric time-series that change slowly with time [7,11]. Therefore,
it can be determined that the data of the four components collected in the site BL14182A are
strongly and continuously polluted by the cultural noise. After using the method proposed
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in this paper, the noise of the large amplitude was accurately removed, and the high-quality
fragment was not damaged. The amplitude and characteristics of the denoised fragments
were very similar to those of high-quality fragments, indicating that the proposed method
has high reliability.

 

4 

 
 

 
Figure 11 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Denoising results of real MT data collected in the station of BL14182A. (a–d) represent the
Ex, Ey, Hx, and Hy components, respectively. The red line represents the raw data and the blue line
represents the high-quality data obtained by our new method.

We used the short-time Fourier transform to obtain the time-frequency spectrum of
the signal shown in Figure 11. As shown in Figure 12, the time-frequency spectrum of the
raw signal is very energetic below 40 Hz in some locations, which is inconsistent with the
characteristics of the random distribution of natural MT signal energy. In other words, the
noise is very strong and in the same frequency band as the effective signal. The denoised
signal had no energy concentration period, which is closer to the characteristics of high-
quality magnetotelluric signals. The time-frequency spectrum before and after denoising
shows that our method completely removed the cultural noise in the same frequency band
as the effective signal.
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As shown in Figure 13, the original signal was polluted by continuous and strong
charge–discharge-like noise, the noise profile extracted by the method proposed in this
paper was smooth, and the amplitude corresponding to the time position of the high-
quality fragment was 0, indicating that the proposed method removed the noise while
not losing the effective signal in the high-quality fragment. The signal after denoising
did not have a regular signal, and the amplitude changed slowly with time, which is in
line with the characteristics of a pure magnetotelluric time-series. This example shows
that the method proposed in this paper accurately identifies and effectively removes large-
amplitude cultural noise, and deep learning effectively replaces the manual operation and
automatically obtains the appropriate threshold.

Similarly, we analyzed the time-frequency spectrum of the denoised results. As shown
in Figure 14, the noise of the original signal was mainly concentrated in the part below
40 Hz, and it can be seen that the effect of this noise on the resistivity and phase curve was
also mainly concentrated in the part below 40 Hz. The time-frequency spectrum energy of
the extracted noise signal is concentrated in the noisy period, and the energy is weak in the
rest of the time period. After denoising, there is no period of abnormal-large energy in the
signal, which shows that the proposed method accurately eliminates the noise.
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Figure 13. The denoising effect of a segment in the Ex component of the station BL14173. (a) Original
signal. (b) Extracted noise. (c) Denoised signal.
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It is worth noting that the observation time of the measured MT dataset used in this
paper is about 70 min, and the length of the data of one channel is about 63,0000 sampling
points. It takes about 192 s for CNN to train in an ordinary laptop (CPU, Intel i7-11800H;
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RAM, 16 GB; GPU, not called), but it only takes 8 s to call the trained model to complete
the recognition of a channel’s data. The subsequent K-SVD denoising also takes only 2 s.
Therefore, our method is efficient enough to deal with the massive MT data.

4.2. MT Response Analysis

In order to verify the reliability of the method, we calculated the magnetotelluric
response from the processed data and compared it with the results of the remote reference
method. The remote reference station is located on a sparsely populated hill in Zongyang
County, Tongling City. It is about 45 km away from the local observation station. There is
no obvious ambient noise near the remote reference station, and the apparent resistivity and
phase curves are smooth. We selected three typical measured sites, BL14173A, BL14180A,
and BL14182A, to display the sounding curves.

Figure 15 shows the apparent resistivity and phase curves calculated from the data
collected at the station BL14180A in Lujiang–Zongyang ore concentration area in 2013. The
recording time lasts about 70 min, and the data were polluted by strong cultural noise. The
MT response calculated from the original data has a sharp jump and a serious distortion
in the part below 10 Hz. The convergence error of such a curve is too large to fit during
the inversion. The curves obtained by our method are obviously improved. Except for the
part below 1 Hz, the other curves are continuous and smooth. The results obtained by our
method almost coincide with those obtained by the remote reference method except for the
part below 1 Hz. This shows that the result of my method is reliable.
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Figure 15. The apparent resistivity and phase curves of real site BL14180A. Rxy and Ryx in the upper
panels represent the apparent resistivity in the XY direction and YX direction, respectively; Pxy and
Pyx in the bottom panels represent the phase in the XY direction and YX direction, respectively; the
red hollow circle represents the curves calculated from the original noisy data (Original), the blue
solid line represents the curves treated by the remote reference processing (RR), and the black solid
circle represents the curves calculated using the data denoised by our method.

Figure 16 shows the MT response curves of the station BL14173A. The original response
curves have obvious distortion below the 1000 Hz in the YX direction, and there are many
outliers. Obviously, the sounding curves in this direction are of poor quality. After the
processing of the remote reference method, the curves were significantly improved. Except
for the visible distortion at 1 Hz and below, the curves of other parts were relatively smooth.
The results obtained by our method are generally consistent with the remote reference
processing in the part greater than 1 Hz, but the continuity of the curves around 1 Hz and
below are better than that achieved with the remote reference method.
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Figure 16. The apparent resistivity and phase curves of real site BL14173A. Rxy and Ryx in the upper
panels represent the apparent resistivity in XY direction and YX direction, respectively; Pxy and Pyx

in the bottom panels represent the phase in XY direction and YX direction, respectively; the red
hollow circle represents the curves calculated from the original noisy data (Original), the blue solid
line represents the curves treated by the remote reference processing (RR), and the black solid circle
represents the curves calculated using the data denoised by our method.

In the XY direction, the original sounding curves are relatively smooth and are easy to
be mistaken for high-quality curves. However, this is a typical feature caused by serious
near-source noise [38], because its apparent resistivity curve shows a 45◦ asymptote rise in
the part below 40 Hz, and the phases are almost all 0. The conclusion can also be proved by
the time-frequency spectrum shown in Figure 14, because there is intensive noise between
0 and 40 Hz. After the processing of the remote reference method, the near-source effect
from 5 Hz to 40 Hz is significantly improved, the curves are smooth, and the phases are
no longer 0. However, the part below 5 Hz still has an obvious upward trend of 45◦, and
some phases are still very close to 0. After processing by our method, except for the visible
distortion of the phase curve below 2 Hz, the result of the other parts is obviously better
than that of the remote reference processing. The similarity between the XY direction curve
and the YX direction curve is high, which also indicates the reliability of the results to a
certain extent.

As shown in Figure 17, the apparent resistivity curves at the station BL14182A cal-
culated using the original data show a 45◦ asymptote rise in the part below 40 Hz, and
the corresponding phase curves slowly approach 0 or −180◦, which is obviously caused
by serious near-source interference. In addition, the dead-band curves near 2000 Hz also
have obvious distortion. After the remote reference processing, the dead-band curves near
2000 Hz were significantly improved, but the near-source effect was not improved. Nev-
ertheless, after processing by our new method, the near-source effect of the curves below
40 Hz are greatly improved, the sounding curves above 1 Hz are generally smooth, and
most of the phase values return to the normal range. Although we cannot confirm that
the results obtained by our method are accurate, we can be sure that our results are more
reasonable than the results of the original sounding curves and the curves obtained by the
remote reference method.
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Figure 17. The apparent resistivity and phase curves of the real site BL14182A. Rxy and Ryx in the
upper panels represent the apparent resistivity in XY direction and the YX direction, respectively;
Pxy and Pyx in the bottom panels represent the phase in the XY direction and the YX direction,
respectively; the red hollow circle represents the curves calculated from the original noisy data
(Original), the blue solid line represents the curves treated by the remote reference processing (RR),
and the black solid circle represents the curves calculated using the data denoised by our method.

5. Conclusions

The existing sparse decomposition denoising methods need to manually set the it-
eration stop condition, which not only has a large workload and time consumption but
also is prone to subjective bias. More importantly, these methods cannot realize batch data
processing because each dataset has different characteristics. Therefore, this paper uses
the deep convolution neural network to autonomously learn the features of high-quality
magnetotelluric data from the observed time-series and takes them as the constraints of
subsequent dictionary learning to realize the adaptive sparse decomposition. Based on this,
we propose a new, adaptive magnetotelluric noise cancellation method called CNN-KSVD.

The effectiveness and reliability of the proposed method were verified by the analysis
of simulation data and measured data. This method was found to be able to greatly increase
the signal-to-noise ratio of magnetotelluric data and improve the estimation of apparent
resistivity and phase. The examples also show that our method can achieve the comparable
effect as the outcomes of processing with a good remote reference. When there is no remote
reference station or the remote reference processing is not effective, our method can be
used as an effective alternative.

The method does not need manual intervention and uses completely unified parame-
ters and standardized processing for all data so that the method enables batch processing
of sparse decomposition denoising for magnetotelluric data to be possible, which is hard to
realize using the existing sparse decomposition denoising method. Furthermore, the fully
automated processing completely eliminates subjective bias.

Sparse decomposition often has the disadvantage of low efficiency, but the K-SVD
dictionary learning method used in this paper only takes a few seconds to process an
AMT data set with an observation time of about 70 min. CNN needs hundreds of seconds
or even thousands of seconds to train the model, but in actual processing, it only needs
to call the trained model to learn the parameters, and this process will not exceed a few
seconds. Therefore, this method has high efficiency and brings great convenience to mass
magnetotelluric data processing.

Sparse decomposition methods, including K-SVD, are suitable for removing noise with
certain morphological differences from the signal, so our method may not be competent
to eliminate Gaussian white noise from MT data. In most cases, the MT response curves
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obtained by our method are not very smooth below 1 Hz, which shows that the denoising
accuracy of the method has room for improvement. The recognition effect of our method is
also not perfect, which is mainly related to the quantity and quality of training samples,
and the accuracy of dictionary learning. In addition, there is a certain relationship with
the network structure. The denoising effect of the method is expected to be improved by
further expanding the number of samples and optimizing the network structure. This is
the focus of our follow-up study.
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