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Abstract: In this study, 40Ar/39Ar geochronology and major and trace element data were presented
for Paleogene basaltic rocks from the Jiangling Basin, China. The volcanic rocks erupted at ca.
53.19–60.78 Ma and belonged to the sub alkaline series. These basaltic rocks are generally character-
ized by enrichment in large-ion lithophile elements (LILEs) and light rare earth elements (LREEs)
((La/Yb)cn = 6.14–11.72) and lack of Eu anomalies (Eu/Eu* = 0.98–1.09), similar to ocean island
basalts. The geochemical signatures of these rocks are similar to hotspot-related Paleogene volcanic
rocks in the North China Block and late Cenozoic volcanic rocks in Southeast China. The Cenozoic
lithospheric mantle, as well as the Mesozoic basalts that are beneath the northern Yangtze Blocks,
might be inherited from the Mesozoic lithospheric mantle. The basaltic rocks from the Jiangling Basin
in the northern Yangtze Block were generated from the partial melting of EMII (enrichedmantleII)-like
lithospheric mantle due to the intracontinental extension.

Keywords: Paleogene; volcanic rock; intracontinental extension; Jiangling Basin; geochronology

1. Introduction

Intracontinental volcanic fields are generally characterized by prolonged activity over
periods of millions of years [1–10]. They can generate large shield volcanoes and lava flow
fields [11,12], or primarily consist of monogenetic volcanic vents [13,14].

In addition, the fundamental characteristics of volcanic fields can also provide infor-
mation on magma generation [15–19], the timing and frequency of eruptions [4,20,21], and
the distribution of volcanoes [22]. The volcanic research can also give some information on
the relationship of the volcanoes, basins, faults, and rift zones [10,23–27].

During the Cenozoic, volcanic rocks and extensional tectonics within graben basins
occurred widely in the Eastern and Central regions of China. To date, most studies have
focused on the Eastern coastal areas, including the area from Northeastern China to the
South China Sea Basin, and analyzed the origin of these Cenozoic volcanic basaltic rocks
and the differences in lithospheric mantle properties in the North and the South China
blocks [28–47]. The studies found that the lithospheric mantle of Northeastern China and
the North China Block had the features of enriched mantle I (EMI)-type components [34,48]
and that the lithospheric mantle of the Southeastern coast and the South China Sea Basin
had features of enriched mantle II (EMII)-type components [31,33,35,49,50].

However, in the central region of China, especially on both sides of the Qinling–Dabie
orogenic belt, the understanding of the differences in the properties of the lithosphere since
the Cenozoic between the South China and the North China blocks remains incomplete
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because the Cenozoic volcanic outcrops have so far provided limited information [33,51].
Therefore, we have selected the volcanic rocks from the Jiangling Basin to the south of the
Dabie Mountains to perform more systematic chronological and geochemical research. We
aim to understand the timing, petrogenesis and geodynamic setting of the basaltic rocks
and to discuss the implications of our results in the context of the mantle source region
during the Cenozoic.

2. Geological Background, Field Observations, and Petrography

During the Cretaceous to Cenozoic, intraplate rifting and magmatism are widely
developed in Eastern China [52,53]. They migrated eastward and ceased during the Late
Cenozoic. The geodynamic origin has been attributed to the subduction and rollback of the
paleo-Pacific Plate and the India-Asia collision [54,55].

The Jiangling Basin is located in the south of the Dabie Mountain (Figure 1), which
represents a Cenozoic rift basin with an area of approximately 28,000 km2. Because of
the Qinling-Dabie orogeny and orogenic extensional tectonics that impacted the basin,
the region has experienced a developmental history of continental basins filled with thick
terrigenous clastic series from the Middle Triassic. Most of the mafic volcanic rocks are
buried in the basin with only small exposures at the surface (Figures 1 and 2) [56]. The
volcanic activity in the basin can be divided into two cycles: late Mesozoic volcanics and
Paleogene volcanics [56].
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Figure 2. Field photographs showing the various lithologies of the volcanic rocks in the Jiangling
Basin. (a) Fresh volcanic rocks; (b) Tertiary sedimentary rocks overlapping volcanic rocks with
columnar jointing; (c) Vesicular volcanic rocks; and (d) Volcanic rocks with columnar jointing.

The Paleogene volcanics are fine-grained and occasionally porphyritic consisting of
plagioclase, chlorite, and opaque minerals (Figure 3). Plagioclase occurs as small laths and
a few microphenocrysts. The plagioclase laths commonly show quench textures, especially
along the peripheries of the pillows. Chlorite is mainly present in the groundmass and
formed at the expense of pyroxene. The laths are mostly filled with chlorite and quartz and
some are filled with calcite, epidote, and prehnite.
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(a) intergranular basalt. Olivine undergoes intense alteration, chloritization, and iddingsitization;
perpendicular polarized light. Plagioclase is colorless and transparent and has two groups of complete
cleavage; long strip, polarization microscope common twin, interference color level gray, negative
low protrusion. (b) Basalt is mainly composed of plagioclase (Pl) and pyroxene (Py), with weak
alteration pairs; perpendicular polarized light. Pyroxene is the most common mineral in ultrabasic
rocks and mafic rocks. It is greenish black and has two groups of nearly vertical cleavage, often
forming irregular stepped fractures. (c) plane polarized light of (a). (d) plane polarized light of (b).

3. Sampling and Analytical Methods

We selected the freshest Paleogene volcanic samples (n = 21) for whole-rock geochem-
ical analysis. Each sample was carefully cleaned, crushed, and then ground in an agate
mortar to pass through a 200-mesh screen. The major elements were determined on fused
glass beads via X-ray fluorescence (XRF) spectrometry. The analyses were performed in
the National Research Center for Geoanalysis of Chinese Academy of Geological Sciences.
The analytical accuracy was estimated at 1% for SiO2 and 2% for the other oxides. Trace
elements, including rare earth elements (REE) and high field strength elements (HFSE),
were determined by inductively coupled plasma-mass spectrometry (ICP-MS). The analy-
ses were performed in the National Research Center for Geoanalysis of Chinese Academy
of Geological Sciences. Two national standards (GSR3 and GSR5) and three internal stan-
dards were measured simultaneously to ensure the consistency of the analytical results.
Analytical uncertainties were estimated at approximately 10% and 5% for trace elements
with abundances of <10 ppm and >10 ppm, respectively.

Water and CO2 contents were determined by gravimetric techniques in which the
sample was heated in a closed container and the water vapor was collected in a separate
tube, condensed and then weighed—the detection limit for H2O and CO2 was 0.01 wt.%.

To precisely constrain the formation age of the volcanic rocks, we performed 40Ar/39Ar
stepwise laser heating experiments. Selected samples (n = 9) were purified and crushed,
repeatedly sieved to uniform mineral grains of 0.5–2 mm, washed in an ultrasonic bath
of distilled water for 1 h, and then dried. The argon isotopes were analyzed on a GV
Instruments 5400® mass spectrometer with a secondary electron multiplier (Balzers SEV217)
under the pulse counting mode and a coherent CO250-W laser at the State Key Laboratory of
Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences.
The experimental methods and procedures have previously been described [57,58]. The
samples and a monitor standard ZBH-25 biotite with an assumed age of 132.5 Ma [59,60]
were irradiated at the 49-2 reactor in Beijing for 48 h. The correction factors for interfering
argon isotopes derived from Ca and K were as follows: (39Ar/37Ar) Ca = 8.984 × 10−4,
(36Ar/37Ar) Ca = 2.673 × 10−4 and (40Ar/39Ar) K = 5.97 × 10−3. The extraction and purifi-
cation lines were baked out for 20 h at 150◦C with heating tape, and the sample chamber
was baked out with a furnace. The static blank of 40Ar after 5 min was approximately 2 mV.
The experiments began and ended with cold blank analyses, and cold blanks were also
measured after every four-step sample analysis. The released gas was purified for 5 to
8 min by two Zr/Al getter pumps operated at room temperature or approximately 400 ◦C.
The purified gas was then analyzed.

Whole-rock Sr, Nd, and Pb isotopic compositions of sixteen samples were analyzed
using a Finnigan Triton thermal ionization mass spectrometer at the modern analysis
center of the Nanjing University. The detailed procedures were described in Pu et al.
(2005). 86Sr/88Sr = 0.1194 and 146Nd/144Nd = 0.7219 were used for the mass fractiona-
tion corrections of Sr and Nd isotopes, respectively. Nd standard JNDi-1 yielded 143Nd/
144Nd = 0.512117 ± 0.000006 (2σ) and Sr standard NBS-987 gave 87Sr/86Sr = 0.710252 ± 0.000007
(2σ). Pb isotopes were given relative to the standard NBS-981 values of 206Pb/204Pb = 16.9410,
207Pb/204Pb = 15.4944, and 208Pb/204Pb = 36.7179, as shown in Collerson et al. (2002) [61].
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4. Results
4.1. Whole-Rock Major Elements

A total of 21 samples of volcanic rocks were analyzed for major elements and trace
elements, as shown in Table 1.

The Jiangling volcanic rocks have SiO2 contents of 50.3–54.3 wt.% (Figure 4), which
is typical of moderately evolved basalts to andesites. They have moderate contents of
TiO2 (1.76–2.0 wt.%) and nearly constant contents of MgO (4.07–6.84 wt.%). Major element
variations against MgO are shown in Figure 5. The Al2O3, SiO2, and Na2O contents of
most samples increase with the decreasing MgO values, which is consistent with low-
pressure fractional crystallization of clinopyroxene and plagioclase. Nevertheless, the
limited variation in MgO, Cr (162–218 ppm) and Ni (96.4–144 ppm) suggests limited
magma differentiation.

In the Na2O + K2O vs. SiO2 diagram (Figure 4a), the volcanic rocks is plotted in the
field of basalt-andesite. The Jiangling volcanic samples have been subjected to varying
degrees of alteration and have medium to relatively high loss on ignition (LOI) values of
0.51–4.88 wt.%. The samples could have affected the fluid-mobile elements, e.g., Na, K, Rb,
Ba, and Sr. Therefore, we use both immobile incompatible elements (e.g., HFSE and REE)
and transition metals (e.g., Sc and Co) to classify the Jiangling samples and discuss their
petrogenesis. Based on the Nb/Y vs. Zr/TiO2 diagram of Winchester and Floyd (1977) [62],
all the analyzed samples are plotted in the alkali basalt field (Figure 4b).
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Table 1. Major and trace element compositions of the whole volcanic rock samples from Jiangling Basin.

Sample B01 B03 B04 B05 B06 B07 BLS1 BLS3 BLS4 BLS5-1 BLS5-2 BLS5-3 2062 TW01-4 TW02-1 TW04-1 TW04-2 TW05-1 TW06-3 TW07-1 TW07-2

Major oxides (wt%)

SiO2 (%) 53.01 52.45 53.46 53.1 53.43 52.8 53.7 53.24 53.2 52.96 50.19 54.27 50.32 52.9 52.81 53.09 51.35 52.42 51.87 52.56 52.66
TiO2 (%) 1.99 1.98 1.91 1.89 1.91 1.9 1.87 1.95 1.99 1.92 1.9 1.95 1.76 1.97 2 1.95 1.99 1.9 1.88 1.96 1.96

Al2O3 (%) 14.86 14.89 14.85 15.17 15.2 15.27 14.88 14.9 14.78 14.6 15.7 15.17 13.57 14.94 15.01 15.04 15.56 15.06 14.94 15.24 15.02
Fe2O3 (%) 2.72 2.56 2.94 2.76 3.53 3.33 2.33 1.98 4.06 3.49 6.91 4.53 4.71 3 3.32 4.8 8.7 5.97 4.63 4.62 5.69

FeO (%) 7.04 7.17 6.52 6.48 5.73 5.87 6.79 7.26 5.52 6.11 2.87 3.52 5.16 6.43 5.65 4.67 1.42 3.07 4.08 4.4 3.86
MnO (%) 0.15 0.14 0.13 0.12 0.11 0.11 0.13 0.12 0.12 0.11 0.08 0.13 0.13 0.13 0.12 0.13 0.08 0.13 0.1 0.11 0.12
MgO (%) 6.36 6.58 6.3 6.03 5.81 5.85 6.17 5.7 5.8 6.74 6.62 4.07 6.84 6.05 5.5 5.44 5.27 5.13 5.51 5.43 5.55
CaO (%) 7.58 7.53 7.86 8.12 7.84 8.4 8.11 7.84 7.89 7.88 8.69 8.85 8.1 7.73 7.76 7.94 8.01 8.25 9 8.18 7.87

Na2O (%) 3.42 3.49 3.2 3.24 3.38 3.27 3.36 3.37 3.2 3.1 2.97 3.36 3.09 3.4 3.44 3.19 3.17 3.13 3.05 3.22 3.13
K2O (%) 1.19 1.2 1.04 1.09 1.01 1 0.95 1.19 1.09 1.02 0.25 0.96 1.45 1.06 1.16 1.06 0.58 0.94 0.84 0.91 1.05
P2O5 (%) 0.4 0.4 0.34 0.35 0.36 0.36 0.34 0.38 0.34 0.33 0.34 0.37 0.25 0.36 0.39 0.35 0.37 0.34 0.33 0.35 0.35
H2O+ (%) 1.1 0.86 0.66 0.88 1.5 1.04 1.34 1.52 1.42 1.38 2.9 1.7 3.32 1.5 2.23 2.26 3.72 3.42 3.32 2.62 2.92
CO2 (%) 0.12 0.07 0.11 0.11 0.11 0.16 0.09 0.09 0.1 0.05 0.11 0.79 1.81 0.26 0.26 0.17 0.26 0.09 0.43 0.34 0.34
LOI (%) 0.51 0.53 0.62 0.75 0.88 0.49 0.82 0.73 0.89 0.51 2.57 1.89 4.88 0.97 1.63 1.73 3.95 3.26 3.73 2.41 2.59

SUM 98.72 98.39 98.55 98.35 98.31 98.16 98.63 97.93 97.99 98.26 96.52 97.18 95.38 97.97 97.16 97.66 96.5 96.34 96.23 96.98 97.26

Trace elements (ppm)

La 29.3 28.6 22.4 21.6 23.5 21.7 23.4 27.6 22.5 20.8 21.7 22.7 16.1 25 27.9 22.3 22.3 22.3 20.1 22.1 22.6
Ce 56.2 54.5 43.2 39.5 44.3 40.8 42.6 49.1 42.3 39.5 41 42.4 31.5 45 50.2 41.3 40.9 41 37.7 41 41.5
Pr 5.99 5.7 4.94 4.73 4.87 4.74 5.27 5.87 5.19 4.95 5.14 5.23 4.29 5.68 6.38 5.51 5.47 5.51 4.97 5.48 5.53
Nd 25.1 23.1 21.2 20.9 20.4 20.9 21.6 24.4 22.4 20.8 22 22.5 17.8 22.6 24.3 22.2 21.7 22.4 20.5 22.1 22.4
Sm 5.28 5.24 5.18 4.81 4.58 4.91 5 5.38 5.21 4.79 4.94 5.08 4.64 5.58 5.98 5.7 5.39 5.56 5.03 5.53 5.79
Eu 1.91 1.75 1.72 1.71 1.7 1.77 1.89 1.94 1.9 1.76 1.91 1.91 1.7 1.89 2.03 1.93 1.87 1.93 1.81 1.88 1.93
Gd 6.23 5.65 5.48 5.57 5.71 5.66 5.39 5.77 5.48 5.11 5.47 5.61 4.97 5.41 5.79 5.52 5.35 5.5 5.04 5.39 5.58
Tb 0.98 0.87 0.85 0.83 0.82 0.86 0.79 0.88 0.79 0.78 0.79 0.82 0.73 0.74 0.81 0.76 0.76 0.78 0.72 0.79 0.77
Dy 4.6 4.23 4.09 3.93 3.86 3.89 4.24 4.61 4.32 4.06 4.19 4.4 4.22 4.29 4.53 4.31 4.27 4.3 3.98 4.31 4.25
Ho 0.84 0.79 0.75 0.74 0.71 0.76 0.75 0.83 0.81 0.75 0.77 0.81 0.81 0.77 0.83 0.79 0.74 0.76 0.71 0.78 0.78
Er 2.39 2.28 2.17 2.13 2.01 2.12 1.9 2.12 1.97 1.82 1.94 2 2.28 2.1 2.24 2.12 2.07 2.12 2 2.12 2.17
Tm 0.29 0.24 0.23 0.23 0.25 0.22 0.27 0.29 0.28 0.25 0.26 0.26 0.27 0.25 0.28 0.26 0.25 0.26 0.24 0.25 0.26
Yb 1.73 1.69 1.6 1.68 1.54 1.57 1.36 1.59 1.5 1.43 1.51 1.62 1.77 1.56 1.63 1.58 1.57 1.55 1.45 1.55 1.66
Lu 0.24 0.24 0.22 0.2 0.22 0.22 0.2 0.24 0.22 0.2 0.21 0.21 0.25 0.22 0.24 0.23 0.21 0.21 0.21 0.22 0.23
Y 21.8 20.5 19.2 20.2 19.7 19.6 17.9 20.5 20.5 18.1 18.9 20.1 21.8 20.7 23.2 21.9 20.9 21.1 19.3 21 21

Ba 357 349 282 277 284 304 288 316 292 280 205 297 232 289 325 281 288 293 255 271 301
Rb 32.5 31.8 25.4 26.5 26 20.1 23.5 32.2 25.6 22.3 2.43 15.7 10.5 26.5 28.8 22.5 3.9 17.3 13.2 14.8 23.1
Sr 595 548 456 467 453 561 433 450 446 434 500 467 408 508 658 471 486 469 494 464 452
Ta 1.92 1.77 1.43 1.36 1.45 1.35 1.46 1.69 1.49 1.41 1.45 1.47 1.15 1.56 1.72 1.4 1.42 1.43 1.28 1.43 1.43
Nb 40.7 38.3 29 29.2 31.9 28.6 26.1 32 27.8 24.6 25.9 27.3 20.5 29.9 34.1 26 26.2 25.9 24 25.5 26.3
Hf 4.07 3.84 3.73 3.65 3.56 3.7 3.84 4.37 4.28 3.99 4.15 4.35 3.51 4.06 4.26 4.19 4 4.27 3.84 4.08 4.22
Zr 170 162 157 160 150 157 138 160 161 147 154 162 132 152 168 159 155 160 146 155 158
Th 4.01 3.92 2.79 2.82 3.14 2.86 3.36 4.02 3.37 3.18 3.35 3.56 2.53 3.7 3.95 3.11 3.19 3.22 3.01 3.29 3.26
U 0.96 0.87 0.7 0.68 0.71 0.68 0.72 0.78 0.6 0.64 0.68 0.81 0.65 0.7 0.79 0.56 0.62 0.63 0.61 0.57 0.65
Cs 0.33 0.32 0.22 0.27 0.95 0.1 0.21 1.34 0.29 0.21 0.13 0.19 0.6 0.25 0.3 0.22 0.1 0.2 0.1 0.17 0.25
Sc 22 20.7 21.1 20.7 20.7 21.6 16 18.6 20 18.8 19 19.8 23.4 21.2 22.5 21.7 20.5 21.9 20.3 20.9 21.6
Co 42.4 40.5 39.7 40 40.5 38.9 35.6 38 38 37.9 36.5 30.9 38.1 36.7 38.1 36.6 32.9 33.9 35.4 36.9 38.8
Cu 61.3 55 37 37.8 54.1 45.6 47.9 54.5 37 40.6 49.7 52.1 60 52.6 57.1 33.6 44.5 35.7 74.7 48.9 41.6
Cr 218 197 195 199 197 200 159 168 178 166 172 162 196 181 197 191 183 190 190 187 190
V 159 150 143 141 141 144 119 137 138 126 129 134 156 135 148 137 119 144 133 130 139
Ni 144 143 128 134 133 127 122 132 132 132 127 96.4 131 128 119 141 104 132 122 130 131

Eu/Eu * 1.016 0.9777 0.98035 1.007309 1.01542 1.023584 1.1066974 1.0581653 1.07947 1.08079259 1.1183601 1.088862976 1.07575 1.03854836 1.04145711 1.0387052 1.05320118 1.05529313 1.08795066 1.04005937 1.02465546
La/Yb 11.4448 11.436 9.46049 8.688206 10.3118 9.339975 11.626863 11.729988 10.1362 9.829081 9.71109948 9.468833047 6.14665 10.829316 11.5665067 9.5374746 9.59822281 9.72207084 9.36728366 9.63487738 9.19996061

Abbreviations: Eu/Eu* = EuN/[(SmN + GdN)/2].
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The volcanic rocks show similar chondrite-normalized REE patterns (Figure 6a), with
OIB-like enrichments of 10 times (HREE) to 100 times (LREE) over chondrite [64]. The
rocks have (La/Yb)N ratios of 6.14–11.7 (N: chondrite normalized), and they show no
Eu anomalies, with Eu/Eu* values of 0.98–1.09. On the primitive mantle-normalized
multi-element diagram (Figure 6b), the samples are highly enriched in large-ion lithophile
elements (LILE) and Th, and the HFSE, Nb and Ta exhibit negative to positive anomalies
similar to oceanic island basalts (OIB) [65]. The composition of the samples is also similar
to volcanic from the southern margin of the North China block, as observed in the initial
geochemical analysis of three basaltic rocks [66]. Relevant incompatible element ratios are
Nb/La = 1.15–1.39, Th/La = 0.12–0.16, Th/Nb = 1.43–2.53, and Nb/U = 31.5–46.4.
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4.2. 40Ar/39Ar Dating

For each sample, we calculated: (1) a plateau age, which was evaluated from the
apparent age spectrum of the progressive heating steps according to the statistical criteria
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set out in McDougall and Harrison (1988) [67]; and (2) a normal isochron age, which was
calculated from a regression analysis of 36Ar/40Ar vs. 39Ar/40Ar data using the Isoplot 3.0
program of Ludwig (2003) [68]. A summary of the40Ar/39Ar age results for the Jiangling
Basin obtained during this study is presented in Table 2 and Figures 7 and 8.

Table 2. 40Ar/39Ar isotopic analytical data of the incremental heating experiments on basaltic rocks.

Sample Temperature (◦C) (40Ar/39Ar)m (36Ar/39Ar)m (37Ar/39Ar)m
40Ar* (%) F (40Ar*/39Ar) 39Ar (%) Age (Ma) ±1σ (Ma)

B01

600 851.6401 2.6048 0.4219 9.62 81.8618 0.83 606 11
670 74.1470 0.1192 1.1909 52.62 39.0576 2.25 314.5 5.6
810 30.3102 0.0729 1.1422 29.19 8.8566 19.37 76.3 3.7
940 7.4940 0.0044 1.3823 84.15 6.3137 51.96 54.70 0.35

1060 16.8665 0.0322 0.8854 43.98 7.4243 20.19 64.1 1.7
1300 8.1117 0.0163 34.8969 75.91 6.3462 3.99 55.0 1.1
1420 9.0511 0.0124 22.3723 79.71 7.3551 1.41 63.6 1.1

B02

600 278.2450 0.8290 1.1535 11.99 33.4037 1.38 272 38
670 14.5806 0.0323 0.2648 34.69 5.0587 16.40 43.9 1.7
740 15.9424 0.0307 1.5654 43.81 6.9945 25.58 60.4 1.6
810 11.1885 0.0155 0.9881 59.74 6.6902 23.93 57.84 0.84
940 14.7641 0.0238 0.4479 52.60 7.7692 16.74 67.0 1.3

1060 11.6372 0.0076 0.9400 81.44 9.4848 13.10 81.46 0.56
1320 9.4148 0.0125 20.8622 79.17 7.5890 2.87 65.47 0.84

B03

600 274.0982 0.8290 1.1535 10.66 29.2528 1.37 240 39
670 14.9305 0.0323 0.2648 36.22 5.4086 16.24 46.9 1.7
740 15.9576 0.0308 1.6279 43.72 6.9869 27.84 60.4 1.6
810 11.1223 0.0150 0.6251 60.53 6.7360 23.81 58.23 0.82
940 14.7508 0.0237 0.3904 52.70 7.7757 14.93 67.0 1.3

1060 11.6372 0.0076 0.9400 81.44 9.4848 12.97 81.46 0.56
1320 9.4148 0.0125 20.8622 79.17 7.5890 2.85 65.47 0.84

B04

740 30.6672 0.0823 1.2765 21.02 6.45209 1.47 55.8 4.3
810 14.2521 0.0245 0.9374 49.77 7.09852 21.49 61.3 1.3
940 7.7797 0.0056 1.7824 80.61 6.28089 47.43 54.37 0.40

1060 8.1126 0.0069 1.4887 76.50 6.21359 18.66 53.80 0.45
1180 9.6164 0.0129 4.1482 63.89 6.16535 7.38 53.39 0.72
1320 16.3593 0.0411 32.5171 42.11 7.08441 1.56 61.2 2.3
1400 19.1049 0.0490 31.7098 37.83 7.42885 1.99 64.1 2.7

B05

600 684.8268 2.0468 1.3359 11.70 80.1872 0.93 595 155
670 10.5382 0.0132 0.9222 63.79 6.7272 12.60 58.2 3.1
810 8.5275 0.0081 1.6674 73.58 6.2832 52.10 54.4 1.0
940 7.0973 0.0035 1.8539 87.46 6.2170 20.55 53.82 0.88

1060 9.1753 0.0142 1.8734 55.81 5.1285 8.26 44.5 1.5
1180 7.2295 0.0235 22.1128 29.33 2.1609 2.20 18.9 2.7
1320 9.0652 0.0263 26.4668 38.16 3.5392 3.35 30.8 2.9

B06

600 371.4065 1.1348 5.2664 9.83 36.6825 2.15 296.49 103
670 31.4003 0.0796 0.7308 25.29 7.9469 8.81 68.5 8.1
810 24.6692 0.0527 1.2800 37.31 9.2143 39.43 79.2 5.4
940 10.4640 0.0149 2.9990 60.20 6.3150 27.39 54.6 1.6

1060 20.8621 0.0470 2.0688 34.32 7.1732 11.29 61.9 4.9
1180 10.7466 0.0208 15.5130 54.57 5.9428 9.37 51.5 2.3
1320 10.8196 0.0262 34.3771 54.69 6.0958 1.57 52.8 3.5

B07

600 360.8878 1.0698 1.0411 12.42 44.87568 1.58 357.03 46.36
670 9.0914 0.0125 1.0297 60.29 5.48576 15 47.62 0.69
810 7.6023 0.0053 1.7737 81.4 6.19804 56.54 53.71 0.38
940 7.0516 0.0038 2.1855 86.51 6.11198 20.55 52.98 0.33

1060 9.8447 0.0135 3.005 62.11 6.1303 4.91 53.13 0.77
1180 9.0463 0.0212 34.0492 61.72 5.75003 1.41 49.88 1.51

B08

600 387.1796 1.1614 0.0999 11.37 44.0084 1.16 350 51
630 16.3555 0.0466 0.2382 15.90 2.6003 6.27 22.7 2.4
670 12.9349 0.0280 0.2795 36.31 4.6977 21.73 40.8 1.5
740 12.5528 0.0220 0.2645 48.38 6.0746 25.24 52.5 1.2
810 14.9591 0.0304 0.1403 40.01 5.9853 14.16 51.8 1.6
860 13.5351 0.0243 0.1546 46.99 6.3615 7.75 55.0 1.3

1000 8.9940 0.0093 0.0721 69.37 6.2399 8.84 53.96 0.56
1060 13.3248 0.0227 0.1182 49.75 6.6302 7.55 57.3 1.2
1180 11.2519 0.0077 0.2064 79.84 8.9854 7.32 77.20 0.57

Note: Ar* represents radiogenic 40Ar from the decay of 40K.
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The groundmass argon release patterns of most experiments showed consistent results
with plateaus that met commonly accepted reliability criteria (McDougall and Harrison,
1988). The mean squares weighted deviates (MSWD) values were used to define the plateau
segments [69–71]. All samples yielded plateau segments with MSWD < 5.59, indicating
that the gas was derived from one isotopically homogeneous reservoir. In addition, the
obtained plateau ages consisted of more than three steps and more than 50% of the total
gas was released, which O’Connor et al. (2007) [72] noted provided the best representation
of the eruption age of individual flows. Several spectra showed elevated ages in the
initial and final incremental heating steps. Elevated ages in the initial steps may indicate
either loosely bound excess 40Ar or to the recoil loss of 39Ar from fine-grained alteration
phases [73]. The elevated ages in the final temperature steps may be related to the admixture
of phenocryst-hosted inherited 40Ar [73–77]. Such elevated results at the beginning or end
of the experiments were not included in the plateau age calculations.

When the data from individual experiments were regressed in isochrons, the disper-
sion of points was often too small to calculate reliable regression lines. The 40Ar/36Ar
intercept at the 95% confidence level was indistinguishable from the 40Ar/36Ar of air within
the uncertainty limits. This finding indicates that the groundmass of the erupted rocks was
essentially free of extraneous 40Ar. However, in many samples, the uncertainties in the
isochron age calculations were high, and the isochrons yielded lower-precision ages than
plateau ages.

The samples exhibited typical plateau ages without the heat disturbance of an open
system. For example, in sample B01, the low-temperature heating step (600–810◦C) plateau
age of 606 ± 11 Ma rapidly decreased to 54.7 ± 0.35 Ma when heating to 1420◦C; the
cumulative release of 39Ar during high-temperature heating was 17%. The seven con-
tinuous 40Ar/39Ar plateau ages of the heating steps produced a consistent spectrum of
ages, and the cumulative amount of 39Ar was 79.71%. The plateau age of the sample
was 55.96 ± 1.72 Ma, which is similar to the isochron age within error (53.57 ± 1.34 Ma)
(with a higher MSWD of 9.58). The initial value of 294.4 40Ar/39Ar was similar to the
pressure value of 295.5, indicating that these samples were not influenced by excess argon
micro-cracks in gas operations [78]. Therefore, the plateau age is reliable and represents
the magma cooling age. All the other samples have the same reliable data. Because the
samples were not affected by deformation and metamorphism, we interpret the obtained
plateau ages as emplacement ages, and the age of the Hanjiang River Basin and the Shashi
group is as early as the Tertiary volcanic rocks with similar K-Ar ages [36,56].

4.3. Sr-Nd-Pb Isotopes

The 87Sr/86Sr isotopic ratios and εNd(t)values for the Jiangling volcanic rocks range from
0.7043 to 0.7072 and +2.38 to −2.22, respectively (Table 3). The Pb isotopic ratios range from
16.9 to 18.0 of 206Pb/204Pb, 15.3 to 15.5 of 207Pb/204Pb, and 37.1 to 38.1 of 208Pb/204Pb (Figure 9).
The Jiangling volcanic rocks lie along mixing trends defined by the EMI and mid-ocean ridge
basalt (MORB) components in the 143Nd/144Nd and 87Sr/86Sr vs. 206Pb/204Pb diagrams and
the87Sr/86Sr ratios are low. In contrast, the EMI-like composition has been characterized by
low 143Nd/144Nd and 206Pb/204Pb ratios and moderately high 87Sr/86Sr ratios.
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Table 3. Sr-Nd-Pb isotopic compositions of the Jiangling basaltic rocks.

Sample 87Sr/86Sr ±1σ 143Nd/144Nd ±1σ 206Pb/204Pb ±1σ 207Pb/204Pb ±1σ 208Pb/204Pb ±1σ (206Pb/204Pb)i (207Pb/204Pb)i (208Pb/204Pb)i (87Sr/86Sr)i εSr(0) εSr(t) εNd(0) εNd(t)

1-1 0.705217 9 0.512848 8 18.253 13 15.463 17 38.149 14 18.142 15.458 38.337 0.70517 10.2 10.5 2.17 1.99
1-2 0.705209 8 0.512814 5 18.198 15 15.497 15 38.058 16 18.103 15.492 32.101 0.705165 10.06 10.44 0.72 0.75
1-3 0.705243 6 0.512853 9 18.224 16 15.475 16 38.127 12 18.132 15.471 33.896 0.705197 10.55 10.89 −0.64 −0.82
1-4 0.705237 7 0.512842 7 18.201 13 15.512 18 38.075 13 18.118 15.508 33.426 0.705192 10.46 10.82 0.16 0.08
2-1 0.704295 9 0.512843 8 18.013 18 15.459 11 37.982 12 17.964 15.457 33.389 0.704263 −2.91 −2.36 0.86 0.92
2-2 0.704308 8 0.512856 6 18.082 16 15.403 15 37.956 15 18.031 15.401 35.03 0.704276 −2.73 −2.18 1.58 1.62
2-3 0.704281 7 0.512824 8 18.054 18 15.428 16 37.974 17 17.998 15.425 33.365 0.70425 −3.11 −2.54 1.81 1.95
2-4 0.704312 8 0.512831 7 18.029 13 15.416 17 37.983 17 17.982 15.414 37.926 0.704279 −2.67 −2.13 0.43 0.51
3-1 0.706487 9 0.512765 7 18.418 17 15.562 15 38.309 15 18.294 15.556 33.509 0.706443 28.2 28.59 0.62 0.61
3-2 0.706492 6 0.512756 8 18.256 15 15.507 16 38.148 19 18.163 15.503 34.734 0.706447 28.28 28.64 −2.17 −2.22
3-3 0.706485 9 0.512803 9 18.329 14 15.528 14 38.207 19 18.207 15.522 37.995 0.70644 28.2 28.5 2.17 1.97
3-4 0.706392 8 0.512779 6 18.291 17 15.541 17 38.263 15 18.156 15.535 36.142 0.706348 26.86 27.24 2.75 2.7
5-1 0.707129 7 0.512703 9 18.527 10 15.625 15 38.512 17 18.435 15.621 35.689 0.70694 37.32 35.64 1.27 1.37
5-2 0.707238 9 0.512732 8 18.415 18 15.558 16 38.327 10 18.309 15.553 38.188 0.70703 38.9 36.9 2.17 2.33
5-3 0.707395 7 0.512749 5 18.473 10 15.584 16 38.445 17 18.368 15.579 36.472 0.707185 41.09 39.12 2.17 2.25
5-4 0.707165 8 0.512728 6 18.436 18 15.601 15 38.486 16 18.336 15.596 37.035 0.70697 37.8 36.1 2.17 2.38
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Figure 9. Plots of 207Pb/204Pb(i) vs. 206Pb/204Pb(i) (a,b), 143Nd/144Nd(i)vs. 206Pb/204Pb(i) (c) and
εNd(t) vs. 87Sr/86Sr ratios (d) of the volcanic rocks from the Jiangling Basin. Cenozoic basalts of
Eastern China from [49,50]; Cenozoic basalts of Northern China from [28,36]; Cenozoic basalts of
Northeast China from [36]; EMI and EMII and DMM from [79].

5. Discussion
5.1. Source of the Volcanic Rocks

Before discussing the petrogenesis of the volcanic rocks, the low-temperature al-
terations and crustal or lithospheric contamination must be considered for the studied
continental intraplate environment. Petrographic observations indicated that certain sam-
ples had been affected by chlorination, and the LOI values were generally low but reached
4.99% for several samples. The isotopic composition was variable, indicating that the
basic rocks from the Jianghan Basin had been affected by low-temperature alteration [56].
Therefore, we focus the petrogenetic discussion on elements that are not easily affected
by alteration, such as REE, HFSE, U, Th, and their ratios, such as Nb/Th, Nb/U, Th/La,
Nb/La, and Zr/Nb.

The Na2O + K2O vs. SiO2 (TAS) and Nb/Y vs. Zr/TiO2 diagrams of the volcanic show
that all the samples are plotted in the same alkali basalt field (Figure 4). The multi-element
diagram shows positive HFSEs anomalies (Figure 6), such as Nb/Ta and Nb/La, so that
the volcanic are similar to the results of Peng et al. (2006) for the volcanic rocks of the
Jianghan Basin, indicating that they were not contaminated by later crustal materials. The
Nb/U ratio (31.5–46.3) is similar to that of MORB and OIB (47 ± 10) [65] and apparently
higher than the continental crust Nb/U ratio, which shows that these volcanic rocks are not
affected by crustal materials and the properties of the genesis. In addition, the geochemistry
and εNd(t) composition (<4.0) showed that the basic rocks from Jianghan Basin were less
likely affected by lithospheric contamination.

The Paleogene volcanic rocks from Jiangling Basin have similar incompatible trace
element ratios and Sr-Nd values to some of the Paleogene volcanic rocks from the southern
margin of the North China Block [33,56]. The rocks from the Jiangling Basin also have vari-
able SiO2 and high Na2O values; relatively low P2O5/Al2O3 (0.022–0.027) and CaO/Al2O3
(0.51–0.60) ratios that exhibit relatively small changes; and Zr/Nb (4.17–6.44) and Ce/Y
(1.44–2.58) ratios that are plotted in the source area of spinel peridotite. Thus, Jiangling
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volcanic rocks have relatively low (La/Yb)N (9.19–11.44) and (Gd/Yb)N (2.72–3.21) ratios
and relatively high HREEs content (more than ten times the chondrite-normalized values),
and they belong to the alkaline group, which indicates that this basaltic magma may be the
result of high-degree partial melting of spinel peridotite. On the multi-element diagram
(Figure 6), all of the samples have features similar to those of OIB, such as Th/La = 0.12–0.16
and Th/Nb = 0.09–0.13, indicating that these rocks are similar to Tertiary basic rocks from
the southern margin of the North China Block [66]. Therefore, these rocks may have come
from an enriched lithospheric mantle with an EMII-type component.

In trace element discrimination diagrams for tectonic environments (Figure 10), all
of the samples are plotted within the basaltic and enriched lithospheric mantle fields,
and they have trends of intraplate enrichment [80]; therefore, the genesis of these basaltic
rocks is related to the asthenospheric mantle. The upwelling of the asthenosphere resulted
in the large-scale partial melting of spinel peridotite, and this process was caused by
lithosphere-asthenosphere interactions. This history is similar to that of the Cenozoic
basaltic rocks from the Southeastern coastal areas, which are also the result of lithosphere-
asthenosphere interactions.
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Figure 10. Tectonic environment discrimination diagrams for volcanic rocks from Jiangling Basin.
(a) Diagram of Ti/1000 vs. Zr vs. Y × 3 (after [81]); (b)diagram of Hf/3 vs. Th vs. Ta (after [80]);
(c) diagram of Zr/Y vs. Zr (after [81]); (d) diagram of Th/Yb vs. Ta/Yb (after [80]). MORB/OIB
mid-ocean ridge basalt/ocean island basalt; WPB-intraplate basalts; LKT-low-K arc tholeiite; CAB-
calc-alkaline basalt; SH-mugearite; TH-tholeiite; TR-transition basalt; IAB/IAT-island-arc tholeiites;
and PM-primitive mantle.
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5.2. Implications for the Cenozoic Intraplate Volcanism in China

The coastal area in Eastern China is an integral part of the western Pacific continental
margin. A series of rift basins and intermediate-mafic volcanic rocks were generated via
extension since the Cenozoic. Many studies (such as Sr-Nd-Pb isotope studies) of these
volcanic rocks indicated that the Cenozoic volcanic rocks from Northeastern and Northern
China had the source from both DMM (depleted mantle) and EMI (enriched mantle I).
However, the Cenozoic volcanic rocks from Southern China and the South China Sea Basin
show a tendency of DMM + EMII mixing [30,31,33–35,49,80]. The Pb isotope data from
the Mesozoic and Cenozoic of Eastern China had an isotopic zonation [31,33,49,56]. The
mantle in Northern China has lower 206Pb/204Pb (<18.0) values that resemble EMI (Bau
et al., 1991), whereas the mantle from Southern China has higher 206Pb/204Pb (>18.0) values
that resemble EMII [31,49,50,56,82] (Figure 9). All data plots within the field corresponded
to the Cenozoic basalts of Eastern China [31,33,49,50,83]. Both basanite samples with high
εNd and low87Sr/86Sr ratios are from the EMII mantle. There are many discussions about
the location and timing of isotopic zonation because the impaction is from the Mesozoic
continental collision between the North China Craton and the South China Block, as well
as the post-orogenic extension in China. Recently, Cong et al. (2001) [66] found that
the Tertiary volcanic rocks of a basin in the northern part of the orogenic belt had high
206Pb/204Pb (>17.5) values, suggesting the large-scale mantle upwelling in the north part
of the orogenic belt had begun in the Oligocene instead of during the Paleocene. Thus, the
isotopic for the mantle in Eastern China started in the Oligocene. However, compared with
the Cenozoic volcanic rocks from both sides of the Tan-Lu fault zone, it was suggested that
the differences in the lithosphere between the North China Craton and the South China
Block were inherited from the Mesozoic rocks feature [33,84].

The Cenozoic volcanic rocks occurred in Southern China that can be used to explore
the inheritance of lithospheric mantle signatures in the south of China since the Cenozoic.
The Tertiary basaltic rocks of the Jiangling Basin indicate that the Tertiary volcanic rocks
reflect the lithospheric mantle according to the EMII type [85]. The properties of the
Southern China Mesozoic lithospheric mantle have varying descriptions and have been
described similar to EMII-type mantle [86,87]. Although other researchers have maintained
that the features of the continental Mesozoic lithospheric mantle of Southern China are
similar to mixed EMII mantle features [88,89], Wang (2003) [78] argues that the Chenzhou-
Linwu fault is the boundary. The Yangtze block composed of Cenozoic volcanic rock has
a hybrid OIB + EMII trend [85,90]. Isotopic data of 206Pb/204Pb ratios, from the Yangtze
River in the southern slope of the Dabie Mountain volcanic rocks, indicate that they are
mainly associated with EMII-type lithospheric mantle [91,92]. Therefore, the Paleogene
volcanic rocks from the northern margin of the Yangtze block in Jianghan Basin, which
has similarities to those of EMII, might have inherited the lithospheric mantle generation
properties of Mesozoic rocks. So, the volcanic rocks were generated in the tectonic setting
of lithospheric extensional. The circular upwelling caused the lithosphere–asthenosphere
interactions associated with soft convection currents, which resulted in the partial melting
of the lithospheric mantle with EMII-type components.

6. Conclusions

1. Accurate 40Ar/39Ar dating results (53.19–60.78 Ma) show that the basaltic rocks in the
Jianghan Basin are formed in the Paleogene;

2. The enrichment of LREEs ((La/Yb)N = 6.14–11.72) and LILEs show that the rocks
were from enriched lithospheric mantle;

3. The 87Sr/86Sr isotopic ratios and εNd values for the Jiangling volcanic rocks range
from 0.7043 to 0.7072 and +2.38 to −2.22, respectively, where the lithospheric mantle
was derived from EMII and the magma was derived from partial melting of EMII-type
lithospheric mantle.
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