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Abstract: Over the years, many geological exploration reports and considerable geological data have
been accumulated during the prospecting and exploration of the Jiapigou gold metallogenic belt
(JGMB). It is very important to fully utilize these geological and mineralogical big data to guide
future gold exploration. This work collects the original textual data of different gold deposits in
JGMB and constructs a knowledge graph (KG) for deposits based on deep learning (DL) and natural
language processing (NLP). Based on the metallogenic geological characteristics of deposits, a visual
construction method of a KG for deposits and a calculation of the similarity between deposits are
proposed. In this paper, 20 geological entities and 24 relationship categories are considered. By
condensing the key KG information, the metallogenic geological conditions and factors controlling
the ore in 14 typical deposits in the JGMB are systematically analyzed, and the metallogenic regularity
is summarized. By calculating the deposits’ cosine similarities based on the KG, the mineralization
types of deposits can be divided into two categories according to the industrial types of ore bodies.
The results also show that the KG is a cutting-edge technology that can extract the rich information
of ore-forming regularity and prospecting criteria contained in the textual data to help researchers
quickly analyze the mineralization information.

Keywords: the Jiapigou gold metallogenic belt; knowledge graph; natural language processing;
metallogenic geological characteristics; the similarity between deposits

1. Introduction

The Jiapigou gold metallogenic belt (JGMB), located in southeastern Huadian, south-
ern Jilin Province, Northeast China, is not only an important gold cluster area in the eastern
segment of the northern margin of the North China Craton (NCC), but also the main
gold-producing area with proven gold reserves of more than 180 tons [1] in China, in which
a dozen gold deposits (Figure 1) and more than 160 gold occurrences have been discovered
since 1820. The JGMB has great potential for gold prospecting with the development of gold
exploration in the depth of the existing gold deposits, and the new gold deposits have been
funded along its southeast extension in recent years. Many studies have been performed
on the regional ore-forming geological background, petrology, mineralogy, geochemistry,
and genesis of some typical gold deposits and occurrences in the JGMB [1–5]. It can be
concluded from previous studies that (1) the gold deposits are of three mineralized types:
quartz vein (Banmiaozi deposit, Bajiazi deposit, Jiapigou deposit, and Haigou deposit), al-
tered rock (Songjianghe deposit and Liupiye deposit), and breccia (Toudaoliuhe deposit and
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Binhugou deposit); (2) the origins of gold deposits belong to the orogenic type [2,6–9] and
the mesothermal one [1,4]; (3) the gold deposits exhibit a multistage gold mineralization
processes, with a time span ranging from approximately 230 to 68 Ma; (4) the gold deposits
are mainly controlled by the NW-striking Jiapigou fault belt and its related secondary faults;
and (5) the gold deposits are closely related to Yanshanian tectono-magmatism [10,11].
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Sandaocha; 8. Xiaobeigou; 9. Daxiangou; 10. Laoniugou; 11. Caiqiangzi; 12. Banmiaozi; 13. 
Damiaozi; 14. Yuanchaogou. Main faults in (a,b): ① Mudanjiang Fault; ② Dunhua–Mishan Fault; ③ Yilan−Yitong Fault; ④ Xar Moron–Changchun Fault; ⑤ Hegenshan–Heihe Fault; ⑥ Tayuan–
Xiguitu Fault. Reproduced with permission from Elsevier, Journal of Asian Earth Sciences; pub-
lished by Elsevier, 2016. Reproduced with permission from Elsevier, Gondwana Research; pub-
lished by Elsevier, 2013. Reproduced with permission from Elsevier, Journal of Asian Earth Sciences; 
published by Elsevier, 2007. 

Figure 1. (a) Location of NE China with respect to the main tectonic units of China and
Russia [9,12,13], ‘A’ and ‘M’ represent the ‘Altaids’ and ‘Manchurides’, respectively. (b) Tectonic
units of NE China [9,12,13]. (c) Regional geological map of the JGMB and distribution of major gold
deposits [14,15]. Gold deposits: 1. Songjianghe; 2. Liupiye; 3. Bajiazi; 4. Jiapigou; 5. Erdaogou;
6. Sidaocha; 7. Sandaocha; 8. Xiaobeigou; 9. Daxiangou; 10. Laoniugou; 11. Caiqiangzi; 12. Banmiaozi;
13. Damiaozi; 14. Yuanchaogou. Main faults in (a,b): 1©Mudanjiang Fault; 2©Dunhua–Mishan
Fault; 3©Yilan−Yitong Fault; 4©Xar Moron–Changchun Fault; 5©Hegenshan–Heihe Fault; 6©Tayuan–
Xiguitu Fault. Reproduced with permission from Elsevier, Journal of Asian Earth Sciences; published
by Elsevier, 2016. Reproduced with permission from Elsevier, Gondwana Research; published by
Elsevier, 2013. Reproduced with permission from Elsevier, Journal of Asian Earth Sciences; published
by Elsevier, 2007.
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These studies further deepen our understanding of the gold mineralization character-
istics and gold metallogeny of the JGMB. However, the ages, origin, metallogenic processes,
etc. of gold deposits in the JGMB are still debated partly because of the lack of regional
comparisons between gold deposits in different spatial locations, of various styles of gold
ore mineralization hosted in different country rocks, and with different ore-forming ages.
A large number of research papers published in Chinese and English journals, scientific
reports on geology and specific reports on ore exploration have been accumulated since
the 1960s in JGMB. However, it is difficult to quickly extract some valuable information
about ore-forming and ore-prospecting from numerous papers and reports of a dozen or a
hundred gold deposits and occurrences with the manual curation method, which is a time-
consuming process that requires some experts to read geological papers and reports, and
annotate professional terms or sentences that assert some relationship between geological
factors. Therefore, how to intelligently read and process from the papers and reports as
text files from a dozen or a hundred gold deposits and occurrences and how to quickly
extract the necessary information used for investigating the regional gold metallogeny and
exploring gold deposits in a gold cluster area are great challenges for geologists and experts
in artificial intelligence (AI).

Natural language processing (NLP) and deep learning (DL) are subsets of AI. Auto-
mated approaches rely on DL or NLP to rapidly detect terms and sentences of interest
containing geological papers and reports. NLP makes it possible for humans to talk
with machines, and its goal is to construct systems that can make sense of the written
text and automatically perform tasks such as translation, keyword extraction, and topic
classification [16]. NLP includes two parts: natural language understanding and natural
language generation, which can recognize structured and unstructured textual data.

The concept of a knowledge graph (KG) was proposed by Google in 2012 [17]. NLP
and KGs often need to be applied together to give full play to their maximum efficiency.
A KG contains entities, concepts, attributes, relations, and other information and can use
language understood by both humans and machines to describe the real world in the
form of graphs, making the knowledge structure clearer. However, it is single-minded
to understand the KG simply as a graph because in the face of massive data, it is usually
impossible to display all knowledge structures in the form of a graph on one screen.
Therefore, the KG is a semantic network formed by the semantic computing of many texts
illustrating knowledge. Its main purpose is to construct a graph according to its relationship
with knowledge and search by using the knowledge structure. As AI has developed, KGs
have gradually penetrated various fields [18–21].

Previous scholars have explored the application of NLP and KGs in geological
work [22–24]. Wang et al. [25] used NLP technology to analyze mineral resources and
introduced the workflow of Chinese documents, proving the effectiveness of the designed
workflow, and showed the potential of NLP technology in geoscience. Li et al. [26] used the
Lala copper mine as an example and studied the method of mining prospecting informa-
tion in text based on a convolutional neural network (CNN). Holden et al. [27] developed
GeoDocA, a geological document analysis system, that can use text mining technology
to visually analyze the geological exploration reports. Enkhsaikhan et al. [28] studied the
method of understanding ore-forming conditions using the machine reading of text.

The research papers on ore exploration in the JGMB contain a large number of gold
deposit-related geological factors and their relations. Identifying these geological factors
and relations is of positive significance to rapidly improve the analysis of geological texts.
There is a strict corresponding relationship between a deposit and its ore-controlling factors
that has the advantage of constructing a KG. However, KG research in the geoscience field
is only beginning, and there is a lack of corpora for annotated entities and relations. In this
study, the original textual data such as geological exploration reports, published journals
and dissertations related to typical deposits in JGMB, are collected. This work carries out
research on KGs based on DL and NLP. A visual KG construction method for deposits
and a method for calculating the similarities between deposits are proposed. Based on the
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analysis of texts by AI, rich information about metallogenic regularity, prospecting criteria
and deposit genesis can be obtained. Through KG visualization, the relation between
geological entities can be displayed. The research shows that this method has important
theoretical significance and application value and can rapidly analyze texts and mine
potential knowledge.

2. Geological Settings

The JGMB lies between the northern margin of the NCC and the eastern section of the
Central Asian Orogenic Belt (CAOB), as shown in Figure 1a,b [12,29,30]. In the study area,
the NCC, also known as the Longgang block, is separated from the eastern extension of the
CAOB (locally named the Xing’an–Mongolian orogenic belt, a continental margin accre-
tionary belt) by the Jiapigou and Jinyinbie faults with NW strikes, as shown in Figure 1b,c.
The strata exposed in the study area are the Neoarchean Jiapigou Group, the Paleoprotero-
zoic Seluohe Group, the early Paleozoic, and the later Paleozoic, Mesozoic, and Cenozoic
(Figure 1c). The Neoarchean Jiapigou Group is composed of the Neoarchean Sandaogou
Formation, which is exposed in the Longgang block and occurred as inclusions or lenticular
bodies in the Neoarchean TTG (trondhjemite, tonalite, and granodiorite) metamorphic
complex. The Sandaogou Formation consists of chlorite-hornblende schist, granitic gneiss,
chlorite-actinolite, etc., which underwent the metamorphism of low amphibolite to green-
schist facies. The Sandaogou Formation hosts most gold deposits in the JGMB such as the
Jiapigou deposit and Banmiaozi deposit. The Seluohe Group is distributed in the northern
margin of the Longgang block along or around the NW-striking Jinyinbie fault. The Seluohe
Group underwent metamorphism of greenschist facies, which is composed mainly of a
suite of metavolcanic and metaclastic sedimentary rocks, with rock types of plagioclase
amphibolite, amphibole schist, mica chlorite schist, sericite quartz schist, metasandstone,
meta-andesite, and tremolite marble.

The LA-ICP-MS zircon U-PB dating data in plagioclase amphibolite range from 2543
to 2527 Ma [31], belonging to the Neoarchean rather than the formerly considered Pa-
leoproterozoic. The Seluohe Group is the ore-hosting strata of the Songjianghe deposit.
The early Paleozoic is distributed only in the southwest of the Longgang block and is
comprised mainly of detrital sedimentary rocks. The later Paleozoic metavolcanic and
metasedimentary rocks are exposed in the Xing’an–Mongolian orogenic belt to the north of
the Huifahe fault and Fuerhe fault. Mesozoic volcanic and sedimentary rocks are exposed
in the Xing’an–Mongolian orogenic belt to the north of the Huifahe fault or along the
Huifahe fault, and the rock assemblage of Mesozoic volcanic rocks is mainly andesite
and dacite of the calc-alkaline series. Cenozoic basalts are distributed in the Changbai
Mountains and along the faults of Huifahe and Fuerhe. Quaternary deposits are composed
mainly of Holocene alluvial and diluvial sediments.

The intrusive activities in the study area can be grouped into five stages: (1) Neoarchean
TTG complex, occupying the majority of the Longgang block; (2) Paleozoic diorite and
granite intrusions, exposed mainly as batholiths or stocks in the Xing’an–Mongolian oro-
genic belt to the north of the Fuerhe fault; (3) Triassic monzogranite intrusions, which
occurred as stocks in the Xing’an–Mongolian orogenic belt; (4) Jurassic granite intrusions,
extensively exposed as batholiths or stocks in the Xing’an–Mongolian orogenic belt, show-
ing a close temporal–spatial relationship with Au mineralization; and (5) Early Cretaceous
granite, distributed as only small stocks in the central part of the Longgang block and along
the Huifahe fault. Gold deposits in the JMGB are controlled mainly by the NW-striking
Jiapigou shear zone and its related faults such as the Jiapigou fault and Jinyinbie fault
(Figure 1c) [4,7,32]. All the gold deposits are confined in a zone 40 km long and 4–10 km
wide. The gold deposits from the south to the north of the JMGB are Songjianghe, Liupiye,
Bajiazi, Jiapigou, Erdaogou, Sidaocha, Sandaocha, Xiaobeigou, Daxiangou, Laoniugou,
Caiqiangzi, Banmiaozi, Damiaozi, and Yuanchaogou. The gold deposits in the JMGB can
be divided into two types: gold-bearing quartz veins (abovementioned deposits except
for the Songjianghe deposit and Liupiye deposit) and disseminated ores (Songjianghe and
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Liupiye); between them, the former predominates, accounting for approximately 85% of
the gold reserve and production [33]. The gold deposits in the JMGB are derived from
mesothermal magmatic–hydrothermal processes, with ages ranging from approximately
240 to 150 Ma [31,34].

3. Related Work

The KG can visually show the relationship between geological characteristics. How-
ever, at present, research on geoscience KGs is in its infancy. Both the combination of
knowledge systems and the construction of large-scale KGs need in-depth study, especially
for the following core issues.

3.1. Named Entity Recognition (NER)

NER refers to the entity with specific significance in the text including the name of
the deposit, metallogenic geological bodies, metallogenic structure, and metallogenic char-
acteristics. The main task of NER is to detect named entities from the text and classify
them into predefined categories. Traditional entity labeling based on statistics considers
the frequency or probability of co-occurrences between words and predicts the optimal seg-
mentation sequence through statistical modeling methods such as support vector machine
(SVM) [35], hidden Markov model (MHH) [36], and conditional random field (CRF) [37].
With the integration of DL, many new methods have been developed in recent years such
as CNNs [38,39], long short-term memory (LSTM) [40], bidirectional long short-term mem-
ory (Bi-LSTM) [41,42], recurrent neural networks (RNNs) [43], autoencoders [44,45], and
generative adversarial networks (GANs) [46]. Qiu et al. [47] proposed a neural network
approach, namely, attention-based bidirectional long short-term memory (Att-Bi-LSTM)
with a CRF layer, and used it to extract informational entities describing geoscience in-
formation in reports. This method obtained a 91.47% average F1 score in the NER task.
Moreover, TensorFlow, PyTorch, and other development environments provide tools for
the application of DL.

Labeled data are the basis of supervised learning with neural networks. The quantity
and quality of labeled data directly determine the prediction result quality. Geoscience
vocabulary has strong professionalism and is greatly different from daily language. At
present, there are no systematic labeled geoscience data. However, traditional entity
extraction methods must annotate data manually, which results in massive time and
labor consumption.

This study used JGMB text data and adopted the NER method based on Bi-LSTM
and CRF [28,48]. The Bi-LSTM-CRF model includes three components: the input layer
(character embedding), Bi-LSTM layer, and CRF layer, as shown in Figure 2. LSTM is
an RNN with a long short-term memory unit. Bi-LSTM is composed of a forward LSTM
and a backward LSTM. Both are often used to model contextual information in NLP tasks.
Among them, character embeddings are given to a Bi-LSTM. li represents the word i and
its left context, and ri represents the word i and its right context. Concatenating these
two vectors yields a representation of the word i in its context, ci [49]. To improve the
recognition effect of named entities, each character in sentence X is transformed into a
vector composed of character embeddings, which are randomly initialized. These character
embeddings are the input of the Bi-LSTM-CRF model, and the output is the corresponding
prediction label of each character. This work uses the torch.nn.Embedding statement in
PyTorch to train the character vectors. The prediction results of the Bi-LSTM layer are input
into the CRF layer, which can improve the legitimacy of these predicted labels by adding
some constraints. Using this method, a more robust geoscience system based on knowledge
extraction can be obtained with low-resource text [50].
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3.2. Relation Extraction

As an important task of information extraction, entity relation extraction refers to ex-
tracting predefined entity relations from unstructured text based on entity recognition [51].
The relation of entities is made up of triples 〈e1, R, e2〉, where e1 and e2 are entities and R
is a relation.

Classic relation extraction methods are divided into four categories: supervised,
semi-supervised, weakly supervised, and unsupervised. Supervised relation extraction is
divided into feature-based methods and kernel function-based methods. Alokaili et al. [35]
and Choi et al. [52] used SVM as a classifier to study the influence of lexical, syntactic, and
semantic features on entity semantic relation extraction. In the face of unlabeled data, su-
pervised methods need to manually annotate the training data, which wastes considerable
time. Therefore, Huang et al. [53] and Quan et al. [54] then proposed relation extraction
methods based on semi-supervised, weakly supervised, and unsupervised methods to
solve this problem. Additionally, Brin [55] used the bootstrapping method to extract the
relation between named entities; Wang et al. (2018) [24] studied the method of using weakly
supervised learning to improve the accuracy of target detection; Hasegawa et al. [56] pro-
posed an unsupervised relation extraction method between named entities. Mintz et al. [57]
applied distant supervision in relation extraction.

In traditional relation extraction, the use of NLP leads to error propagation layer-
by-layer and affects the effect of relation extraction. Therefore, distant supervised entity-
relation extraction methods based on DL including CNN, RNN, LSTM, and other network
structures [58–60] have become a research focus due to their ability to alleviate the prop-
agation of labels and feature extraction errors. In recent years, scholars have proposed a
variety of improvements based on the above basic methods such as the fusion of piecewise
convolutional neural networks (PCNNs) and multi-instance learning [61], the COTYPE
model [62], and the residual network proposed by Huang and Wang [63], which all enhance
the effect of relation extraction.

In 2014, based on the mechanism of human visual attention, Bahdanau et al. applied
the attention model to NLP [64,65]. Moreover, attention models have been applied to
machine translation based on neural networks and have achieved good results [66]. With
the development of DL, attention mechanisms have been widely used due to their excellent
performance. Attention-based bidirectional long short-term memory networks (Att-Bi-
LSTM) [67] add an attention layer after the Bi-LSTM structure, which can capture the most
important semantic information in a sentence.

In this work, Att-Bi-LSTM was used to recognize the entity relation of KGs for gold
deposits. Figure 3 shows the neural network architecture of the Att-Bi-LSTM model. This
model contains five components: (1) the input layer inputs the sentence to this model, xi
represents each word in the sentence, and T represents the number of words in the sentence;
(2) the embedding layer maps each word xi in the sentence to a low dimensional vector ei;
(3) the LSTM layer, the Bi-LSTM layer inputs the word vectors of the training set obtained
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from the embedding layer into the forward and backward LSTM, respectively, to obtain
high-level features; (4) the attention layer produces a weight vector, and weights the output
of each LSTM step to obtain the sentence-level feature vector; and (5) in the output layer,
the softmax activation function is used to obtain the final probability of each classification.
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3.3. Entity Alignment

After relation extraction, the objective of obtaining the entity and relation information
from unstructured data is achieved. However, in geological KGs, it is common for entities
to have multiple words and one meaning. For example, the Jiapigou fault can also be
named the Dalazi–Jiapigou fault. Therefore, this knowledge needs to be integrated through
entity alignment to improve its quality.

Entity alignment can also be called coreference resolution. The goal of entity align-
ment is to distinguish whether these entities are the same entity by comparing and cal-
culating the similarity between different entities, in order to solve the problem that one
entity corresponds to multiple names. The similarity calculation expresses the similarity
degree between entities through mathematical calculation. Traditional similarity calcu-
lation methods include the Levenshtein distance [68], Jaccard similarity coefficient [69],
cosine similarity [70], term frequency-inverse document frequency (TF-IDF) [71,72], and
Jaro-Winkler [73]. Volz et al. (2009) [74] provided a number of similarity metrics to cal-
culate the similarity values of strings, URLs, numeric, and dates. In 2014, Vrandecic and
Denny et al. [75] defined some feature templates for alignment and achieved good results.

The computation process of the entity alignment algorithm based on the similar-
ity of string and manually defined features is relatively simple. However, because only
character-level features are used to measure the similarity of entity categories, the im-
plicit semantic information cannot be captured, resulting in low alignment accuracy. Sub-
sequently, many graph-based entity alignment methods have been proposed. In 2009,
Niu X and Rong S et al. [76] studied the measurement index of word sense disambiguation
based on the graph method. The similarity of entities based on KGs uses the represen-
tation learning algorithm related to the graph structure, which is divided into network
representation learning and KG representation learning. Network representation learning
includes LINE, node2vec, and DeepWalk [77–79]. KG representation learning includes
TransE, TranSparse, TransR, and TransH [80–83]. Using representation learning, entities in
KGs can be vectorized. Compared with the similarity calculation based on the textual level,
the entity vector obtained by this method can significantly improve the effect.

In recent years, word embedding, as a method of mining the deep-seated related
semantics of words, has attracted great attention [84–86]. In particular, when using NLP
to calculate the text similarity, the text needs to be vectorized first, so the finer-grained
text is represented as word embedding. Different word embedding construction methods
have different influences on sentence similarity calculation results [87,88]. In the actual
application process, it is necessary to choose the appropriate algorithm according to the
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text situation. Word embedding is based on the core idea [89] that “words with similar
context also have similar semantics”. Characters or words are mapped into a vector space,
so that words with similar semantics have similar directions in the vector space. Therefore,
the alignment method based on word embedding can learn the deep semantic information
of words from the corpus to effectively improve the alignment accuracy. Santos et al. [90]
calculated the similarity based on the word vector of place names. The results show that
this method is superior to the traditional alignment method based on the edit distance.

In this context, this work takes the geological entities of the JMGB as the research
object and carries out joint entity alignment method research. This work considers the
similarity between entities from two aspects. One is the edit distance similarity of entity
names: the entities used in this paper are all geological domain entities, and the entity
names are all string types. If the similarity of entity names is high, the probability that these
two entities are the same entity is also high. The second is vector similarity: if two entities
with similar semantics have a higher similarity of word vectors, then they are also more
likely to be the same entity. Based on the above two cases, the weighted sum of the edit
distance similarity and the word vector similarity is taken as the final similarity of the two
entities. This method can consider the similarity of entities at both the string and semantic
levels. The formula is as follows:

sim(ai, bi) = αsimlev(ai, bi) + (1 − α)simwor(ai, bi) (1)

where ai and bi are two entities to be aligned; α is the weight coefficient; sim(ai,bi) is the
similarity of entities to be aligned; simlev(ai,bi) is the edit distance similarity; and simwor(ai,bi)
is the word vector similarity. We set the value of α and selected p as the threshold for
whether the entity pair was aligned, that is sim(ai,bi) ≥ p, and two entities were considered
the same entity.

3.3.1. Edit Distance Similarity

The Levenshtein distance is a kind of edit distance. This algorithm was proposed
by Levenshtein [91]. Entity similarity is calculated according to the Levenshtein distance
algorithm, which is called the Levenstein ratio, and the formula is as follows:

simlev(ai, bi) = 1− Idist
length(ai) + length(bi)

(2)

where Idist is the class edit distance, which refers to the minimum number of edits needed
to change string ai into string bi. In this case, the insertion or deletion of a string is edited
once, and the replacement of a string is edited twice; length(ai) is the length of string ai; and
length(bi) is the length of string bi. We used the Levenshtein toolkit in Python and used the
levenshtein.ratio statement to compute the similarity of two entities.

3.3.2. Vector Similarity

The word2vec proposed by Mikolov et al. [92] is widely used in comparing the
similarity between words. In this paper, word2vec was used to transform the entities to be
aligned into word vectors, and then cosine similarity was used to calculate their similarity,
which represents the semantic similarity of entities. The cosine similarity formula is
as follows:

simwor(ai, bi) =
∑n

i=1 ai × bi√
∑n

i=1 ai ×
√

∑n
i=1 bi

(3)

Formula (3) shows that the range of cosine similarity values is [0, 1], and the greater
the value, the higher the similarity. ai and bi represent the word vector set of the geological
entities. In this paper, the gensim toolkit in Python was used to train word vectors by
Gensim.models. The Word2Vec statement and the cosine similarity between entities were
calculated by the cosine_similarity statement. The alignment entities were obtained by
setting the threshold.
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3.4. Visualization of KGs

Zhou et al. [93] considered that the geoscience KG is a clear display of all knowledge
nodes and their relations in the field of earth science. Therefore, it is an important challenge
to construct a geoscience KG by integrating the complex characteristics, computational
attributes, and knowledge relations and rules from the nature of the graph structure. At
present, typical KGs include DBpedia, YAGO, Wikidata, OpenCyc, and Freebase [94,95].
These resources cover knowledge in different fields, and the content is constantly enriched
as human knowledge grows. KGs are usually stored in triples: <concepts, relationships,
attributes>. Common graph databases mainly include OrientDB, Infinite Graph, Neo4j,
and Titan [96]. In addition to being a visualization tool, Protégé [97] is used for constructing
ontologies, relationships, attributes, and instances in the semantic web. As a science
mapping tool, CiteSpace [98] is designed to facilitate the detection of emerging trends and
abrupt changes in the scientific literature.

Among them, Neo4j is very suitable as the storage database of KG because of its
good support for graph data, large amount of data storage, and support of multiple
retrieval methods. By using Cypher, developers can query relevant data and display
them in the control window, and return the results in the JSON, XML, and table formats.
KG is widely used in NLP such as for auxiliary decision-making, semantic search, and
intelligent question answering [99–101]. Neo4j creates the contents of the database through
Cypher statements and supports external data import from CSV. In this work, entities,
attributes and their relations to each deposit are classified and sorted into CSV files, and
they are imported in batches through the LOAD CSV statement, new nodes are added to
the database through the MERGE statement, and the relations between nodes are created
through the MATCH statement.

Due to the deposit formation complexity, it is difficult to effectively integrate and
analyze massive geological and mineralogical big data. There is still a lack of research on
the intelligent mining of origin information and the discovery of metallogenic geological
regulation from large geological and mineralogical big data. In this study, visualization
technology based on KGs was used to explain and analyze geological textual data, and the
node-edge structural model was used to associate the origin and evolution of gold deposits.
The research was used to establish KGs for deposits based on Neo4j and then discover the
overall formation mode of mineral resources. Visualization based on KGs can facilitate
researchers in analyzing the spatial distribution of data and enhancing the interpretation
ability of large amounts of geological data.

4. Construction of KG for Ore Deposits
4.1. Basic Ideas and Algorithm Flow

Figure 4 illustrates the framework for KG construction. Through the knowledge acqui-
sition, annotation, and extraction of entities, relations and attributes in the text describing
typical gold deposits in the JGMB, a KG for gold deposits with application functions was
constructed. The construction process was divided into the following steps. (1) Text on
relevant deposits in the JGMB was input, the geological entities of the corresponding
deposits were extracted through DL, and an NER dataset of deposits was formed. (2) The
relationship network between entities was constructed through relation extraction. (3) The
entities were aligned. (4) The entities and relations were stored in Neo4j. The TF-IDF values
of these geological entities were extracted based on establishing the KG, and the similarity
between different deposits was calculated by cosine similarity.

The core idea of deposit visualization and interpretability based on a KG is to show
the relations between deposits through graphs and distinguish the differences between
deposits through the similarity of geological characteristics. Based on these design ideas,
the proposed method includes three cores: (1) extracting text-based metallogenic informa-
tion; (2) establishing a KG for the deposit model, and (3) constructing interpretable deposit
characteristics. Among them, “constructing interpretable deposit characteristics” aims at
the problem that the existing geoscience KG model lacks quantitative interpretation. Based
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on the geological information extraction of typical deposits in the JGMB, the relations be-
tween deposits were constructed, and the similarity between deposits was calculated. Then,
quantitative interpretation of the mapping relations between deposits in the metallogenic
belt was realized.
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4.2. Entity Extraction

Entity extraction is the key input of KG visualization based on DL. At present, there is
no mature entity recognition method and no public dataset available for the construction
of geoscience KGs. In this work, by collecting the textual data of gold deposits in the JGMB,
the corresponding entity extraction was carried out under the guidance of domain experts,
and the NER dataset of these deposits was constructed.

Corpus construction. A total of 266 papers and dissertations related to typical gold
deposits in JMGB were retrieved and downloaded from the China National Knowledge
Infrastructure (CNKI). Among them, 120 were randomly selected for model training and
the other 146 were used for model prediction. Since these collected documents were stored
in PDF format, the document format needed to be converted to text format data first. The
contents of these documents were cleaned, and after removing the drawings and tables,
7014 sentences and 527,449 characters were obtained in the labeled dataset. The unlabeled
dataset contained 8802 sentences and 671,489 characters.

Entity category. An entity in the KG refers to the general name of various geological
characteristics related to ore deposits. Based on the metallogenic geological body, metallo-
genic structure, and mineralization characteristics, a total of 20 categories of entities were
extracted, as follows in Figure 5.

Basic deposit information was extracted: (1) location such as Dunhua City or Huadian
City; and (2) the name of the deposit such as the Songjianghe gold deposit and Liupiye
gold deposit.

Metallogenic geological bodies refer to geological bodies that are closely related to
the deposits in time, space, and origin and include the following seven entities: (1) group
such as the Jiapigou Group and Longgang Group; (2) formation such as the Laoniugou
Formation and Xinkaihe Formation; (3) metamorphic rocks such as amphibolite and marble;
(4) plutons such as the Huangniling pluton and Wudaoliuhe pluton; (5) intrusive rocks
such as granodiorite and adamellite; (6) extrusive rocks such as basalt and rhyolite; and
(7) sedimentary rocks such as dolomite and siltstone.
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Figure 5. The construction structure of the KG for gold deposits. A1 is the node representing the
secondary fault. A2 is the node representing the fault character.

Metallogenic structure refers to the structure that controls the spatial position, shape,
scale, occurrence, and internal structure of geological bodies. The metallogenic structure
includes the following four entities: (1) geotectonic locations such as the northeastern
margin of the NCC and the Xingmeng orogenic belt; (2) regional faults such as the Huifahe
fault and Ji’an–Songjiang fault; (3) secondary faults such as the Jiapigou fault and Jinyinbie
fault; and (4) fault characteristics such as brittle fault, brittle–ductile fault, and ductile fault.

Mineralization characteristics refer to those that can directly indicate the locations of
ore bodies and have special significance for prospecting prediction. The mineralization
characteristics include the following seven entities: (1) metallogenic stages such as the
milky-quartz stage and quartz-pyrite stage; (2) deposit types such as altered rock-type and
quartz vein-type; (3) geological time scales such as Cretaceous and Jurassic; (4) minerals
such as pyrite and hematite; (5) dykes such as diorite porphyrite and syenite porphyry;
(6) wall rock alterations such as chloritization and pyritization; and (7) ore body shapes
such as veins, lenticular veins, and thin veins.

Data annotation. A total of 527,449 characters in 7014 sentences were annotated as a
corpus, and the corresponding domain dictionary was generated. After manual annotation
and verification, an NER dataset of ore deposits in the JGMB was formed. The annotation
rules were set as follows: (1) entity boundary detection, for example, correctly identifying
the Seluohe Group rather than Seluohe; and (2) determining the category of the entity,
for example, pyrite is a mineral entity rather than a rock entity. In this paper, the BIO
annotation method was used. B represents the beginning of an entity, I represents the inside
of an entity, and O represents a nonentity. These data are divided into the training dataset,
verification dataset, and test dataset at a ratio of 8:1:1, as shown in Table 1.
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Table 1. Labeling with the domain dictionary with the resolution rules applied.

Entity Category Beginning of an Entity Inside of an Entity Number of Entities in
Training Dataset

Number of Entities in
Validation Dataset

Number of
Entities in

Test Dataset

Deposit type B-deposit_type I-deposit_type 278 6 19
Dyke B-dyke I-dyke 1326 139 176

Extrusive rock B_extrusive_rock I-extrusive_rock 129 18 6
Fault character B-fault_character I-fault_character 672 50 83

Formation B-formation I-formation 196 33 24
Geological time scale B-geological_time_scale I-geological_time_scale 1600 302 165
Geotectonic location B-geotectonic_location I-geotectonic_location 620 163 66

Group B-group I-group 340 36 33
Intrusive rock B-intrusive_rock I-intrusive_rock 1050 239 71

Location B-location I-location 1014 91 113
Metallogenic stage B-metallogenic_stage I-metallogenic_stage 120 2 29
Metamorphic rock B-metamorphic_rock I-metamorphic_rock 1451 200 90

Mineral B-mineral I-mineral 2705 191 482
Name of the deposit B-deposit I-deposit 2296 185 340

Orebody shape B-orebody_shape I-orebody_shape 1040 44 228
Pluton B-pluton I-pluton 112 8 4

Regional fault B-regional_fault I-regional_fault 110 27 22
Secondary fault B-secondary_fault I-secondary_fault 264 45 17

Sedimentary rock B-sedimentary I-sedimentary 105 18 13
Wall rock alteration B-wall_rock_alteration I-wall_rock_alteration 797 48 136

Experiment. The essence of NER is a sequence labeling problem, that is, classifying
each word in the sequence. In this paper, accuracy (ACC), precision (P), recall (R), and
F1 [102] were used for the NER evaluation metrics. The configuration of the experimental
environment is shown in Table 2. The hyperparametric settings of model training are
shown in Table 3.

Table 2. The configuration of the experimental environment.

Operating System Windows 10

CPU Intel Core i9-10900F @ 2.80 GHz
GPU Nvidia GeForce RTX 3080 (10 GB)

Python 3.6
Pytorch 1.7.0

Table 3. The model parameters.

Hyperparameters Value

Batch size 128
Learning rate 0.001

Epochs 250
Character embedding dimension 100

The number of hidden units 128
Dropout rate 0.5

Optimizer Adam

Evaluation. We selected the Bi-LSTM-CRF model and compared it with the HMM,
CRF, and Bi-LSTM models to compare the accuracy of different methods on the geological
NER task. As shown in Table 4, the accuracy of HMM was low. CRF was better than
Bi-LSTM, but slightly lower than Bi-LSTM-CRF. The experimental results showed that the
Bi-LSTM-CRF model had a better entity recognition effect than other models, which can
meet the requirements of the construction of the deposit KG.

Table 4. The test results of the entity extraction models.

Model ACC (%) P (%) R (%) F1 (%)

MHH 95.32 66.26 80.17 72.55
CRF 99.16 94.62 93.25 93.93

Bi-LSTM 99.09 91.70 94.65 93.15
Bi-LSTM-CRF 99.27 97.01 96.83 96.92

Note: The best results are highlighted in bold.
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4.3. Relation Extraction

Discrete nodes are obtained after entity extraction, so it is necessary to determine
the relationship between entities to form a network knowledge system. The Att-Bi-LSTM
model was used to ensure the accuracy of relation extraction. By default, this method
knows the relationship categories contained in all texts. In this case, relation extraction is a
problem of text classification. A sentence and two entities contained in the sentence are the
inputs, and the category of relation is the output.

Dataset. Currently, there is a lack of public datasets in the field of geology. In this
paper, 7014 sentences in the dataset for constructing the NER task in Section 4.2 were used
for the relation extraction experiments. The approach taken in this paper was to identify the
entities contained in each sentence according to the geological entity dictionary. Through
the permutation and combination of entities in sentences, the possible relations are found,
and then the relation dataset is constructed. The label categories in the dataset include
sentences, entities, and relations. A sentence may contain more than two geological entities.
To solve this situation, sentences containing multiple entities are exhaustive until all possible
situations are traversed. For example, the sentence “the types of wall rock alteration of
the Songjiang gold deposit include pyritization, chloritization, etc.” includes two cases,
namely, <Songjiang gold deposit, wall rock alteration, pyritization> and <Songjiang gold
deposit, wall rock alteration, chloritization>, which need to be repeated twice. The dataset
constructed in this paper contained a total of 80,011 triples, of which 60,000, 10,000, and
10,011 were randomly selected as the training dataset, validation dataset, and test dataset,
respectively. Based on the output, relations were defined under the guidance of domain
experts. In terms of the definition of the relation type, this paper divided the entity-relation
based on the results of DL into two categories: (1) the relationship between ore deposit
entities and their geological characteristic entities indicates that geological characteristics
play a role in the ore deposits, and the relationship points from the deposit name to
the geological characteristic entities such as wall_rock_alteration, metallogenic_stage and
secondary_fault; (2) the relationship between the geological characteristic entities such as
contains, associated_with and occurs_in. Figure 5 shows the KG for the deposit model
based on the algorithm in this paper. Finally, 24 predefined relations and 1 other relation
are constructed, as shown in Table 5.

Table 5. The relation types for the geological KG.

Relation Category
Number of Triples

Training Dataset Validation Dataset Test Dataset

associated_with 23 4 3
belongs_to 86 8 17

contains 565 86 97
controls 93 15 10

deposit_type 60 8 9
dyke 557 81 90

extrusive_rock 3 1 3
fault_character 276 48 56

formation 86 10 11
formed_in 244 35 42

geologic_time_scale 422 64 53
geotectonic_location 120 16 15

Group 131 22 22
intrusive_rock 177 37 39

located_in 46 11 12
metallogenic_stage 45 11 9
metamorphic_rock 302 53 55

Mineral 584 101 97
occurs_in 543 94 85

orebody_shape 118 22 17
Other 55,057 9206 9195
pluton 24 4 5

regional_fault 26 6 2
secondary_fault 153 24 21

wall_rock_alteration 259 44 35
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Word embedding. According to the characteristics of the Chinese language, the Jieba
toolkit in Python was used to segment sentences to improve the performance of the model.
Due to the large number of proper nouns in the geological field, to improve the accuracy of
word segmentation, this paper used the trained Bi-LSTM-CRF model to identify the entities
in the prediction dataset in the corpus, added these entities to the domain dictionary, and
built a dictionary of stopping words to reduce the word segmentation errors.

Word vectors were trained using the continuous bag of words (CBOW) model in
word2vec. The CBOW model parameters were set as follows: the sliding window size was
5, the number of training iterations was 5, and the dimensions of the word vector were 50,
100, and 200. Under the supervision of the domain dictionary, all 15,816 sentences in the
corpus were segmented and trained to obtain 13,645 word vectors.

Model test. In this paper, the Att-Bi-LSTM model proposed by Zhou et al. (2016) [67],
the CNN model proposed by Nguyen et al. (2015) [103], and the RNN model proposed
by Zhang et al. (2015) [104] were used for relation extraction. The effect of different word
vector dimensions on the training accuracy was verified. The three models used the same
hyperparameters, as shown in Table 6. Among them, the heights of the filters used in the
CNN were 3, 4, and 5.

Table 6. The model parameters.

Hyperparameters Value

Batch size 32
Learning rate 0.001

Epochs 100
Word embedding dimension 50, 100, 200

Size of hidden state 256
Size of position embedding 50

Dropout_rate 0.5
Optimizer adadelta

Experimental. As seen in Table 7, the ACC, P, R, and F1 scores of the Att-Bi-LSTM
model were slightly improved compared with those of the other two models. In contrast,
this method could better extract the relationship information between geological entities.
Experimental results demonstrated that for the dataset used in this paper, the larger the
word vector dimension, the better the training effect. When the word vector dimension
was 200, the F1 score of the Att-Bi-LSTM model could reach 91.01%.

Table 7. The test results of the relation extraction models.

Word Embedding
Dimension Model ACC (%) P (%) R (%) F1 (%)

50
CNN

97.95 88.96 82.21 85.46
100 98.19 87.18 88.81 87.99
200 98.27 87.15 90.30 88.70
50 Bi-LSTM +

Pooling

98.25 86.82 90.92 88.82
100 98.40 89.84 89.05 89.44
200 98.36 87.16 92.04 89.53
50

Att-Bi-LSTM
98.59 90.06 90.17 90.12

100 98.48 88.21 92.16 90.15
200 98.67 90.73 91.29 91.01

Note: The best results are highlighted in bold.

4.4. Knowledge Fusion

Data cleaning. AI can maximize the exploration of entities and relations in texts to save
labor costs. In this paper, the trained Bi-LSTM-CRF and Att-Bi-LSTM models were used to
extract entities and relations from the predicted dataset, respectively. After integrating with
the training dataset, the triples for constructing the KG were formed. As shown in Table 8,
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there are two main problems. First, relatively few relations are effectively annotated. More
than 90% of the relations in the dataset were labeled Other, meaning that the relations
between entities in these sentences were not predefined. Second, the relation types were
not balanced. Common relations have more labeled sentences, while some uncommon
relations only have a few labeled sentences.

Table 8. The data statistics of the geological KG in the JGMB.

Name Labeled Dataset Unlabeled Dataset Total

Number of entities 20,187 25,514 45,701
Number of relations 80,011 101,049 181,060

Number of
predefined relations 6553 8803 15,356

Number of sentences 7014 8802 15,816
Number of characters 527,449 671,489 1,198,938

Therefore, the triples predicted by the model had redundant or even wrong infor-
mation, and the relations should be further cleaned. At this stage, the following pro-
cesses were carried out: (1) the same triplets were combined, 15,356 were integrated into
7295 non-repeated triples, and the occurrence times of each triplet were recorded; and
(2) according to predefined entity categories and relation categories, we used Neo4j to
establish nodes and relations between nodes, and exported them using the Export CSV
statement. The version of the Neo4j Community Edition used in this work was 4.2.5.
This step can remove these incorrect triples. For example, the semantic relation of triples
<Jiapigou gold deposit, dyke, rhyolite> was not in the predefined semantic relationship.
After this step, 5168 valid triples remain after cleaning.

Entity alignment. After data cleaning, entities from different sources need to be
aligned to ensure the reliability of the KG. The entity alignment method used in this paper
included five components. (1) In the face of a large number of entities in the corpus, if all
entities are considered as candidate entities and the similarity is compared one by one,
the efficiency of the entity alignment will be affected. To improve efficiency, this paper
classified entities according to their categories and aligned entities of the same category
to establish a candidate set. (2) Word vectors that can express the semantic information of
geological entities are generated according to the corpus. The experiments in Section 4.3
have proven that when the dimension of the word vector is set to 200, it can express
more semantic information. Therefore, the dimension of the word vector used for entity
alignment was also set to 200. (3) According to the generated word vector, the semantic
similarity of different entities was calculated. (4) According to the edit distance of the entity
name, the similarity of different entities is calculated. (5) The joint entity alignment results
were calculated and evaluated according to vector similarity and edit distance similarity.

Comparison of model architectures. Since there were no labeled data, to verify the
effectiveness of the proposed entity alignment method, we annotated the entity alignment
candidate set. If two entities pointed to one entity, we labelled it as 1. Otherwise, it was
labeled 0, and a total of 28,824 annotated data were obtained. The entity alignment methods
based on edit distance and word vector proposed in this paper were all unsupervised
algorithms. We conducted experiments and compared the effects of these methods on
the same set.

The experimental results of the ACC, P, R, and F1 scores of each entity alignment
method are shown in Table 9. Table 9 shows that the joint entity alignment method used in
this paper achieved the best effect by setting the threshold as 0.67. The experimental results
showed that the algorithm worked best when α was set to 0.1, as shown in Figure 6. The
method can also be ranked according to the similarity score, which is convenient for experts
to further screen, save time, and improve accuracy. The principle of entity alignment used
in this work is that if A is aligned with B and B is aligned with C, then the A and C entities
can be considered as aligned regardless of whether the similarity score between A and C
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exceeds the threshold. Finally, the knowledge base of the KG was verified manually, and
then the KG was constructed by Neo4j. There were 350 nodes and 2181 edges in the KG.

Table 9. The performance of the models.

Model Threshold ACC (%) P (%) R (%) F1 (%)

Edit distance 0.670 93.14 95.15 97.53 96.32
Word vector 0.965 85.94 92.18 92.53 92.36

The proposed method 0.670 93.21 95.03 97.72 96.36
Note: The best results are highlighted in bold, and the threshold is the optimization threshold of each method.
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4.5. The Application of the KG

Due to the spatiotemporal nature of geoscience data, almost all entities can be visually
displayed on the KG. Therefore, constructing the expression form of the KG for deposits
based on the “entity-relation” can be used to indicate the complex coupling relationship
between the geological characteristics related to gold deposits in the metallogenic belt. As
shown in Figure 5, A1 and A2 are two nodes representing the fault structure, and the edge
between them represents the comparative relationship between a secondary fault and the
fault characteristics in a specific state. The fault characteristics of the secondary fault are
constantly changing over time; for example, the Jiapigou fault may have three different
fracture properties: brittle fault, ductile fault, and brittle–ductile fault. Therefore, there is a
complex correlation between seemingly independent geological entities.

Extracting key geological entities. In the JGMB, two deposits with the same origin
usually have highly similar geological characteristics. Two deposits of different origins
may have different geological characteristics. These differences between deposits can
be distinguished by KGs. In this paper, the idea of TF-IDF was analogized, and a key
geological entity extraction method based on KGs for deposits was proposed.

TF-IDF is a statistical method [105]. TF-IDF is often used to assess how important
a word is to a document. The more important the word, the more likely it is to be the
keyword of the document. TF-IDF is often used in keyword extraction. In this work, the
concept of TF-IDF was introduced into the importance identification of geological entities,
where TF refers to the frequency of a geological entity appearing in all deposits, and IDF
indicates the general importance of a geological entity to all deposits in the dataset.

By multiplying TF and IDF, the TF-IDF of all geological entities of each deposit can be
obtained. The higher the importance that a geological entity is to the deposit, the greater
its TF-IDF value, and the better discriminant ability of the entity for a given deposit. The
formula is as follows:

TF× IDF(i, j) = TFij × IDFi =
nij

∑k nkj
× log(

|D|
1 + |Di|

) (4)

where nij is the number of occurrences of geological entity i in deposit j, and ∑
k

nkj is the

total number of occurrences of all geological entities in deposit j. |D| is the total number of
deposits, and |Di| is the number of deposits containing geological entity i. This method
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identifies the importance of each geological entity to all deposits and specific deposits by
calculating the frequency of the occurrence of each geological entity in the KG. The entity
of geological characteristics is the text type. Textual entities can represent the characteristics
as a collection of characteristic words and then count their TF-IDF values.

Similarity and distance between deposits based on cosine similarity. An important
problem in the KG for deposits is, given two deposits, how to assess whether they are
similar and their degree of similarity. This paper introduces the idea of cosine similarity
and proposes a calculation method of cosine similarity between deposits based on the
TF-IDF value of geological entities. This similarity representation is close to the method of
human understanding, and it is easy to add other external human knowledge with strong
scalability. The core idea is to use the same geological entities and their TF-IDF values of
different deposits in the KG to represent the similarity between deposits. Theoretically, the
greater the same geological entities between the two deposits and the greater the TF-IDF
value of the geological entities, the higher the similarity between the two deposits.

The steps to calculate the cosine similarity of ore deposits are as follows: (1) the
geological entities of each ore deposit are counted; (2) geological entities are mapped into
TF-IDF vectors; and (3) the similarity of ore deposits is compared pairwise by a nested
loop. In this work, the sklearn toolkit in Python was used to calculate TF-IDF and cosine
similarity, which were completed by the TfidfVectorizer statement and cosine_similarity
statement, respectively.

Figure 7 illustrates the method by taking some geological entities of deposit A and
deposit B as examples. The nodes in Figure 7 represent the two deposits and their geological
entities, and the values on the edge represent the TF-IDF values of deposits with different
geological entities. The similarity between deposit A and deposit B depends on the number
of common geological entities and their TF-IDF values. After calculation, the cosine
similarity between these two deposits was approximately 0.47. Gephi software [106] was
used to visualize the distance of the similarity matrix. The greater the similarity, the closer
the distance between deposits. The visualization of clustering results among typical gold
deposits in the JGMB can be obtained.
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5. Application of the KG in the JGMB
5.1. Visualization of the KG

Regional magmatic rocks and dykes. There is a strong magmatic activity in the JGMB,
and magmatic rocks of different ages and types are exposed including Archean TTG and
phanerozoic granites and dykes. The exposed rocks in the study area include mainly
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granodiorite, granite, syenite, monzonite, granite porphyry, diabase, lamprophyre, and
many Au-bearing quartz veins. Figure 8 clearly shows the relationship between the deposits
and magmatic rocks in the study area. In terms of relationships, dykes are closely related
to gold deposits and are an important magmatic rock condition for gold mineralization,
as shown in Figure 9. These results show that magmatic evolution is closely related to
regional tectonism and mineralization [2,3,107].
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Regional metamorphic rocks, extrusive rocks, sedimentary rocks. The metamorphic
rocks exposed in the study area mainly include mylonite, gneiss, schist, slate, and granulite;
the extrusive rocks mainly include andesite, basalt, and rhyolite; and the sedimentary rocks
mainly include limestone, mudstone, and glutenite. The relationship between gold deposits
and the outcropping rocks of each stratum is shown in Figure 10.
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Regional structures. The regional structure of the JGMB includes folds and faults,
as shown in Figure 11. Among them, the fold structures are the Banmiaozi anticline,
Hongqiling syncline, Bajiazi anticline, etc. The regional faults include the Huifahe and
Ji’an-Songjiang faults. Among them, the Huifahe fault activity is the most intense. The
distribution direction of Mesozoic and Cenozoic faulted basins, sedimentary formations,
and late Yanshanian granites in the area are controlled by this fault [2].
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Three parallel faults are successively distributed from NE to SW: the Fuerhe, Jinyinbie,
and Jiapigou faults; these faults are part of the secondary Huifahe fault. Among them, the
Jiapigou fault controls the spatial distribution of deposits in this metallogenic belt.

The analysis of metallogenic-tectonic settings is an important way to distinguish the
types of deposits. As shown in Figures 1c and 11, from the ore-controlling structural
conditions, each deposit in the western section of the JGMB is adjacent to the Huifahe fault.
The Songjiang gold deposit, located in the eastern section of the JGMB, is controlled by
the Jinyinbie fault and has the characteristics of ductile activity. The gold deposits in the
metallogenic belt are generally superimposed on brittle–ductile deformation and brittle
deformation based on early ductile deformation, and the ore bodies are located mainly in
the late superimposed brittle fault system.

5.2. Extraction of Key Geological Characteristic Entities

For two similar deposits, the coincidence rate of geological entities may be very high.
Therefore, this paper explored whether the characteristics of different deposits could be
accurately distinguished by geological entities and their relations. This section uses all
of the entities in the KG to calculate the TF-IDF values of the geological entities of each
deposit. Table 10 lists the geological entities of the top 10 TF-IDF values of each deposit
and arranges them from high to low according to the TF-IDF values.

Table 10. The TF-IDF values of the top 10 geological characteristic entities.

Number TF-IDF Deposit Geological Characteristics Entities

1 0.632 Songjianghe Seluohe Group, Jurassic, Permian, ductile fault, Jinyinbie fault, Proterozoic,
Dunhua City, schist, Triassic, brittle–ductile fault

2 0.446 Banmiaozi Diorite, Zhenzhumen Formation, Diaoyutai Formation, fault breccia, Jiapigou
block, diabase, marble, granite, Jiapigou fault, Huadian City

3 0.432 Laoniugou Jiapigou block, gneiss, Laoniugou Formation, Archean, granulite, amphibolite,
Sandaogou Formation, granite, diorite, quartzite

4 0.431 Liupiye Granite, brittle–ductile fault, Archean, diorite, diabase, Jiapigou block, gabbro,
Jurassic, Mesozoic, Biotite

5 0.403 Yuanchaogou Pyrite, quartz vein, galena, Au-bearing quartz vein, sphalerite, Huadian City,
Jiapigou block, Laoniugou Formation, lamprophyre, chalcopyrite

6 0.399 Damiaozi Granite, Jiapigou fault, Huadian City, Jiapigou block, ductile fault, Sandaogou
Formation, granodiorite, Archean, lamprophyre, breccia

7 0.393 Daxiangou Archean, Jiapigou granite-greenstone belt, lenticular, ductile fault, diorite,
granite porphyry, brittle fault, Jiapigou block, Daxiangou syncline, vein

8 0.390 Xiaobeigou Gneiss, Jiapigou block, granite, quartz vein-type, quartz vein, Archean, ductile
fault, quartz, Jiapigou fault, Jiapigou Group

9 0.385 Erdaogou Diorite, quartz vein, gneiss, quartz, Archean, Jiapigou block, zircon, quartz
vein-type, granodiorite, granite

10 0.370 Jiapigou Archean, Mesozoic, granite, ductile fault, Jiapigou block, Jiapigou fault, quartz
vein, Huadian City, quartz, gneiss

11 0.353 Caiqiangzi Schist, mylonite, Jiapigou fault, compressional structure, Huadian City,
diabase, Archean, granite, silicification, granodiorite

12 0.351 Bajiazi Granite porphyry, pyrite, quartz, diorite, zircon, Triassic, quartz vein, granite
aplite, quartz vein-type, Biotite

13 0.344 Sidaocha Quartz vein, Archean, Au-bearing quartz vein, quartz vein-type, granite
porphyry, gneiss, Jiapigou fault, diorite, amphibolite, Sandaogou Formation

14 0.313 Sandaocha Brittle fault, granite porphyry, quartz vein, diorite, quartz vein-type, quartz,
ductile fault, Archean, pyrite, Jiapigou fault
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Although the valuable information contained in the text is often related to high-
frequency content words [108], some low-frequency words are also important [109]. TF-IDF
is a method to extract low-frequency words that contain important information, and to
evaluate the importance of a word to a document. In other words, when a geological entity
occurs many times in one deposit, but rarely in others, it has some discriminative power.
These geological entities can be called key geological entities.

The TF-IDF values of geological entities will change with the size of the dataset. To
quantify this difference, this work took the complete dataset of 14 deposits and all of their
geological entities as a benchmark, and changed the size of the dataset by reducing a certain
number of typical deposits and their geological entities. The mean square error (MSE)
index was used to measure this bias.

MSE =
1
m

m

∑
i=1

(xi − yi)
2 (5)

where m is the total number of geological entities; xi is the TF-IDF value of each geological
entity in the complete dataset; and yi is the TF-IDF value of the corresponding geological
entity after changing the dataset. The blue line in Figure 12 is the result of the quantification
test using the MSE index. The data in the figure show that when the dataset contained
13 deposits, the MSE index was 6.668 × 10−7, and the MSE deviation from the complete
dataset was relatively minimal. In contrast, when the dataset contained five deposits, the
MSE index was 432× 10−7. The overall trend was that the relative change in the MSE index
was greater with the decrease in ore deposits. To ensure the accuracy of the experiment, we
obtained the above experimental results by randomly reducing the range of the deposits
and repeating the experiment several times to take the average.
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5.3. Similarity and Distance between Deposits

The principles of ore deposit type identification are as follows: (1) If the cosine similar-
ity between two deposits is greater than the threshold value, they are of similar type; (2) if
the cosine similarity between deposit A and deposit B is greater than the threshold, and
the cosine similarity between deposit B and deposit C is also greater than the threshold,
it is considered that the types of deposit A, deposit B, and deposit C are similar; and (3)
if the cosine similarity between deposit A and any deposit in the dataset is less than the
threshold, it is considered that this deposit is not similar to other deposits.

The Jaccard coefficient and cosine similarity were used to compare the similarity
recognition accuracy of different methods for deposits. The experimental results are shown
in Figure 13. The cosine similarity calculation results are as follows. When all geological
entities were used, 13 deposits were correctly identified when the threshold value was set
as 0.6. Only the Liupiye gold deposit, as an altered rock-type gold deposit, was connected
to other quartz vein-type gold deposits with cosine similarities greater than 0.6, which is
not consistent with the known results, so the overall accuracy was 92.86%. When the ten
geological entities with the highest TF-IDF value were used, the recognition accuracy was
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also 92.86%. After removing the geological entities with the highest ten TF-IDF values of
each deposit, the accuracy of cosine similarity between deposits was reduced to 42.86%.

Figure 13. The accuracy of different similarity calculation methods: (a) the recognition accuracy
of the cosine similarity using all geological entities with their TF-IDF values; (b) the recognition
accuracy of the Jaccard coefficient using all geological entities; (c) the recognition accuracy of the
cosine similarity using the geological entities with the top ten TF-IDF values; (d) the recognition
accuracy of the Jaccard coefficient using the geological entities with the top ten TF-IDF values; (e) the
recognition accuracy of the cosine similarity after removing the geological entities with the top ten
TF-IDF values; (f) the recognition accuracy of the cosine similarity after removing the geological
entities with the top ten TF-IDF values.

When all geological entities of each deposit were used, the recognition accuracy of
the Jaccard coefficient was 85.71%. The Damiaozi gold deposit and Sidaocha gold deposit,
as quartz vein-type gold deposits, have no connection with other quartz vein-type gold
deposits with a similarity greater than 0.6. When using the ten geological entities with the
highest TF-IDF value of each deposit, the recognition accuracy increased to 92.86%. After
removing the geological entities with the highest ten TF-IDF values of each deposit, the
accuracy of the Jaccard similarity between deposits decreased to 35.71%.

In conclusion, the cosine similarity is more accurate than the Jaccard coefficient in
measuring the similarity between ore deposits. When the ten key geological entities
with the highest TF-IDF value of each deposit were used, the accuracy of the similarity
recognition results between deposits was higher. This is because the Jaccard coefficient
does not account for the number of occurrences of geological entities in different deposits,
nor does it consider the problem that key geological entities may bring more information.
The vector space model accounts for the two points, so the cosine similarity has a better
effect. The geological entity with a higher TF-IDF value is more inclined to be the main
identification feature of the deposit, which has a greater impact on the similarity of the
deposit. However, the geological entity with a low TF-IDF value has weak pertinence for
the deposit and is difficult to use as the main deposit identification feature.

The TF-IDF values listed in Table 10 are the highest TF-IDF values for each deposit.
Taking the Yuanchaogou gold deposit as an example, pyrite, galena, quartz veins, and gold-
bearing quartz veins describe the important metallogenic characteristics of this deposit.
The known data show that natural gold is distributed mainly in the microcracks of pyrite.
The quartz pyrite stage is the main mineralization stage of the Yuanchaogou gold deposit,
and the Au-bearing symbiotic association is natural gold, pyrite, chalcopyrite, and galena.
Therefore, the analysis based on the TF-IDF values can better evaluate the most significant
geological characteristics of each deposit. The number of geological entities in each deposit
is shown in Figure 14.
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Figure 14. The distribution of the geological characteristic entities in the KG for each deposit.

To verify the effectiveness of the similarity calculation method between deposits based
on the KG, the similarity of the typical deposits in the JGMB was calculated, and the types
of these deposits were analyzed. The cosine similarity between deposits was calculated
according to the TF-IDF value of the geological entities. Figure 15 shows the calculated
clustering effect of typical deposits. In this figure, the nodes represent different deposits,
while the edges represent the relationships between deposits. The figure shows that the
similarity between the Songjianghe gold deposit and other deposits was low, and the
distance was large. The Jiapigou gold deposit and 12 other gold deposits were closely
adjacent, and there were many connections with similarities greater than 0.6 between them.
In the cluster diagram showing the deposit distance, the similarity between the Jiapigou,
Erdaogou, Xiaobeigou, Bajiazi, Laoniugou, Sidaocha and Sandaocha gold deposits was
greater than 0.7. By calculating the similarity and distance, the deposits could be divided
into two categories: the Songjianghe gold deposit was classified into one category, and the
other 13 deposits were classified into another category.
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To verify the accuracy of the proposed method for ore deposit type identification, the
cosine similarity, Jaccard similarity coefficient, TransE, and the proposed method were
compared. In the experiment, we used all of the geological entities of each deposit in the
KG, and the similarity recognition accuracy of each method is shown in Figure 16. For
the cosine similarity, we first converted the deposit names into 200-dimensional vectors
according to the Word2Vec results in Section 4.3, and then calculated the similarity between
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them. The Jaccard similarity coefficient determines the similarity by calculating the ratio of
the intersection and union of geological entities between two ore deposits. TransE, on the
other hand, vectorizes geological entities and relationships in the KG into 200-dimensional
vectors, and then calculates the cosine similarity between vectors. The experimental results
showed that the proposed method based on the KG could accurately classify the deposits
by distinguishing the differences in geological characteristics and then infer the origin of
the exploration object in the research area by using the typical deposits of known types.
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5.4. Visualization of the Regional Metallogenic Model Based on the KG

In prospecting prediction, due to different geological environments, there are also
significant differences in metallogenic ore bodies, metallogenic structures, and metallogenic
characteristics between deposits. The geological model for prospecting prediction is based
on the existing mineral exploration, which fully expresses all of the known and inferred
geological characteristics of the deposits and ore bodies in the exploration area and can
effectively guide the deployment of prospecting engineering [110]. It is generally sum-
marized in the form of drawings, words, and tables. Based on previous work, this paper
explored the construction method of a metallogenic model based on KGs for gold deposits.

Taking the Songjianghe gold deposit as an example, 106 geological entities related to
this deposit can be visualized through Neo4j. To facilitate a clear display, the geological
entities of the top 69 TF-IDF values were selected to construct a visual metallogenic model
of the Songjiang gold deposit based on the KG (Figure 17). The figure shows that the
hierarchical information between geological features can be clearly expressed.

The ore-searching clues of the Songjianghe gold deposit based on KG are as follows:
this deposit is located between the northeastern margin of the NCC and the Xingmeng
orogenic belt and is controlled by the Ji’an-Songjiang, Huiquanzhan, Jiapigou, Jinyinbie and
Fuerhe faults. Among them, the Jinyinbie fault has the highest TF-IDF value, making it the
main rock- and ore-controlling structure in the mining area. The structural traces retained
in this deposit are mainly ductile deformation and brittle–ductile deformation, and the fold
structure in the area is mainly the Langchaihe anticline. The industrial type of ore bodies is
altered rock-type. The host rock is mainly the Seluohe Group, and the lithology includes
mainly gneiss and mylonite. Sulfide assemblages in ores include mainly pyrite, galena,
chalcopyrite, and sphalerite. Wall rock alterations include silicification, sericitization,
mylonitization, carbonation, chloritization, and potash feldspathization. The metallogenic
stages are divided into the milky-quartz stage, quartz-pyrite stage, polymetallic sulfide
stage, and quartz-calcite stage. Among them, the quartz-pyrite stage and polymetallic
sulfide stage are the main enrichment and mineralization stages of gold.
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Figure 17. Visualization of the Songjiang gold deposit metallogenic model based on the KG.

Comparison of similar geological entities between different deposits. The Songjianghe,
Jiapigou, and Liupiye gold deposits were selected for comparison, and the main similarities
and differences between these three deposits were analyzed (Figure 18). According to the
comparison of geological entities based on the KG, the mineralization characteristics of
these three deposits are similar in general, but show some differences in the details. These
were arranged based on the TF-IDF values, from large to small. The comparison of the
main ore-controlling factors and metallogenic geological conditions of these three deposits
is shown in Table 11.

The origin of ore deposits and prospecting criteria. The study of the KG for the
deposits showed that the metallogenic geological conditions of the main gold deposits in
the JGMB were similar, which revealed that these gold deposits were the products of the
same gold mineralization and were related to the ductile shear zone. The difference in the
spatial position and occurrence of each ore body was mainly caused by the secondary faults
tracking different trends in the process of the rising and migration of the ore-forming fluid.
There is a great possibility of altered rock-type ore bodies in the deep part of Jiapigou and
other quartz vein-type gold deposits. The geological model for the prospecting prediction
of the typical deposits in the JGMB based on KG is shown in Figure 19. Based on the
analysis of the mineralization characteristics and ore-controlling conditions of each deposit,
the geological characteristics of most typical deposits can be used as regional prospecting
criteria. As shown in Table 12.
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Table 11. A comparison of the main geological characteristics of the Jiapigou, Liupiye, and
Songjianghe gold deposits.

Deposit Jiapigou Liupiye Songjianghe

Country rocks Gneiss, hornblende, mylonite,
TTGs Gneiss, mylonite, TTGs Mylonite, gneiss, hornblende, TTGs

Intrusive rocks
and dykes

Granite, quartz vein, diorite,
granite porphyry, granite
pegmatite, granodiorite,
Au-bearing quartz vein

Granite, diorite, diabase dyke,
gabbro, granodiorite,

granodiorite, granite porphyry,
Au-bearing quartz vein

Granite porphyry, diorite, granite,
granodiorite

Structures
Jiapigou fault, Huiquanzhan fault,

Jinyinbie fault, Xing’antun
circular structure

Jiapigou fault, Xing’antun circular
structure

Jinyinbie fault, Jiapigou fault,
Langcaihe anticline

Mineralization types Quartz vein-type Altered rock-type Altered rock-type

Metal minerals Pyrite, sphalerite, galena,
chalcopyrite, magnetite Pyrite, chalcopyrite, galena Pyrite, molybdenite, chalcopyrite,

sphalerite

Ore body shapes Vein, stratiform-like, lenticular Vein Vein

Wall rock alterations
Silicification, sericitization,
chloritization, potassium,

pyritization

Pyritization, clayization,
carbonatization, sericitization,

potassium, mylonitization

Silicification, sericitization,
mylonitization, carbonatization,

chloritization, epidotization,
potassium, pyritization,

boilerization

Main metallogenic stages Quartz-pyrite stage, polymetallic
sulfide stage

Quartz-pyrite stage, polymetallic
sulfide stage

Quartz-pyrite stage, polymetallic
sulfide stage
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Table 12. Regional prospecting criteria of the JGMB.

Regional Prospecting Criteria

Country rocks TTGs, amphibolite, gneiss, Mesozoic granite.
Wall rock alterations Silicification, carbonation, sericitization, chloritization, pyritization

Dykes Syenite porphyry, lamprophyre, diabase, diorite, diorite porphyrite
Minerals Natural gold, pyrrhotite, pyrite, chalcopyrite, galena, sphalerite

Strata Jiapigou Group, Seluohe Group
Structures Jiapigou fault, Jinyinbie fault

Ore body shape Vein

6. Discussion
6.1. Benefits

The KG of deposits based on DL and NLP can reveal the relationship between the earth
system and the origin of ore deposits, automatically extract geological characteristic entities,
discover metallogenic regularity, and help researchers quickly analyze mineralization
information. Based on the lack of quantitative interpretation and analysis based on the
KG in the existing research, this paper proposed a visualization and interpretation method
based on the KG, and the excellent effect of this method was shown through experiments.
The work of this paper had two main advantages. First, the similarity between KG models
for each deposit was quantified. Second, a more comprehensive visual interpretation
system was constructed for the metallogenic KG model for deposits. In this work, the
geological entities of strata, structures, magmatic rocks, metamorphic rocks, and wall rock
alterations in the study area were collected. According to these basic data and KGs, the
origin of the exploration object can be determined by a comparison with those deposits
whose types are known.

6.2. Limitations

The entities and relationship types extracted in this work were relatively limited. To
use the KG for deposits in a wider range, we need to strengthen the construction of the
geological dictionary and model database. If we want to study the relationship between
regional magmatic evolution and mineralization, we also need to increase the construction
of the KG model based on geochemical data.
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6.3. Compared with the Previous Work

At present, the construction and application of deposit KGs are only starting, and
the construction method of KGs is not mature. This work was based on the classification
method of the KG for the deposits, considered the relationship between geological entities,
and calculated the similarities of the deposits based on geological facts. The construc-
tion of the KG for typical deposits in the JGMB was systematically studied. This paper
discusses the feasibility and importance of the KG in the study of gold mineralization
prediction, solves the problem of screening prospecting criteria, and expands the methods
of prospecting prediction.

6.4. Future Work

In the future, it is also necessary to increase the ability of cross-language geological
characteristic entities and the relationship extraction of KGs. The prospecting criteria of
geophysics, geochemistry, and remote sensing geology have been established to express
the relationship more accurately between deposits. The comprehensive and systematic
geoscience KG has wide application prospects. It can not only deepen the existing big data
geoscience analysis, but also expand the prospecting space, help to find different types
of gold deposits, and expand the target minerals from gold to silver, copper, tungsten,
and other minerals. By studying ore-controlling factors, prospecting criteria, and metallo-
genic information, various metallogenic models can be summarized to further clarify the
prospecting direction and guide the prediction of the target area. Then, this information
can be extended to the construction of the KG of the Laoling metallogenic belt and Yanbian
Mesozoic tectonomagmatic rock belt around the JGMB.

7. Conclusions

In this work, through the knowledge acquisition, annotation, and extraction of entities
and the relationships and attributes in the texts of typical gold deposits in the JGMB, a
KG for gold deposits was constructed. Based on the calculation of the TF-IDF index of the
geological characteristic entities of each deposit in the KG, the similarities and distances
between different deposits were calculated. In this work, the accuracy of NER model
was 91%, the accuracy of relationship extraction model was 92%, the accuracy of entity
alignment model was 92%, and the accuracy of deposit type recognition based on the KG
was 92%. The results show that the method proposed in this work can distinguish the
differences in the geological characteristics of different gold deposits and then accurately
classify the types of deposits through cosine similarity. Based on the analysis of the
mineralization characteristics and metallogenic geological conditions of the deposits in the
JGMB, the geological characteristics of most typical deposits can be used as prospecting
criteria. Brittle and brittle–ductile faults are widely developed in the gold deposit in
the western section of the JGMB. The main industrial type of deposits in this area is the
quartz vein type. There may be altered rock-type gold deposits in the deep part of the
known deposits.
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