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Abstract: The present study investigates the optimization and advanced simulation of the flotation
process of coarse particles (–425 + 106) using micro-nanobubbles (MNBs). For this purpose, flotation
experiments in the presence and absence of MNBs were performed on coarse quartz particles, and
the results were statistically analyzed. Methyl isobutyl carbinol (MIBC) was employed as a frother
for generating MNBs through hydrodynamic cavitation. The significance of the operating variables,
including impeller speed, air flow rate, together with the bubble size, and particle size on the flotation
recovery was assessed using historical data (HD) design and analysis of variance (ANOVA). The
correlation between the flotation parameters and process response in the presence and absence
of MNBs was modeled using hybrid convolutional neural networks (CNNs) and recurrent neural
networks (RNNs) as the deep learning (DL) frameworks to automatically extract features from input
data using a CNN as the base layer. The ANOVA results indicated that all variables affect process
responses statistically and meaningfully. Significant interactions were found between air flow rate
and particle size as well as impeller speed and MNB size. It was found that a CNN-RNN model could
finally be used to model the process based on the intelligent simulation results. Based on Pearson
correlation coefficients (PCCs), it was evident that particle size had a strong linear relationship
with recovery. However, Shapley additive explanations (SHAP) was considerably more accurate in
predicting relationships than Pearson correlations, even though the model outputs agreed well.

Keywords: quartz flotation; micro-nanobubbles (MNBs); operating variables; deep learning; convo-
lutional neural networks; recurrent neural networks

1. Introduction

The efficiency of flotation processes drops drastically as particle size decreases mainly
because there is a low collision probability between particles and conventional bubbles [1–3].
Furthermore, detachment is often a reason for the decreasing recovery of coarse particles [4–6].
Over the past decades, micro-nano bubbles (MNBs) have been investigated as a powerful
mean to enhance bubble–particle attachment and improve flotation performance [7–10].
Researchers reported improvements in flotation recovery, grade, and kinetics and even a
reduction in reagent consumption through the use of MNBs [10–14]. It has been shown that
even a low concentration of MNBs can lead to a significant increase in the flotation recovery
of fine and coarse particles [12,15–17]. Table 1 represents recovery and kinetic rate improve-
ments obtained for quartz flotation at a laboratory scale using micro/nano and combined

Minerals 2023, 13, 128. https://doi.org/10.3390/min13010128 https://www.mdpi.com/journal/minerals

https://doi.org/10.3390/min13010128
https://doi.org/10.3390/min13010128
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/minerals
https://www.mdpi.com
https://orcid.org/0000-0003-0961-4730
https://orcid.org/0000-0002-6410-4736
https://doi.org/10.3390/min13010128
https://www.mdpi.com/journal/minerals
https://www.mdpi.com/article/10.3390/min13010128?type=check_update&version=1


Minerals 2023, 13, 128 2 of 19

MNBs. According to Table 1, flotation performance increases in the presence of fine bubbles.
Nazari et al. showed that [7] such bubble sizes can increase the recovery of coarse quartz
particles by about 21%. Such enhancement of recovery was related to an increase in quartz
contact angle and agglomeration of ultrafine particles [16]. As Hampton and Nguyen [18]
reported, hydrophobic attraction was a result of the presence of MNBs at a hydrophobic
solid–liquid interface. Calgaroto et al. [16] demonstrated that small bubbles were effective
in improving flotation recovery with the attachment of air bubbles to a hydrophobized
surface of fine quartz particles (−128 + 8 µm). As a result of their low lifting power and
poor buoyancy, flotation with solo NBs was ineffective. Zhou et al. [19] found that ultrafine
bubbles can improve the ultrafine scheelite particles’ aggregation and their recovery to
17% when the concentration of NaOl was low. Tao et al. [20] studied the influence of
ultrafine bubbles on the reverse anionic flotation of hematite particles. NBs significantly
increased Fe recovery (approximately 16%) at all varying reagent dosages. It was shown
that ultrafine bubbles increased P2O5 and coal flotation recoveries by 10–30% and 8–27%,
respectively, at different particle size fractions [21]. The study by Farrokhpay et al. [15]
focused on the kinetics of fine quartz particles in the presence of MBs and conventional
bubbles (CBs), bubbles in the size range of hundreds of micros to the order of 1–2 mm,
reporting higher values when the MBs were applied. Increasing hydrophobicity expressed
by the water contact angle is one reason the ultrafine bubbles had higher kinetic rates. A
study was conducted by Rulyov et al. [22] on the treatment of MBs and glass beads in
flotation reactors. According to the researchers, the recovery of glass beads in the flotation
column was significantly improved due to coarse heteroaggregate formation from multiple
beads and MBs. Interestingly, those investigations, which employed amine-type collec-
tors, overlooked the synergetic frother impact of such a collector. Further, the adsorption
mechanism and kinetics of amines as the collector on the quartz particles through aerosol
collector addition (i.e., adsorption through gas on the quartz surface) is superior to the
typical liquid–solid interface. This fact was well discussed and addressed in detail in
another investigation [23]. This phenomenon was completely disregarded in most of the
previous studies and misinterpreted as the MNB impact.

Table 1. List of studies that addressed quartz particle flotation using micro/nano and combined
MNBs [7,15,16,22,24,25].

Particle Size (µm) MNBs Size Equipment Recovery (%) Kinetic Rate (%) Ref.

<5 UN Venturi tube 23 40 [24]
8–128 200–720 nm Steel needle valve 20 UN * [16]

290 150–200 nm Depressurization
of DI water 23 UN [25]

106–425 171 nm Venturi tube 21 36 [7]

38 <50 µm Air-in wa-
ter/Microdispersion 17 70 [15]

50–80 60 µm Air-in-
water/Microdispersion 14 UN [22]

* UN means the data were not provided in the manuscript.

The flotation process has a highly complex mechanism despite its relatively simple
mechanical aspects. It has always been a challenging debate to model and simulate flotation
processes [26,27] both at microscopic and macroscopic levels. In addition, it is almost impos-
sible to optimize flotation performance and simplify it simultaneously using experimental
approaches due to a large number of effective factors, interaction of their impacts, and rele-
vant high costs. Using a mathematical model combined with an appropriate optimization
method can potentially be a suitable way to describe the process accurately. So far, the flota-
tion process has been mainly optimized through a few conventional algorithms. In contrast,
it can be seen that new optimization techniques are more accurate and robust and produce
solutions that are superior to those obtained through earlier methods [28–30]. For example,
Sripriya et al. studied a modified flotation rate constant and statistical methods to optimize
the laboratory froth flotation parameters for fine coal in a batch experiment. As a result
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of optimizing a flotation bank with four Outukumpu cells, they improved the flotation
circuit yield, reduced the amount of froth ash, and increased the amount of rejected ash [31].
Al-Dhubaibi investigated Fe recovery from a refractory iron ore using gravity separation,
reverse flotation, and two-stage magnetic separation using the Box Behnken test design.
Results indicated that in the reverse flotation tests, the frother and depressant substantially
affected the Fe grade of concentrates while the collector influenced Fe recovery. A 90%
Fe recovery with 64.69% Fe grade was obtained within optimum flotation conditions [32].
Coal flotation optimization using modified flotation parameters and combustible recovery
in a Jameson cell was investigated by Vapur et al. Combustible recovery (%) and ash
content (%) were used for the optimization of the Jameson flotation variables, and it was
found that d80 = 0.250 mm particle size, 1/1 vegetable oil acids/kerosene ratio, 20% pulp
density, 0.600 L/min wash water rate, and 40 cm downcomer immersion depth could be
used to separate coal from ash efficiently [33]. A recent approach to simulate complicated
separation techniques uses expert systems such as deep learning [27,34–37]. Convolutional
neural networks (CNNs) stand out among all simulation techniques [38] and now play an
increasingly important role in big data predictive analytics [39]. By processing experimental
data, these networks transmit knowledge or rules behind data into a network structure [40].

Al-Thyabat [41] studied the effect of various operating factors on flotation grade and
recovery and simulated the flotation process using a multilayered, feed-forward artificial
neural network (ANN). In a study by Gholami et al. [42], copper flotation behavior was
predicted from historical data combined with deep learning techniques. It was demon-
strated that mixed statistical/intelligent methods were effective in accurately simulating
the flotation process with an accuracy greater than 95%. Ai et al. [43] estimated the feed
grade of an antimony flotation process online using a soft sensor based on a fuzzy neural
network. After that, the fuzzy association rule was applied to mine hidden relationships
between variables and finally presented a set-point adaptive control and optimization
strategy based on fuzzy association rules. The team demonstrated through simulation
and experiments that their control strategy outperforms manual manipulation in flotation
processes, which is widely used. Using recurrent neural networks (RNNs) as a tool for the
simulation of lead–zinc ore beneficiation, Inapakurthi et al. [44] proposed a method for
simulating industrial grinding circuits. Additionally, they showed that RNNs can track
a grinding circuit’s set point while controlling it without violating any constraints. In
another research, Pu et al. [45] used deep learning to predict iron concentrate and waste
silica purities in a manufacturing flotation process. They used long short-term memory
(LSTM) for the modeling process and showed its superiority compared with a traditional
machine learning model. Another study by Gholami and Khoshdast [35] demonstrated
that the ANN method could provide a realistic simulation of multiple metallurgical re-
sponses resulting from coal bioflotation. According to their research, the choice of the
network algorithm greatly impacts the simulation accuracy of the ANN model. In a recent
study, Nakhaei et al. [34] conducted an investigation on multivariate nonlinear regression
(MNLR), radial basis function (RBF), and recurrent neural networks to predict flotation
column performance. As compared to RBF and MNLR models, the RNN provided superior
predictions of the metallurgical performance of flotation columns at the training and testing
stages. Through image analysis and neural networks, Jahedsaravani et al. [46] examined
froth characteristics of batch flotation systems. According to these studies, neural networks
(NNs) are a viable tool for the investigation and simulation of flotation processes.

According to the results given in the literature, the majority of the investigations
on MNB-elaborated flotation processes are critically focused on the improvement of the
mineral flotation performance, and few works have been focused on the evaluation of the
optimization and simulation of flotation variables. To fill out this gap in the literature, the
main and interaction effects of parameters influencing the flotation performance, including
impeller speed, air flow rate, and bubble size were analyzed using consistent statistical
methods. For the first time, the behaviors of coarse particles induced by MNBs were
explored using the intelligent simulation of the quartz flotation process and by a set of
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advanced intelligent algorithms in light of experimental evidence. To the author’s best
knowledge, this is the first effort to serve advanced deep learning algorithms to effectively
simulate MNB-assisted flotation processes.

2. Materials and Methods
2.1. Quartz Sample and Flotation Reagents

Pure quartz samples (99.9%, −425 + 106 µm) were used for the flotation experiments
in this work. The chemical composition of the quartz sample was identified using an X-ray
fluorescence spectrometer (XRF, PW 2404 model, Philips, Amsterdam, The Netherlands)
as listed in Table 2. Firstly, quartz samples were crushed using a laboratory jaw crusher
with a maximum compression resistance of 300 MPa. The next step was to use a roll
crusher (WEDAG, Cologne, Germany) to reduce the particle size to reach the range of
−425 + 100 µm (finer than 425 µm and coarser than 100 µm), which is the typical particle
size used for coarse quartz flotation. Following this, this fraction size was screened in a
dry environment using the standard US sieve series and Tylermeshed sizes (50, 70, and
140 mesh). Flotation experiments were conducted with three different size classes (namely
−425 + 300 µm, −300 + 212 µm, and −212 + 106 µm) (Figure 1).

Table 2. Chemical composition of the quartz sample.

Component SiO2 Al2O3 CaO Na2O Fe2O3 K2O MgO P2O5 SO3 L.O.I *

Content (wt%) 99.901 0.011 0.010 0.007 0.010 0.007 0.004 0.005 0.008 0.037

* L.O.I: loss of ignition.
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Figure 1. The particle size distribution of coarse quartz samples.

Dodecyl amine (50 g/t, C12H27N) with a purity of 99% and Methyl Isobutyl Carbinol
(22.4 ppm, MIBC, C6H14O) with a purity of 98% were used in the flotation experiments
as the collector and frother, respectively. These surfactants were provided by Merck and
Sigma-Aldrich Company (St. Louis, MO, USA).

2.2. Operating Variables and Experimental Design

Effective operating variables and their levels were considered according to our pre-
vious results [47]. Table 3 lists the operating factors and their experimental levels used in
the experimental design. The effects and interactions of each operating parameter were
evaluated using a historical data (HD) experimental design with 192 experimental runs.
The HD method is an effective technique in the analysis of experimental design with a large
number of test runs. The HD design is a subset of response surface methodology with a
flexible structure so that the engineer can use any favorable design with unlimited numbers
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of input variables and runs. In this method, there is no need to predefine the absolute values
for any variable’s level. Actually, the HD design employs the minimum and maximum
values for every individual variable observed during experimental investigations. Then,
software can perform the statistical analysis based on the responses measured for every set
of conditions that randomly appears in the DOE. Moreover, it can give deep knowledge
about the nonlinearity of effects as well as potential interactions among operating vari-
ables [42]. In the present study, we assessed the quartz recovery (%) as a process response.
The experimental results of the HD design are presented in Supplementary Data.

Table 3. Operating factors and their studied levels in the experimental design.

Factor Name Unit Minimum Maximum

A Air flow rate L/h 30 60
B Impeller speed rpm 600 1300
C MNB diameter µm 0 293
D Particle size µm 106 600

Response Recovery % 9.98 95.59

2.3. Flotation Experiments and Calculations

Flotation experiments were carried out in a 1 L mechanical flotation cell. For each
experiment, 140 g of coarse quartz particles was added to tap water (with a pH of 7.0 ± 1)
to prepare the required pulp with a given solid content. The air flow rate was set at 30
and/or 60 L.min−1, and the flotation was implemented for 3 min at an impeller speed
ranging between 600 and 1300 rpm (the sizes of the produced air bubbles in the system
were measured to be 0.5–1 mm). Prior to the addition of the flotation reagents, the quartz
pulp was mixed for 1 min. The perquisite amount of collector was then added to the pulp
followed by 2 min of conditioning. Next, a given dosage of the frother was added to the
flotation cell through the following modes (Figure 2):

• In the absence of MNBs, the solution of the frother was directly added to the system
through direction (1).

• In the presence of MNBs, 23 wt.% of the frother was first directed to the cell via
direction (1), and after 30 s, the rest of frother mass was injected through the direction (2).
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Figure 2. Schematic illustration of the laboratory flotation setup with the Venturi tubes.

Finally, the air inlet valve was opened to form the froth. The froth phase formed over
the pulp zone was steadily collected for 2.5 min. After each experiment, the floated and
tailing samples were dewatered and weighted to calculate the flotation recovery of quartz
particles. Detailed information regarding the chemical reagents and operating parameters
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is given elsewhere [4]. All flotation experiments were performed at ambient temperature
(25 ± 1 ◦C).

The bulk MNBs were prepared using 22.4 mg/L of MIBC at the natural pH of 7.0.
The prepared solution was pumped through a centrifugal pump (PM80, Pentax, Veronella
(VR), Italy) into a Venturi tube with specific dimensions (as a cavitation device). An air
flow rate of 24 L/h was employed to inject filtered air into the solution. To increase the
solubility of air, two static mixers were used, as shown in Figure 2. As a result, they were
installed both downstream and upstream of the pump. Air’s solubility increased at the
Venturi tube’s entrance, leading to a high static pressure (0.35 kPa). Depressurization of
the air-saturated solution caused bulk NBs to be produced when it reached the Venturi
tube. The bubble size distribution was measured using a laser particle size analyzer (LPSA).
Detailed experimental setups are presented in the previous studies [4,7]. Bubble sizes
were measured using a laser particle size analyzer (LPSA, model 2000 MS, Malvern, UK).
Figure 3 exhibits the bubble size distribution (BSD) of generated MNBs. As seen, there are
two main picks related to the microbubbles (10–100 µm) and nanobubbles (0.01–1 µm). It
is worth noting that bubbles finer than 1 µm are counted as nanobubbles (also known as
ultrafine bubbles) as discussed in detail in our previous studies [6].
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2.4. Deep Learning Simulation

This work employed a hybrid CNN-RNN model to build a predictive model for
quartz recovery estimation. There are usually several convolutional and pooling layers
in convolutional neural networks (CNNs), followed by a few fully connected (FC) layers.
A CNN is designed with several parameters, such as the number of kernels, kernel size,
padding type, and stride. Kernels are matrices of weights to convolve with the input
volume and are used to extract features. The padding preserves the size of the feature maps
by adding zeroes to the input; otherwise, they can shrink in each layer. Stride is a kernel’s
parameter that modifies the amount of movement over the data. Recurrent neural networks
(RNNs) are also applicable in modeling sequence data [48]. An RNN does indeed capture
time variations and makes favorable predictions over a conventional neural network that
incorporates feed-forward neural networks [49]. RNNs have hidden units called state
vectors, which act as an internal memory and are capable of retaining information over
time. Although RNNs are powerful for sequence data, their training is challenging because
of vanishing and exploding gradient problems [50]. It was Hochreiter and Schmidhuber
who introduced the first LSTM network to address the problem of vanishing gradients [51].
A number of sequence modeling applications have demonstrated the superiority of LSTM
networks over other time series models because they do not require the specification of the
nonlinear functions to be estimated [52,53].
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This paper leverages CNN specifications and the LSTM algorithm for extracting
valuable information from input data and handling time series problems. The LSTM input
is the CNN output. The diagram of the proposed model is shown in Figure 4. Air flow rate,
impeller speed, MNB diameter, and particle size are included in the prediction model, as
the output is quartz recovery.
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In these equations, the prediction model’s weight matrices are u, v, w, d, and ξ.
Eventually, yi is decoded by the fully connected layer, and the recovery rate as the final
result is obtained.

2.5. Modeling Process

Processing the input data in order to extract features and correlations is important.
Afterwards, time series features need to be extracted. A CNN can combine features
of neighboring regions using convolution kernels in order to achieve ‘features’ spatial
correlations [54]. Therefore, extracting data features before training the CNN is unnecessary
because it can learn these features automatically from input data. Generally, it is effective to
generate multiple convolved features from the input data by applying different convolution
kernels, which are typically more useful than the original features of the input data. Data
are entered as a two-dimensional tensor. The main core of the CNN is the convolution
layer, which accounts for the majority of convolutional neural network calculations. Each
convolution layer in the convolution neural network includes a set of filters, and the input
layer is convoluted with a set of filters to derive the output. The outcome of the convolution
layer is a feature map. The convolutional filters move over the input tensor and scan it to
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extract meaningful patterns. Actually, a convolutional layer produces new feature values by
applying convolution operations between raw input data and convolution filters [55]. As
with other neural networks, convolutional neural networks employ a nonlinear activation
function after the convolutional layer. An activation function is used to generate the output
feature map. The convolutional kernel of the new layer studies the output feature maps of
the previous layer and, using the activation function, its feature maps are generated. When
the feature map is convoluted in a CNN, N feature maps are input to the pooling layer,
producing N features of contractible size.

As part of a convolutional neural network, the pooling layer also plays an important
role. With the pooling layer, the spatial size of the feature map obtained through the
convolution layer can be reduced. The pooling layer works like convolution and moves
over the input tensor. A back-propagation algorithm was used to train the CNN. The
training accuracy of CNN training was measured using MSE. Convolution layer weights
are updated according to training accuracy during the training and optimization process.
Having determined the actual data features and compressed the two-dimensional input
matrix, the final estimation model was trained. Input to the LSTM layer came from the
CNN’s last pooling layer.

One of the important points in using deep learning methods is to choose appropriate
values for the hyperparameters. Our final predictive model parameters do not minimize the
loss function if we do not properly tune our hyperparameters. Thus, our model makes more
errors. In this work, a Bayesian optimizer was used for tuning hyperparameters of the predictive
model to achieve the best results. Figure 5 shows the path of hyperparameter tuning using the
Bayesian optimizer. Table 4 shows the parameter values of the CNN-LSTM model.
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Table 4. CNN-LSTM model parameters.

No. Parameter Value No. Parameter Value

1 Training method Stochastic
gradient descent 6 Number of

LSTM layers 1

2 Kernel size of
convolution layer 7 × 7 7 Number of

LSTM nodes 200

3 Kernel size of
pooling layer 3 × 3 8 Number of fully

connected layers 2

4 Number of
convolution layers 1 9 Learning rate 0.001

5 Number of
pooling layers 1 10 Batch size 50

For comparison purposes and to provide a better understanding of the performance
of the CNN-LSTM model, the following prediction models were also investigated:
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• The radial basis functions neural network (RBFNN) is a special type of artificial
neural network that measures the similarity between data based on distance, and the
technique is considered an effective method for interpolating in multidimensional
spaces [56]. It is a feed-forward neural network, which, like many other artificial
neural networks, consists of inputs and hidden and output layers. Trial and error led
to RBFNN’s proper structure being 4-9-4-1. There was an overfitting effect when there
were more neurons.

• The gated recurrent unit (GRU) was introduced to reduce LSTM overload and to
address the limitations of traditional RNNs. This algorithm is generally considered a
simpler and modified version of LSTM because both methods utilize the same design.
Unlike LSTM, it has one fewer gate, which can reduce matrix multiplication and speed
up computation. This algorithm’s parameters were also adjusted to obtain suitable
results for comparison. The number of epochs, which means one complete pass of the
training dataset through the algorithm, was set to 1000, a learning rate of 0.001 was
the step size at each iteration, and three hidden layers and Adam optimizer were used
for the training process.

2.6. Correlation and Feature Importance

Pearson correlation coefficients (PCCs): Generally, a correlation coefficient is a way of
predicting the value of one variable by evaluating its relationship to another. To measure
how two quantitative variables are related, one of the most popular methods is to use
Pearson correlation coefficients. The formula is presented as follows:

corr(X, Y) =
E[(X− E(X))(Y− E(Y))]

[V(X)V(Y)]
1
2

(2)

where E and V are the mathematical expected value and variance, respectively.
Shapley additive explanations (SHAP): SHAP was used to measure the feature importance

in the final model. It is a machine learning approach for explaining a model’s predictions
and providing interpretability of a model [57]. Overall, when each variable might have
contributed more or less than the others, the Shapley value helps to determine a payoff for
all of the variables [58]. The Shapley value (φ) for a model (f ) can be calculated as below:

φi( f , x) = ∑
S⊂M\i

|S|!(|M|−|S|−1)!
|M|! [ f (S ∪ {i})− f (S)] (3)

where M is the input variables, S is a subset of M with the ith feature excluded from M, and
f (S ∪{i}) − f (S) is the marginal feature contribution of the ith variable [59,60].

3. Results and Discussions
3.1. Historical Data Model Development and Analysis

In this study, Design Expert v.7.0 software (Stat-Ease Inc., Minneapolis, MN, USA)
was used to model experimental data. The stepwise procedure regarding the application of
Design Expert software is explained in detail elsewhere [61,62]. Based on our efforts, the
most accurate quadratic model for quartz recovery was obtained as follows:

Recovery = 67.31− 2.69A− 8.23B + 4.45C− 25.13D− 0.83AD− 2.48BC− 18.62B2 − 12.12C2 + 2.15D2 (4)

where factors are in coded form. The results of the reliability analysis for estimating
the model coefficients are given in Appendix A (Table A1). As seen, all coefficients sit
within the lower and upper reliability limits based on a 95% confidence interval (CI). The
validation parameters for the developed models revealed that the suggested prediction
model is significant due to its high value on Fisher’s F-test (578.19) and low probability
value (p model < 0.0001). Another piece of evidence for the significance of the proposed
model Equation (4) is a uniform normality plot for flotation recovery, as shown in Figure 6,
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approving the assumptions of normal probability and independency during the statistical
analyses [63]. Moreover, the significant values of accuracy measures of the model, i.e.,
the normal correlation coefficient (96.64%) and adjusted correlation coefficient (96.47%),
designate the reliability of the developed model. The prediction reliability of the model
can be confirmed based on its high predictive correlation coefficient of 96.25% [63]. This
is also evident from the plot illustrating the predicted values versus experimental data
in Figure 6. Another statistical measure showing the accuracy of the model equation is
the ratio of signal to noise called adequate precision. For the quartz recovery model, the
adequate precision of 93.99 is significantly greater than the minimum desirable value
of 4 [64] and implies that the models can navigate the design space with high reliability.
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Therefore, the model Equation (1) was used to analyze the significance of the effect
of operating factors on quartz recovery using the analysis of variance (ANOVA) method
within a confidence interval of 95%. Appendix A (Table A2) shows the ANOVA results and
implies that the effects of all factors are statistically significant due to their p-values being
less than 0.05. Moreover, the only significant interaction effects are those between air flow
rate and particle size (AD) and impeller speed and MNB size (BC).

3.2. Interpretation of Main and Interaction Effects

Figure 7 shows the main effect plots for operating factors considered in the experi-
mental design. Detailed explanations regarding the construction of main effect plots are
addressed elsewhere [34,65–67]. According to Figure 7, quartz recovery decreases as the air
flow rate increases. There is an optimal air flow rate in every flotation system over which
the flotation rate decreases due to undesirably increased turbulence in the pulp zone. Such
a turbulent regime can interrupt the efficient attachment of particles to bubbles in both pulp
and froth zones and cause bubbles to release their loads [68]. The impeller speed imposed a
nonlinear effect on quartz recovery such that maximum recovery can be reached at a speed
of about 850 rpm, after which the recovery significantly drops from about 67% down to 40%.
Generally, as the impeller speed increases, the improved dispersion of both bubbles and
particles in the pulp zone may lead to enhanced particle–bubble collision and, consequently,
improved recovery of quartz particles. However, over the optimal impeller speed, the
turbulent regime increases such that the loaded particles are forced to release their carried
particles back to the pulp. This, in turn, results in the sharp decrease in recovery observed
in Figure 7. As the diameter of MNBs increases, the rate of quartz recovery to the concen-
trate improves significantly. Larger bubbles have higher rise velocity and thus increase
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the chance of particle-to-bubble attachment [69,70]. The size of zero for MNBs represents
the system without MNB injection. Regardless of the increasing relationship between the
quartz recovery and the size of MNBs, the presence of MNBs itself has a positive effect on
the performance of the flotation system compared to the process without MNB injection.
Decreasing the recovery of coarse particles could be due to low particle–bubble stability
while being lifted to the froth zone. Additionally, a reduction in the recovery of large
bubbles can be related to a decrease in lower interceptional collision probability because
particles tend to follow streamlines at a distance away from the bubble [70]. As the size of
quartz particles increases from 106 to 300 µm, the recovery is expected to drop dramatically
most likely because of the decreased carrying ability of bubbles. One possible reason for
not observing the optimum level of recovery versus particle size can be the selected particle
range in this study.
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The interaction between two operating factors can be effectively evaluated using
3D response surface plots. These plots are constructed using mean values of the process
response calculated using a model equation (Equation (4)) versus those two factors with a
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significant interaction as indicated by ANOVA (Table A2). Similar to main effect plots, the
other factors are maintained at their mid-levels during the development of the interaction
surface plots [29]. Figure 8 shows the 3D response surface plots for significant interactions
given in Table A2 (Appendix A), i.e., interactions between air flow rate and particle size
(AD) and impeller speed and MNB size (BC). As seen in Figure 8, the interactive behavior
of the variables completely corresponds to their individual effects. In the case of AD effect,
for example, maximum recovery may be obtained when both air flow rate and particle
size are at their low levels. Similar to the conclusion that emerged from main effect plots,
recovery culminates at values around the middle level of impeller speed and MNB size.
These interactive results confirm the reliability of those results observed from individual
effect plots.
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3.3. Deep Learning Simulation Results

All three modeling algorithms were implemented efficiently to estimate quartz recov-
ery. In the modeling process, ten percent of the data were used as validation data in the
training stage to prevent overfitting and hyperparameter tuning. A total of 70% and 20% of
the data were used for training and testing the models, respectively. To evaluate the models
after the testing process, the following equations were used:

RMSE =

√
1
n ∑n

i=1(yi − ŷi)
2 (5)

R2 =

 ∑N
i=1(yi − a)(ŷi − e)√

∑N
i=1(yi − a)2

√
∑N

i=1(ŷi − e)2

2

(6)

Based on the RMSE and correlation of determination for quartz recovery, Table 5
compares the performances of the three models on both training and testing datasets.

Table 5. Evaluating results for the estimation of quartz recovery.

Model Training RMSE Training R2 Testing RMSE Testing R2

CNN-LSTM 0.0096 0.992 0.045 0.974

RBF 0.228 0.886 0.252 0.873

GRU 0.097 0.935 0.182 0.909
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In contrast to the other two models, the hybrid CNN-LSTM model performed signifi-
cantly better. To extract spatial features of quartz recovery, a CNN was used as a basis for
the model. The input time series features were then extracted using an LSTM. This method
has the advantage of eliminating redundant data through CNN processing and obtaining
actual features from the data. As an added benefit, the prediction model was simplified as
CNN uses shared weights. LSTM also captured the internal dependencies and considered
data nonlinearity. Because of having advantages of both CNN and RNN methods, it can be
concluded that the proposed structure is suitable for processing large datasets from mining
sites and processing plants. In the following, Figure 9 demonstrates the error histogram of
CNN-LSTM, and an illustration of the CNN-LSTM model’s fitting and regression diagrams
can be seen in Figure 10.
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An error histogram is a representation of how a neural network performs after being
trained and compared with the target values. Error value is defined as the difference between
predicted and target values; hence, these can be negative. In Figure 9, vertical bars are
presented as bins. There are 20 bins in this histogram, which represent the total error range.
The Y-axis represents the number of samples falling within a particular bin. An example is the
bin at the center of the histogram corresponding to the error value of −0.04065 whose heights
for training and test datasets lie at about 20 and near 30, respectively. This indicates that many
samples had an error of around −0.04065.

3.4. Correlation and Feature Importance Results

To estimate the relationships between the variables, the Pearson coefficient was also
calculated, the results of which can be seen in Figure 11. In general, there is a linear
relationship between the two variables when the correlation coefficient is close to 1 or −1.
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There is a challenge to understanding the blackbox property of deep learning methods,
including CNN-LSTM, and further research is required. In order to check how these models
work, feature importance methods were developed. The SHAP method is used in this paper,
and the general working method of SHAP is briefly explained below. The term “neural
network” refers to a network of artificial neurons connected together, and they can transmit
signals between the neurons. Each neuron’s output is calculated by a nonlinear function of
the sum of its inputs, which is a real number of connections. In SHAP analysis, different
input features are scored according to how relevant they are for the trained model based
on comparisons of neuron activation. In other words, feature importance is calculated
using SHAP analysis by considering the marginal contribution of each feature to the model
outcome. The SHAP analysis was performed using the entire dataset. Figure 12 shows the
SHAP values for the CNN-LSTM prediction model. SHAP computed SHAP values based
on the contributions of each sample.
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SHAP (Figure 12) ranked variables based on their importance and illustrated that
particle size, impeller speed, and MNB diameter had the highest impact on the output, in
order. In this regard, PCC showed that particle size had a strong linear relationship with
the recovery. The smaller the particle size, the greater the recovery. SHAP could model
relationships much more accurately than Pearson correlations, even though there is good
agreement between the two methods. Using Pearson correlations, only linear relationships
can be examined, and their magnitudes can be determined, while SHAP assesses the
multivariable relationships by identifying their linear and nonlinear interactions, evaluating
their importance, and highlighting their magnitude. For instance, in contrast to linear
analysis by Pearson correlation that found no significant interactions between impeller
speed or MNB diameter and quartz recovery, SHAP showed that there are influential
variables. The induction time between large bubbles and particles within flotation machines
tends to be shorter when nanobubbles are present, which increases contact angles [71].
Consequently, MNBs can improve particle collection efficiency and increase flotation
velocity [72]. Another important parameter in flotation is impeller speed, which must
be adjusted optimally to avoid reducing system efficiency. Using values lower than their
optimum value, for example, will prevent the dispersion of particles within the flotation
cell and result in fewer collisions. An excessive amount also causes turbulence in the
collection and even the froth zone, reducing the efficiency of the particle–bubble attachment.
According to [73], stirring speed plays a key role in achieving optimal flotation, which is
also related to flotation time.

4. Conclusions

In this study, an advanced simulation by hybrid serving of historical data (HD) and
deep learning (DL) methods is presented and evaluated as a comprehensive approach to
developing predictive models for quartz recovery estimation in the presence of MNBs at a
laboratory scale. The following conclusions were obtained:
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• The results of ANOVA within a confidence interval of 95% confirmed that all op-
erational variables had statistically significant effects on process responses, and the
proposed model was significant because of its Fisher’s F-test value (578.19) and low
p-value (p model < 0.0001).

• A nonlinear effect of impeller speed was observed on quartz recovery when the speed
reached 850 rpm, after which recovery dropped from 67% to 40%. Furthermore, as the
air flow rate increased, quartz recovery was reduced.

• The blackbox property of deep learning models was identified as one of their principal
limitations. The SHAP method was used for feature selection from the trained CNN-
RNN model for it to be less of a blackbox and more understandable. Applying SHAP
indicated that the particle size, impeller speed, and MNB diameter were ranked based
on importance and shown to have the greatest impact on the metallurgical output.
According to the PCC, particle size was strongly correlated with recovery. Additionally,
recovery increased with decreasing particle size.

• Results showed that the SHAP and Pearson have a good correlation, but SHAP showed
the potential to model relationships more accurately. Based on the Pearson correlations,
impeller speed and MNB diameter did not interact significantly with quartz recovery,
but SHAP indicated that there were significant influences.

• Based on the comparison of the results, it was concluded that the proposed CNN-LSTM
hybrid model can be considered a reliable forecasting tool. This makes it a powerful tool
for analyzing experimental data in other similar mineral processing processes.
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Appendix A

Table A1. Reliability analysis results for model coefficient estimation.

Factor Coefficient Estimate df Standard Error Low 95% CI High 95% CI

Intercept 67.31193 1 0.806602 65.72038 68.90348
A −2.68694 1 0.32382 −3.32589 −2.04799
C −8.22807 1 0.510746 −9.23585 −7.22028
D 4.454524 1 0.451484 3.563676 5.345372
E −25.1352 1 0.395191 −25.9149 −24.3554

AD −0.8273 1 0.394632 −1.60597 −0.04863
BC −2.47679 1 0.683466 −3.82538 −1.1282
B2 −18.6229 1 0.868306 −20.3362 −16.9096
C2 −12.1164 1 0.746886 −13.5902 −10.6427
D2 2.145962 1 0.695365 0.773897 3.518026

https://www.mdpi.com/article/10.3390/min13010128/s1
https://www.mdpi.com/article/10.3390/min13010128/s1
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Table A2. Analysis of variance results for flotation response of quartz recovery.

Source Sum of
Squares df Mean Square F Value p-Value

Model 104,025.7 9 11,558.41 578.1945 <0.0001
A-Air flow rate (L/h) 1376.361 1 1376.361 68.85069 <0.0001

B-Impeller speed (rpm) 5188.111 1 5188.111 259.5286 <0.0001
C-MNBs (nm) 1945.999 1 1945.999 97.34608 <0.0001

D-Particle size (µm) 80,867.34 1 80,867.34 4045.285 <0.0001
AD 87.85426 1 87.85426 4.394797 0.0374
BC 262.523 1 262.523 13.13238 0.0004
B2 9195.465 1 9195.465 459.9914 <0.0001
C2 5260.96 1 5260.96 263.1728 <0.0001
D2 190.3892 1 190.3892 9.523975 0.0023

Residual 3618.284 181 19.99052
Cor Total 107,643.9 190
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