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Abstract: As an inherent property of the accumulation of elastic energy and the sudden instability
failure of coal, coal bursting liability (CBL) is the basis of the research on the early warning and
prevention of coal burst. To accurately classify the CBL level, the support-vector-machine (SVM)
method was introduced in this paper, and the dynamic failure time (DT), elastic energy index (WET),
impact energy index (KE) and uniaxial compressive strength (RC) were selected as the classification
indexes. An imbalanced sample set, containing 95 groups of measured data of CBL, was established,
and eight SVM classification models were constructed, based on different kernel functions and
swarm-intelligence-optimization algorithms. Focusing on the problem of sample imbalance, the
classification accuracy, A, F1-score and kappa coefficient were used to comprehensively evaluate the
classification performance of SVM models, and the grey-wolf-optimizer SVM (GWO-SVM) model
was selected as the best model in this paper, reaching the highest accuracy of 98.9%. The GWO-SVM
was applied to identify the CBL level of the 4# coal seam in Xiaozhuang Coal Mine and the 1# coal
seam in the Wanfeng Coal Mine. The results of the engineering application are consistent with those
from the engineering field, and show that the proposed model is scientific and practical, and can be a
new method for CBL classification.

Keywords: support vector machine; coal burst; coal-bursting-liability classification; swarm-intelligence-
optimization algorithm; performance evaluation; model optimization; engineering application

1. Introduction

Coal burst is a kind of dynamic disaster in coal mining, and its harm is mainly mani-
fested in roadway destruction, causing casualties and inducing secondary disasters [1–5].
Figure 1 shows the field damage of coal bursts in Wudong Coal Mine, China [6]. The coal
bursting liability (CBL) is an internal cause of coal burst [7,8]. Almost all coal seams of
coal-burst mines in China have bursting liability [9], so an accurate evaluation of CBL is
the basis of coal-burst risk assessment.

Scholars have carried out quantitative research on CBL classification from different
angles, and the current approaches [10] can be divided into two types, namely the single-
index criterion classification method and the multi-index comprehensive classification
method. The former type refers to the use of a single index to determine the CBL level,
based on the index classification standard, mainly using the energy index [11–13], time
index [14–16], strain index [17,18], stiffness index [19–21], and so on. This method is
intuitive, but as an inherent property of coal, CBL is affected by many factors. Considering
only a single index will cause some errors. Therefore, researchers generally adopt the
multi-index comprehensive classification method to classify the CBL, for example, the
Chinese national standard Classification and Laboratory Test Method on Bursting Liability
of Coal (GB/T 25217.2-2010) comprehensively adopts the dynamic failure time (DT), elastic
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energy index (WET), impact energy index (KE), and uniaxial compressive strength (RC),
and divides the CBL level into three categories of strong (I), weak (II), and none (III). In the
view of the different categories of bursting liability of the four indexes, the standard uses
the fuzzy-comprehensive-evaluation method to list the classification results of 73 different
combinations, but the remaining eight combinations do not give clear categories.
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Looking at this problem, previous researchers have extensively conducted multi-index
classification research. Xu et al. [22] established a comprehensive-evaluation model of
CBL by introducing the unascertained measure theory. Wang et al. [23] observed a CBL
discrimination model based on the theory of information entropy and the method of
entropy-weight ideal point. Jia et al. [24] established the mathematical attribute model
of CBL classification. Guo [25] constructed a grey prediction model of CBL according to
the variable weight thought and grey-correlation analysis. Wang et al. [26] introduced
the Mahalanobis distance-discriminant-analysis (DDA) method to establish a DDA model
for CBL classification. The above research focuses on the mathematical methods (e.g., the
fuzzy-comprehensive-evaluation method, the unascertained-measurement model, attribute
mathematics, etc.), taking into account the degree of importance and correlation of eval-
uation indexes, and achieves some results, but there are also existing problems, such as
complex calculation, and a great influence of subjective factors. How to better solve the
problem of CBL classification has become a top priority, and will be a feasible answer to
developing a scientific, practical, accurate, efficient and intelligent classification method.

As a supervised-machine-learning algorithm for classification problems, the support
vector machine (SVM) has been widely used in engineering, and its black box feature
can skip the complex mechanisms and conditions of engineering problems. SVM can
summarize the commonness of data, and the established classification model has strong
applicability. At present, the application of SVM in CBL classification has been rarely
reported. In view of this, the SVM method was introduced in this paper to establish eight
SVM models, and the comprehensive performance of each model was evaluated using the
classification accuracy A, F1-score and kappa coefficient. Finally, the best SVM model was
selected and used in the engineering application for CBL classification.

2. Methods
2.1. SVM

SVM is based on the Vapnik–Chervonenkis dimension theory of statistical learning
and the principle of structural risk minimization; it has a good generalization ability for
unknown samples, which are classified using the optimal hyperplane [27,28]. In this paper,
eight SVM models are established in the MATLAB 2018b environment, including Linear
SVM (LSVM), Quadratic SVM (QSVM), Cubic SVM (CSVM), Fine Gaussian SVM (FG-
SVM), Medium Gaussian SVM (MG-SVM), Coarse Gaussian SVM (CG-SVM), Adaptive
Particle Swarm Optimization SVM (APSO-SVM) and Grey Wolf Optimization SVM (GWO-
SVM). Among them, APSO-SVM is an adaptive-particle-swarm-optimization algorithm
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model with compression factor and asynchronous learning factor, and GWO-SVM is a
grey-wolf-algorithm-optimization model simulating the group predation of gray wolves.

This paper takes SVM based on the RBF kernel as an example, to introduce its classifi-
cation principle [29].

Sampling in n-dimensional space, setting dataset E = [(x1, y1), . . . , (xl, yl)], decision
function f (x) = ω·k(x) + b, where ω is the weight vector, b is the threshold, k(x) is a non-linear
mapping function, and the optimization of classification plane-constraints should satisfy
the Formula (1):

yi

(
ωT · k(xi) + b

)
≥ 1 (1)

The optimization problem is converted to Formulas (2) and (3) by introducing a
non-negative relaxation variable ξi:

min
1
2
‖ω‖2 + c

n

∑
i=1

ξi, c ≥ 0 (2)

s.t.yi

(
ωT · k(xi) + b

)
≥ 1− ξi (3)

where c is a penalty factor. When the c value is large, the penalty value for misclassification
will increase; otherwise, it will be small. The Lagrange multiplier algorithm is introduced
to obtain Formula (4):

L(ω, b, αi) =
1
2
‖ω‖2 +

n

∑
i=1

αi

(
1− yi

(
ωT · k(xi) + b

))
, αi = (α1, α2, · · · αn) (4)

The partial derivatives of the Lagrange function L with respect to ω and b, respectively,
can be obtained by Formulas (5) and (6):

ω =
m

∑
i=1

αiyixi (5)

m

∑
i=1

αiyi = 0 (6)

Formula (7) can be obtained by substituting the Lagrange multiplier algorithm:

L(ω, b, αi) =
n

∑
i=1

αi −
1
2

n

∑
i=1

n

∑
j=1

αiαjyiyjxi
Txj (7)

That is min
ω,b

L(ω, b, αi) =
n
∑

i=1
αi − 1

2

n
∑

i=1

n
∑

j=1
αiαjyiyjxixj. Where ω is the weight vector,

and b is the threshold. Thus, the optimization problem is transformed into a dual problem,
namely Formulas (8) and (9):

min
1
2

n

∑
i=1

n

∑
j=1

yiyjxixjK
(
xi, xj

)
−

n

∑
i=1

αi (8)

s.t.
n

∑
i=1

yiαi = 0, 0 ≤ αi ≤ c (9)

where K
(

xi, xj
)
=

(
k(xi) · k

(
xj
))

, the RBF kernel is Formula (10):

K
(
xi, xj

)
= exp

(
−g‖xi − xj‖

)2 (10)
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where, g is the kernel function parameter, so the above optimization problem is converted
to Formulas (11) and (12):

min
1
2

n

∑
i=1

n

∑
j=1

yiyjαiαj exp
(
−g‖xi − xj‖

)2 −
n

∑
i=1

αi (11)

s.t.
n

∑
i=1

yiαi = 0, 0 ≤ αi ≤ c (12)

2.2. Data Processing

(1) Sample Dataset

In accordance with the standard GB/T 25217.2-2010 and Reference [26], DT, WET, KE
and RC are selected as the classification indexes of CBL, and the bursting-liability grade
is divided into three categories of strong (I), weak (II), and none (III). DT is the time from
ultimate strength to complete failure of coal samples under the uniaxial-compression-
test conditions. WET is the ratio of elastic deformation energy to plastic deformation
energy of coal specimens unloaded when the stress reaches a certain value under uniaxial
compression. KE is the ratio of deformation energy accumulated before the maximum
peak to that dissipated after the maximum peak, in the complete stress–strain curve of
a specimen under uniaxial compression. RC is the maximum load on unit area of the
specimen under the condition of infinite-side and axial-pressure for failure. A total of
95 groups of CBL samples in Table 1 are chosen as the training samples and the test samples.

Table 1. Measurement data and classification of coal samples.

No.
Index Engineering

Guidance Level No.
Index Engineering

Guidance LevelDT/ms WET KE RC/Mpa DT/ms WET KE RC/Mpa

1 161 7.1 7.08 25.6 I 49 193 1.14 5.74 12.5 II
2 33 5.2 69 2.84 I 50 6 9.1 1.14 2.1 II
3 4 4.85 112 6.3 I 51 5 6.3 1.9 2.01 II
4 7 4.8 96 5.8 I 52 66 4 1.7 1.8 II
5 7 5.9 67 5.4 I 53 77 5.8 4.6 1.4 II
6 13 6.5 123 5.1 I 54 300 2.76 2.74 11.8 II
7 14 3.4 66 5.67 I 55 351 2.63 1.64 13 II
8 14 4.1 112 3.23 I 56 255 3.4 3.7 11.2 II
9 22 8.2 87 4.3 I 57 212 4.34 0.88 7.31 II

10 224 6.44 6.32 18.6 I 58 363 6.02 1.34 8.61 II
11 34 5.15 6.5 17.4 I 59 140 3.19 3.34 13.3 II
12 267 12.4 0.87 24.8 I 60 249 2.15 1.84 12 II
13 42 14.4 3.63 29 I 61 53 6.62 4.32 9.52 II
14 13 3.67 5.67 29.2 I 62 138 0.968 3.54 10 II
15 45 4.34 5.99 22.6 I 63 82 4.78 10.2 13.9 II
16 316 8.1 1.4 16.7 I 64 340 4.58 1.26 15.8 II
17 68 12.7 6.73 14.6 I 65 275 3.53 3.56 13.1 II
18 346 11.3 6.45 15.2 I 66 306 1.63 2.06 9.93 II
19 45 12.3 12.6 18.8 I 67 55 4.67 4.93 16 II
20 33 10.3 9.84 12.1 I 68 301 3.84 2.47 10.2 II
21 20 9.43 8.72 16.5 I 69 92 4.3 4.53 14.7 II
22 54 19.6 1.29 17.3 I 70 252 3.11 1.93 6.51 II
23 12 3.6 2.3 37.7 I 71 216 2.62 1.81 13.1 II
24 41 11.9 11.8 5.49 I 72 316 3.47 2.27 4.93 II
25 47 9.2 4.13 17.4 I 73 284 3.96 1.84 10.5 II
26 31 17.5 5.42 11.9 I 74 256 3.96 2.31 17 II
27 66 10.4 6.3 28.6 I 75 391 6.29 1.48 9.4 II
28 24 4 2.85 23.9 I 76 288 1.63 2.34 15.4 II
29 42 7.39 5.67 20.5 I 77 239 1.4 2.03 11.1 II
30 45 5.13 4.96 18.5 I 78 119 4.55 2.95 15.3 II
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Table 1. Cont.

No.
Index Engineering

Guidance Level No.
Index Engineering

Guidance LevelDT/ms WET KE RC/Mpa DT/ms WET KE RC/Mpa

31 46 8.12 10.6 25.9 I 79 58 3.77 2.13 19.8 II
32 40 6.49 7.73 24.3 I 80 156 4.19 3.67 14.4 II
33 34 4.45 12.6 24.4 I 81 375 2.1 1.93 11.4 II
34 19 7.42 13.7 9.72 I 82 137 5.28 4.15 13.8 II
35 43 14.6 11.8 34.1 I 83 258 2.01 2.05 12.5 II
36 167 17.6 15.7 22.6 I 84 185 2.78 3.26 13.2 II
37 69 12.5 35.7 33.9 I 85 464 3.16 1.5 8.9 II
38 30 10.9 14.8 29.3 I 86 213 2.06 2.68 21.4 II
39 32 5.35 5.25 19.2 I 87 287 9.18 4.99 9.53 II
40 44 5.03 5.96 18.4 I 88 90 2.5 2.6 9.51 II
41 33 3.63 2.25 29.4 I 89 260 1.88 1.67 12.9 II
42 15 3.37 5.25 30 I 90 2943 1.1 2.17 2.19 III
43 48 8.06 9.4 10.6 I 91 83 1.2 1.3 1.5 III
44 189 6.05 6.49 18.6 I 92 1414 3.29 2.38 5.26 III
45 461 2.23 1.45 7.3 II 93 760 2.13 1.17 5.92 III
46 409 2.16 1.39 8.16 II 94 520 1.6 1.9 0.4 III
47 306 5.91 2.48 8.86 II 95 725 1.58 1.4 5.36 III
48 102 2.67 2.26 13.3 II

The number of samples with strong (I), weak (II) and none (III) bursting liability in
Table 1 is 44, 45 and 6, respectively. Figure 2 shows the proportion of the three categories of
CBL samples, which clearly exhibits the imbalance of samples.
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The imbalanced data will have a direct impact on the quality of modeling. Ensuring
the rationality of data is an important condition for modeling, and data analysis of sample
sets can determine the rationality of data. Table 2 lists the statistical information of each
classification index, including minimum, maximum, median, interquartile range (IQR),
lower quartile, upper quartile, mean, standard deviation (SD) and standard error (SE).
Figure 3 shows the boxplot of the corresponding sample set.

Index correlation analysis is also an important part of data analysis. The correlation
information among the classification indexes selected in this paper is shown in Figure 4,
in which the correlation curve is fitted, where r is the correlation coefficient and P is the
significance level. As can be seen from the figure, the correlation between any two of
the four indexes is weak, which indicates that the four indexes are very suitable for the
establishment of the classification model.
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Table 2. Information statistics of CBL classification indexes.

Index CBL Level Minimum Maximum Median IQR Lower
Quartile

Upper
Quartile Mean SD SE

DT (ms)
I 4 346 40.5 28 21.5 49.5 65.886 82.267 12.402
II 5 464 249 182 119 301 221.8 120.572 17.974
III 83 2943 742.5 679.25 571.25 1250.5 1074.167 1011.746 413.044

WET

I 3.37 19.6 7.245 6.015 4.985 11 8.247 4.21 0.635
II 0.968 9.18 3.47 2.35 2.23 4.58 3.747 1.889 0.282
III 1.1 3.29 1.59 0.703 1.295 1.998 1.817 0.808 0.33

KE

I 0.87 123 6.905 8.597 5.377 13.975 23.085 34.343 5.177
II 0.88 10.2 2.27 1.73 1.81 3.54 2.769 1.63 0.243
III 1.17 2.38 1.65 0.777 1.325 2.103 1.72 0.5 0.204

RC (MPa)
I 2.84 37.7 18.55 13.425 11.575 25 18.442 9.352 1.41
II 1.4 21.4 11.4 4.4 8.9 13.3 11.075 4.377 0.653
III 0.4 5.92 3.725 3.663 1.672 5.335 3.438 2.354 0.961
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(2) Data Standardization

Table 1 shows that the dimensions and orders of magnitude of the four classification
indexes are different. This can also be roughly seen from the boxplot in Figure 3. The value
ranges of the vertical axes of the boxplot of different indexes are significantly different, and
the difference is even more obvious under different levels of bursting liability. In order to
clearly reflect the dimensional differences among indexes, the data of different indexes are
plotted into ridge plots, as shown in Figure 5, so that the variation trend of each group of
data and the data comparison between groups can be intuitively seen.
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Figure 5 shows that the orders of magnitude of the four classification indexes are very
different, resulting in a large gap in data distribution. For example, in the sample of strong
bursting liability, the data distribution of WET, KE and RC are concentrated in the area with
small values, while the data distribution of DT is relatively scattered. If the original index
value is directly used in the classification, the function of the index with the higher value
will be highlighted, and the function of the index with the lower value will be relatively
weakened. Therefore, it is necessary to standardize the original data. In this paper, the
mapminmax function is selected for normalization processing, and the principle is shown
in Formula (13):

xij
∗ =

xij −min
(
xj
)

max
(

xj
)
−min

(
xj
) (i = 1, 2, · · · , m; j = 1, 2, · · · , n) (13)

where, xij is the original data of jth index of ith sample; xij
* is the processed data, whose

value is between 0 and 1, and the data distribution is consistent with that processed before;
max(xj) and min(xj) are the maximum and minimum value of the original data of index j,
respectively.

Table 3 shows the standardized data. Draw the above standardized data into ridge
plots, as shown in Figure 6. X1~X4 correspond to the standardized data labels of the
four indexes respectively. It can be seen that the standardized data reduces the difference
of orders of magnitude between indexes, due to dimensional differences, which is most
obvious in the samples of weak bursting-liability.

Minerals 2023, 13, x FOR PEER REVIEW 8 of 16 
 

 

higher value will be highlighted, and the function of the index with the lower value will 
be relatively weakened. Therefore, it is necessary to standardize the original data. In this 
paper, the mapminmax function is selected for normalization processing, and the princi-
ple is shown in Formula (13): 

( )
( ) ( ) ( )*

min
1,2, , ; 1,2, ,

max min

−
= = =

−
 

i j j
i j

j j

x x
x i m j n

x x
 

(13) 

where, xij is the original data of jth index of ith sample; xij* is the processed data, 
whose value is between 0 and 1, and the data distribution is consistent with that processed 
before; max(xj) and min(xj) are the maximum and minimum value of the original data of 
index j, respectively. 

Table 3 shows the standardized data. Draw the above standardized data into ridge 
plots, as shown in Figure 6. X1~X4 correspond to the standardized data labels of the four 
indexes respectively. It can be seen that the standardized data reduces the difference of 
orders of magnitude between indexes, due to dimensional differences, which is most ob-
vious in the samples of weak bursting-liability. 

 (a)                           (b)                          (c) 

Figure 6. Ridge plots of classification index data after standardization: (a) strong CBL; (b) weak CBL; 
(c) No CBL. 

Table 3. Standardized data. 

No. 
Index Engineering 

Guidance Level No. 
Index Engineering 

Guidance Level X1 X2 X3 X4 X1 X2 X3 X4 
1 0.0534  0.3291 0.0508 0.6756  I 49 0.0643  0.0092 0.0399 0.3244  II 
2 0.0099  0.2271 0.5578 0.0654  I 50 0.0007  0.4365 0.0022 0.0456  II 
3 0.0000  0.2084 0.9099 0.1582  I 51 0.0003  0.2862 0.0084 0.0432  II 
4 0.0010  0.2057 0.7789 0.1448  I 52 0.0211  0.1627 0.0068 0.0375  II 
5 0.0010  0.2647 0.5415 0.1340  I 53 0.0248  0.2593 0.0305 0.0268  II 
6 0.0031  0.2969 1.0000 0.1260  I 54 0.1007  0.0962 0.0153 0.3056  II 
7 0.0034  0.1305 0.5333 0.1413  I 55 0.1181  0.0892 0.0063 0.3378  II 
8 0.0034  0.1681 0.9099 0.0759  I 56 0.0854  0.1305 0.0232 0.2895  II 
9 0.0061  0.3881 0.7052 0.1046  I 57 0.0708  0.1810 0.0001 0.1853  II 

10 0.0749  0.2937 0.0446 0.4879  I 58 0.1222  0.2711 0.0038 0.2201  II 
11 0.0102  0.2245 0.0461 0.4558  I 59 0.0463  0.1193 0.0202 0.3458  II 
12 0.0895  0.6136 0.0000 0.6542  I 60 0.0834  0.0634 0.0079 0.3110  II 
13 0.0129  0.7209 0.0226 0.7668  I 61 0.0167  0.3033 0.0282 0.2445  II 
14 0.0031  0.1450 0.0393 0.7721  I 62 0.0456  0.0000 0.0219 0.2574  II 
15 0.0140  0.1810 0.0419 0.5952  I 63 0.0265  0.2046 0.0764 0.3619  II 
16 0.1062  0.3828 0.0043 0.4370  I 64 0.1143  0.1939 0.0032 0.4129  II 
17 0.0218  0.6297 0.0480 0.3807  I 65 0.0922  0.1375 0.0220 0.3405  II 

Figure 6. Ridge plots of classification index data after standardization: (a) strong CBL; (b) weak CBL;
(c) No CBL.



Minerals 2023, 13, 15 8 of 15

Table 3. Standardized data.

No.
Index Engineering

Guidance Level No.
Index Engineering

Guidance LevelX1 X2 X3 X4 X1 X2 X3 X4

1 0.0534 0.3291 0.0508 0.6756 I 49 0.0643 0.0092 0.0399 0.3244 II
2 0.0099 0.2271 0.5578 0.0654 I 50 0.0007 0.4365 0.0022 0.0456 II
3 0.0000 0.2084 0.9099 0.1582 I 51 0.0003 0.2862 0.0084 0.0432 II
4 0.0010 0.2057 0.7789 0.1448 I 52 0.0211 0.1627 0.0068 0.0375 II
5 0.0010 0.2647 0.5415 0.1340 I 53 0.0248 0.2593 0.0305 0.0268 II
6 0.0031 0.2969 1.0000 0.1260 I 54 0.1007 0.0962 0.0153 0.3056 II
7 0.0034 0.1305 0.5333 0.1413 I 55 0.1181 0.0892 0.0063 0.3378 II
8 0.0034 0.1681 0.9099 0.0759 I 56 0.0854 0.1305 0.0232 0.2895 II
9 0.0061 0.3881 0.7052 0.1046 I 57 0.0708 0.1810 0.0001 0.1853 II

10 0.0749 0.2937 0.0446 0.4879 I 58 0.1222 0.2711 0.0038 0.2201 II
11 0.0102 0.2245 0.0461 0.4558 I 59 0.0463 0.1193 0.0202 0.3458 II
12 0.0895 0.6136 0.0000 0.6542 I 60 0.0834 0.0634 0.0079 0.3110 II
13 0.0129 0.7209 0.0226 0.7668 I 61 0.0167 0.3033 0.0282 0.2445 II
14 0.0031 0.1450 0.0393 0.7721 I 62 0.0456 0.0000 0.0219 0.2574 II
15 0.0140 0.1810 0.0419 0.5952 I 63 0.0265 0.2046 0.0764 0.3619 II
16 0.1062 0.3828 0.0043 0.4370 I 64 0.1143 0.1939 0.0032 0.4129 II
17 0.0218 0.6297 0.0480 0.3807 I 65 0.0922 0.1375 0.0220 0.3405 II
18 0.1164 0.5545 0.0457 0.3968 I 66 0.1028 0.0355 0.0097 0.2555 II
19 0.0140 0.6082 0.0960 0.4933 I 67 0.0174 0.1987 0.0332 0.4182 II
20 0.0099 0.5009 0.0734 0.3137 I 68 0.1011 0.1541 0.0131 0.2627 II
21 0.0054 0.4542 0.0643 0.4316 I 69 0.0299 0.1788 0.0300 0.3834 II
22 0.0170 1.0000 0.0034 0.4531 I 70 0.0844 0.1150 0.0087 0.1638 II
23 0.0027 0.1413 0.0117 1.0000 I 71 0.0721 0.0887 0.0077 0.3405 II
24 0.0126 0.5867 0.0895 0.1365 I 72 0.1062 0.1343 0.0115 0.1214 II
25 0.0146 0.4418 0.0267 0.4558 I 73 0.0953 0.1606 0.0079 0.2708 II
26 0.0092 0.8873 0.0373 0.3083 I 74 0.0857 0.1606 0.0118 0.4450 II
27 0.0211 0.5062 0.0445 0.7560 I 75 0.1317 0.2856 0.0050 0.2413 II
28 0.0068 0.1627 0.0162 0.6300 I 76 0.0966 0.0355 0.0120 0.4021 II
29 0.0129 0.3447 0.0393 0.5389 I 77 0.0800 0.0232 0.0095 0.2869 II
30 0.0140 0.2234 0.0335 0.4853 I 78 0.0391 0.1922 0.0170 0.3995 II
31 0.0143 0.3839 0.0797 0.6836 I 79 0.0184 0.1504 0.0103 0.5201 II
32 0.0122 0.2964 0.0562 0.6408 I 80 0.0517 0.1729 0.0229 0.3753 II
33 0.0102 0.1869 0.0960 0.6434 I 81 0.1262 0.0608 0.0087 0.2949 II
34 0.0051 0.3463 0.1051 0.2499 I 82 0.0453 0.2314 0.0269 0.3592 II
35 0.0133 0.7316 0.0895 0.9035 I 83 0.0864 0.0559 0.0097 0.3244 II
36 0.0555 0.8927 0.1214 0.5952 I 84 0.0616 0.0973 0.0196 0.3432 II
37 0.0221 0.6189 0.2852 0.8981 I 85 0.1565 0.1176 0.0052 0.2279 II
38 0.0088 0.5331 0.1141 0.7748 I 86 0.0711 0.0586 0.0148 0.5630 II
39 0.0095 0.2352 0.0359 0.5040 I 87 0.0963 0.4407 0.0337 0.2448 II
40 0.0136 0.2180 0.0417 0.4826 I 88 0.0293 0.0822 0.0142 0.2442 II
41 0.0099 0.1429 0.0113 0.7775 I 89 0.0871 0.0489 0.0066 0.3351 II
42 0.0037 0.1289 0.0359 0.7936 I 90 1.0000 0.0071 0.0106 0.0480 III
43 0.0150 0.3806 0.0698 0.2735 I 91 0.0269 0.0125 0.0035 0.0295 III
44 0.0629 0.2728 0.0460 0.4879 I 92 0.4798 0.1246 0.0124 0.1303 III
45 0.1555 0.0677 0.0047 0.1850 II 93 0.2572 0.0624 0.0025 0.1480 III
46 0.1378 0.0640 0.0043 0.2080 II 94 0.1756 0.0339 0.0084 0.0000 III
47 0.1028 0.2652 0.0132 0.2268 II 95 0.2453 0.0328 0.0043 0.1330 III
48 0.0333 0.0913 0.0114 0.3458 II

(3) Data Segmentation

Currently, there are two ways to divide samples in classification research: one is
where there is no need to divide them into the training set and the test set, with small
samples, and the other is to divide them according to a fixed proportion. The existing
research on CBL classification mainly focuses on small-scale data sets, which is prone to
the problem of unreasonable data division, leading to the overfitting of the model on the
training set. To solve this problem, this paper adopts a 5-fold cross-validation method to
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divide the training set and the test set, which can avoid the limitations and particularity of
the fixed-division dataset, and this advantage is more obvious in the small-scale dataset.
The 5-fold cross-validation divides the data set into five parts in equal proportion, four
of which are used as training data, and the remaining one is used as test data. After five
operations, each data was tested once, and the average of the results of the five models was
used as the final result.

2.3. Parameters Optimization

The penalty factor, c, and the kernel-function parameter, g, are essential parameters
for SVM classification, and determine the classification effect of SVM. In this paper, three
optimization methods were used to obtain these two parameters, among which the LSVM,
QSVM, CSVM, FG-SVM, MG-SVM and CG-SVM models were optimized by a grid-search
algorithm, the APSO-SVM model was optimized by the APSO algorithm, and the GWO-
SVM model was optimized by the GWO algorithm. The optimization process of the three
methods is shown in Figure 7.
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2.4. Research Route

In this paper, an imbalanced sample set of CBL, containing 95 groups of measured
data, is constructed. The sample set is divided into training set and test set, in accordance
with the 5-fold cross-validation. Eight SVM models are used for classification research, and
the best SVM model is selected for the engineering application. The research flowchart is
shown in Figure 8.
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3. Results and Discussion
3.1. Classified Results

To better evaluate the performance of the eight classification models, it is necessary to
consider not only the overall classification effect of the models, but also the classification
effect of the models on different levels of bursting liability. Sorting the classification results
of the models built in this paper into a confusion matrix graph, the classification of samples
of each category by different models can be obtained, as shown in Figure 9.
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3.2. Performance Evaluation
3.2.1. Evaluation Index

For the imbalanced sample dataset established in this paper, the classification accuracy
A, F1-score and kappa coefficient are comprehensively selected, to evaluate the performance
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of the classification models. The three indexes are all positive indexes, that is, the larger the
value, the better the performance of the model.

(1) Classification Accuracy A

The classification accuracy A is the ratio of the number of accurately classified samples
(Naccurate) to the total number of samples (Ntotal) in the modeling process. It represents the
overall classification accuracy of the model and is the most commonly used evaluation
index in classification problems. Its calculation formula is given as follows:

A =
Naccurate

Ntotal
(14)

(2) F1-Score

As an index used to measure the accuracy of classification models in machine learning,
the F1-score is often used to evaluate models based on imbalanced dataset. This index
weighs the accuracy rate and recall rate of models.

(3) Kappa Coefficient

The kappa coefficient is an index adopted to measure whether the classification result
of the model is consistent with the actual classification result, and it has certain penalty
attribute. When the classification result of the model built based on the imbalanced dataset
favors the category with a large number and ignores the category with a small number, the
kappa coefficient value of the model is low. This biased evaluation mechanism ensures the
rationality of the model performance evaluation.

3.2.2. Evaluation Result

In this paper, eight SVM models are adopted to classify the CBL grade, and three
indexes are used to evaluate the classification performance of the models. The results are
shown in Table 4 and Figure 10.

Table 4. Evaluation performance of SVM models.

No. SVM Model Accuracy (%) F1-Score Kappa Coefficient

1 LSVM 91.6 0.804 0.843
2 QSVM 97.9 0.960 0.962
3 CSVM 97.9 0.960 0.962
4 FG-SVM 88.4 0.817 0.786
5 MG-SVM 95.8 0.920 0.923
6 CG-SVM 87.4 0.774 0.765
7 APSO-SVM 93.7 0.878 0.884
8 GWO-SVM 98.9 0.993 0.980
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3.3. Model Analysis and Optimization

(1) Model Analysis

It can be seen from Table 4 and Figure 10 that the SVM models established in this
paper have excellent classification performance, and are suitable for CBL classification
under an imbalanced dataset. The following analysis is of the impact of data quality, model
selection and data-processing methods on the SVM model performance.

In machine-learning research, the quality of data used for modeling often has a great
effect on the classification results. The indexes used in modeling are an essential part of the
dataset, and the scientific and reasonable selection of the indexes is the key to subsequent
research. The CBL is affected by water, gas, temperature, size effect, loading rate, pore
structure of coal and many other factors, which are finally reflected in the forms of strength
and energy. The DT and RC selected in this paper are strength indexes, and WET and KE
are energy indexes. These four indexes are more consistent with the nature of CBL, so the
dataset established in this paper is of high quality.

Model selection is also a key factor affecting the classification effect. The SVM model
constructed in this paper has a high matching degree with the imbalanced sample set,
and the SVM model based on the principle of structural risk minimization can avoid the
problem of over-learning, enhance the generalization ability, and reduce the requirement of
data size and distribution.

The CBL data contains information about energy and strength. In this paper, two kinds
of data processing methods, normalization and 5-fold cross-validation, are carried out on
the sample data. The 5-fold cross-validation can avoid the limitations and particularities
of a fixed-partition dataset, thus improving the generalization ability of the model, and is
very suitable for the imbalanced sample set established in this paper.

(2) Model Optimization

The classification accuracy A, F1-score and kappa coefficient selected in this paper
comprehensively consider the overall and local classification effects of the model, and are
suitable for the classification of imbalanced sample sets. As can be seen from Table 3, from
the overall classification effect, the performance of the GWO-SVM model is the best, with
a classification accuracy of 98.9%, higher than that of the other seven SVM models. The
F1-score value (0.993) and kappa coefficient value (0.980) of this model are also the largest
among all models, indicating that the model has the best classification effect for each level
of CBL classification. As can be seen from Figure 10, the classification accuracy of this
model in different levels of bursting liability is the largest, so the GWO-SVM model is
selected as the optimal SVM model built in this paper.

4. Engineering Application

In order to verify the practicability of the GWO-SVM model, the model was applied to
the 4# coal seam of the Xiaozhuang coal mine [30] and the 1# coal seam of Wanfeng coal
mine for CBL classification [31].

(1) 4# Coal Seam of Xiaozhuang Coal Mine

The 4# coal seam is the main coal seam, and the coal pillar of the 40214 working
face will cause stress concentration. The buried depth of the coal seam is approximately
430~600 m, the average buried depth is 560 m, and the mining depth exceeds the critical
depth of coal burst of 380 m. During the mining of the 40203 working surface, strong
mine-pressure behaviors appeared several times. The optimized GWO-SVM model was
applied to classify the CBL of three groups of samples from the 4# coal seam. In accordance
with the GB/T 25217.2-2010, engineering-guidance-level determination results are shown
in Table 5; the single index in the table determines the results on the right-hand side of the
index value, and the results are shown in Table 5.
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Table 5. CBL classification results of 4# Coal Seam.

No. DT (ms) Level
(DT) WET

Level
(WET) KE

Level
(KE)

RC
(MPa)

Level
(RC)

Engineering
Guidance Level GWO-SVM

1 208.8 II 7.316 I 1.526 II 13.232 II II II
2 172.8 II 14.948 I 1.561 II 18.105 I II II
3 201.6 II 6.529 I 1.724 II 20.615 I II II

(2) 1# Coal Seam of Wanfeng Coal Mine

The Wanfeng coal mine adopts the underground mining method: the mining level is
+430~−10 m, and no coal burst occurred in the mining process. The engineering-guidance
level obtained from the single-index discrimination result and the actual situation are
consistent with the engineering guidance level. The GWO-SVM model is adopted to
classify the bursting liability of the coal seam and compare it with the actual situation. See
Table 6 for details.

Table 6. CBL classification results of 1# Coal Seam.

No. DT (ms) Level
(DT) WET

Level
(WET) KE

Level
(KE)

RC
(MPa)

Level
(RC)

Engineering
Guidance Level GWO-SVM

1 463 II 1.216 III 1.266 III 4.133 III II III

It can be seen from Tables 5 and 6 that the classification results of the GWO-SVM
model selected in this paper are consistent with the actual situation of the mine, and it is an
intelligent model that can manage the classification of CBL.

5. Conclusions

The existing CBL classification methods are challenging for giving clear results when
identifying specific types of coal, and the calculations are complicated and subject to
subjective factors. In view of these deficiencies, DT, WET, KE and RC were selected as
classification indexes, an imbalanced sample set was constructed based on 95 groups of
measured data, and eight SVM models were established to carry out intelligent classification
and optimization of CBL. The following conclusions were reached:

(1) Differently from the existing data segmentation methods, this paper adopted
5-fold cross-validation to divide the dataset into training set and test set. The classification
accuracy of the eight SVM models is above 87.4%, with an average of 94.0%.

(2) Aiming at the problem of sample imbalance at different levels, the classification
accuracy A, F1-score and kappa coefficient were comprehensively used to evaluate the
performance of the established models, and the best model was selected as the GWO-SVM
model, with a classification accuracy of 98.9%, F1-score of 0.993, and kappa coefficient of
0.980. All of these were the highest values in the eight SVM models.

(3) The GWO-SVM model was applied to the working surfaces of the Xiaozhuang
Coal Mine and Wanfeng Coal Mine, for CBL classification. The results were consistent with
the actual situation on site, indicating that the model has good practicability.
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