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Abstract: Limestone calcined clay cement (LC®) is a sustainable alternative to ordinary Portland
cement, capable of reducing the binder’s carbon footprint by 40% while satisfying all key performance
metrics. The inherent compositional heterogeneity in select components of LC?, combined with
their convoluted chemical interactions, poses challenges to conventional analytical models when
predicting mechanical properties. Although some studies have employed machine learning (ML)
to predict the mechanical properties of LC3, many have overlooked the pivotal role of feature
selection. Proper feature selection not only refines and simplifies the structure of ML models but
also enhances these models’ prediction performance and interpretability. This research harnesses the
power of the random forest (RF) model to predict the compressive strength of LC3. Three feature
reduction methods—Pearson correlation, SHapley Additive exPlanations, and variable importance—
are employed to analyze the influence of LC® components and mixture design on compressive
strength. Practical guidelines for utilizing these methods on cementitious materials are elucidated.
Through the rigorous screening of insignificant variables from the database, the RF model conserves
computational resources while also producing high-fidelity predictions. Additionally, a feature
enhancement method is utilized, consolidating numerous input variables into a singular feature
while feeding the RF model with richer information, resulting in a substantial improvement in
prediction accuracy. Overall, this study provides a novel pathway to apply ML to LC?, emphasizing
the need to tailor ML models to cement chemistry rather than employing them generically.

Keywords: limestone calcined clay cement; compressive strength; feature reduction; feature enhance-
ment; machine learning

1. Introduction

Concrete stands as the most widely used human-made material in the world, an
essential ingredient for construction. As urbanization continues across the globe, driven
by ever-increasing population growth and ambitious infrastructure projects, the global
demand for concrete is projected to rise by an additional 10% by the year 2050 [1]. However,
the environmental toll of this new infrastructure is staggering: the production of Ordinary
Portland Cement (OPC), the main component of concrete, contributes to ~8% of the world-
wide carbon footprint [2,3]. In the face of this environmental conundrum, various strategies
have been proposed to mitigate the detrimental impact of cement production, primarily
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focusing on emission reductions, energy optimization, and the efficient use of materials.
One of the most promising of these is using supplementary cementitious materials to
partially replace clinkers. This approach holds particular significance for two primary
reasons: (1) the energy efficiency of contemporary cement kilns has already been fine-tuned
to near-maximum levels, meaning that there is limited scope for further reducing carbon
emissions through clean energy solutions alone, and (2) the decomposition of limestone
contributes to 60% of CO, emissions [4], which cannot be avoided during the OPC man-
ufacturing process. Hence, any meaningful reduction in carbon emissions must directly
address the OPC clinker itself. In recent years, researchers have formulated a new type of
ternary-blended cement known as limestone calcined clay cement (LC?). This innovative
blend leverages calcined clay and limestone to significantly reduce the clinker content,
allowing for formulations of binders with as little as 50% OPC. Preliminary studies indicate
that LC® can meet or even exceed the performance metrics of OPC in various aspects,
including strength, durability, and workability [5-8]. The emergence of LC3, therefore,
represents a promising milestone in the development of sustainable cementitious materials
without compromising mechanical performance and durability.

LC3 is formulated with a maximum of 30% calcined clay, 15% limestone, and 5%
gypsum, thereby allowing the clinker content to be potentially reduced to as low as 50% [9].
Clay is typically calcined at 700-900 °C so as to convert crystalline aluminosilicate phases
into amorphous ones. This is significantly lower than the manufacturing temperature
(~1450 °C) compared with OPC. As a result, the LC? production process can achieve a
remarkable 35-40% reduction in both energy consumption and CO, emissions [10]. Except
from an energy-saving perspective, LC> also benefits from unique chemical synergies
between its components. The primary chemical reaction involves the hydration of OPC,
forming calcium silicate hydrate (C-S-H), portlandite, and other hydration products. Cal-
cined clay, serving as a pozzolanic material, predominantly reacts with free portlandite
to form additional C-S-H [11]. The reactivity of the clay is highly sensitive to the calcina-
tion temperature: insufficient heating fails to remove water and form amorphous phases,
while temperatures exceeding 900 °C diminish reactivity because of recrystallization into
spinel, mullite, or cristobalite [12]. Prior research [13] suggests that clay reactivity is influ-
enced not just by the molecular structure but also by the alite and belite content in OPC.
Limestone also plays a crucial role by providing additional surfaces for the nucleation of
hydrates, thereby boosting OPC hydration kinetics, especially at early ages. Limestone
can also react with alumina in clay (and OPC) to form carboaluminate hydrates [11]. All
aforesaid hydrates are favorable because they can fill pores, serve as binding agents, and
provide strength.

Compressive strength is a critical indicator of concrete quality, and a significant body
of research has investigated the mechanical performance of LC3. While a majority of studies
conclude that the 28-day compressive strength of LC? is comparable to OPC, variations
have been noted at other ages [6]. Dhandapani et al. [5] found that the 3-day strength of LC3
and its associated concretes are slightly lower than OPC. By 7 days, however, the strength
of LC? reportedly matches or even surpasses that of OPC [6]. Though indispensable,
laboratory experiments aimed at understanding compressive strength are both labor-
intensive and expensive. As a result, there is an urgent need for reliable numerical models
to estimate compressive strength. Many numerical models have been developed to predict
the compressive strength of cementitious systems [14-18]. These models effectively quantify
the impact of various factors, such as the water-to-cement ratio, the degree of hydration,
and curing ages, on the compressive strength of plain OPC pastes. However, these existing
models fall short when applied to LC> for several reasons. Firstly, the data domains for
these models differ from those of LC?, thereby requiring the recalibration of coefficients.
Secondly, while these models capture the chemical reactions in OPC, they fail to account for
the complex mutual interactions between calcined clay, limestone, and OPC in LC3. Lastly,
assuming numerical models that encompass all these interactions are not only impractical
but also dauntingly complex, such models would potentially require an extensive number
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of coefficients, making them cumbersome—almost impractical—to use. Moreover, the
underlying mechanisms affecting LC? strength have yet to be fully understood, adding
another layer of complexity to the development of comprehensive models.

Machine learning is a promising solution to predicting the properties of multi-component
materials. Although many studies have employed ML models to predict the properties of
cementitious materials [19-21], only a few studies [22-24] have applied ML to LC3. Thus,
there is a technological gap associated with the limited development and use of ML
applications in LC® systems, at least compared with other cementitious materials (e.g.,
OPC and alkali-activated cement). One major shortcoming in the current application of
ML to cementitious materials is that researchers generally adopt ML models as is rather
than customizing them to align with the unique features of cement chemistry, particularly
during feature selection. Many studies [25-29] solely present Pearson correlation and
SHapley Additive exPlanations (SHAP) to evaluate the influences of input variables on
cement properties without deeper interpretation or without utilizing these metrics to
refine input variables effectively. Feature refinement includes weeding out less significant
variables to enhance prediction performance, forming a crucial juncture where data science
intersects with cement chemistry. Since generic ML models are designed to be data-driven
(rather than by theory) and applicable to a wide range of applications, certain features
might contradict the foundational principles of cement chemistry. By investigating feature
selection parameters, researchers can gain a more comprehensive understanding of the
intricate relationships between mixture designs and properties, especially when introducing
new materials to the cement system. Further, comparing the influences of input variables
with established literature correlations can ensure that ML models adhere to core material
principles. If contradictions are observed, researchers can gain insights into how to fix their
models, rather than being left in the dark by the model’s opaque nature.

This research harnesses the power of the random forest (RF) model to predict the
compressive strength of LC3 systems. To tailor the RF model to LC3, three feature reduction
methods—Pearson correlation, SHAP, and variable importance—are employed to analyze
the influence of LC® components and mixture design on compressive strength. Direct
comparison between methods and practical guidelines for utilizing these methods on
cementitious materials are elucidated. Additionally, a feature enhancement method (i.e.,
topological constraint theory) is utilized, consolidating numerous input variables related to
calcinated clay into a singular feature (number of constraints) while feeding the RF model
with richer information, which includes not only the chemical composition but also reactiv-
ity. By evaluating the performance of feature reduction and feature enhancement methods,
predictions with these two methods are compared with an outcome from the standalone
model. While the methods proposed in this study are designed for LC?, they provide
potential applicability across a wide range of properties of various cementitious materials.

2. Modeling Methods
2.1. Database Collection

A compressive strength database for LC? was compiled from the existing litera-
ture [11,30-45], comprising 430 distinct data records, each with 18 inputs and a single
output. Through the random selection of data records, this database is split into two
subsets: a training dataset and a testing dataset. The training dataset containing 75% of the
data records trains the RF model, while the testing dataset containing the remaining 25% of
the data records is employed to assess the model’s performance. The evaluation process
utilizes five key statistical metrics: coefficient of determination (R?), Pearson correlation
coefficient (R), mean absolute error (MAE), root mean squared error (RMSE), and mean
absolute percentage error (MAPE). The input variables of the database are as follows:
clay content (%omass of Lc3); SIO2 in clay (Yomass of clay); Al203 in clay (Yomass of clay); CaO in
clay (%omass of clay); calcination temperature (°C); calcination time (hour); limestone con-
tent (Yomass of Lc3); CaO in limestone (%omass of limestone); OPC content (Yomass of Lc3); SO3 in
OPC (omass of orc); CaO in OPC (%omass of opc); SiO2 in OPC (Yomass of orc); Al2O3 in OPC
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(Yomass of oPC); F€203 in OPC (Yomass of OPC); Water-to-binder ratio (unitless); age (day); cur-
ing temperature (°C); and relative humidity during curing (%). The output is compressive
strength (MPa). Though previous studies have provided other oxide compositions in clay,
these were deliberately omitted from this database, as their contribution to strength is
minimal. When integrating experimental results into a database, it is vital to apply expert
knowledge to filter out irrelevant features. This narrows the degree of freedom of the
database, simplifies the prediction process of machine learning models, and helps to avert
overfitting on irrelevant information. Next, limestone can provide carbonate ions to react
with calcined clay. The required number of carbonate ions allowing for an effective reaction
depends on OPC and clay compositions [13]. The database includes low-quality limestones
(CaO < 50%), and the impact of quality on the compressive strength remains ambiguous.
Consequently, the CaO content in limestone was included in the database to shed light on
this aspect. The statistical parameters pertaining to input and output variables are shown
in Table 1, which exhibits the data domain and data distribution.

Table 1. Statistical parameters interpreting the data domain for 18 inputs and 1 output (bold) for the
LC3 compressive strength database.

Attribute Unit Min. Max. Mean Std. Dev.

Clay Content Yomass of LC3 10 60 25.29 9.66
5i0; in Clay Yomass of clay 34.10 79.63 55.98 10.52
AlyO3 in Clay Yomass of clay 10.55 46.99 31.57 10.33
CaO in Clay Yomass of clay 0 5.89 0.53 0.85
Calcination Temperature °C 550 925 762.01 77.39
Calcination Time hour 0.20 3 1.27 0.71
Limestone Content Yomass of LC3 0 31.13 8.53 7.67
CaO in Limestone Yomass of limestone 29.05 100 70.70 24.90
OPC Content Yomass of LC3 25 90 65.93 13.35

SO3 in OPC Yomass of OPC 0.67 9.49 3.26 1.21
CaOin OPC Yomass of OPC 16.37 34.07 20.86 322

510, in OPC Yomass of OPC 1.52 7.35 511 1.07
Al,O3 in OPC Yomass of OPC 52.17 68.48 62.39 3.49
Fe, O3 in OPC Yomass of OPC 0.20 7.69 3.01 1.06
Water-to-Binder Ratio unitless 0.10 0.90 0.47 0.08
Age day 1 270 28.75 37.93

Curing Temperature °C 5 50 22.53 5.38
Relative Humidity % 80 100 92.95 4.94
Compressive Strength MPa 4.60 75 36.66 16.11

Figure 1 illustrates the feature selection methods adopted in this study. Those methods
are used to refine the input variables used in the LC> database and enhance the performance
of the RF model. It is important to recognize the value of domain knowledge in simplifying
the database for LC? and similar cementitious databases. These databases usually contain
complex mixture design and processing parameters, but some input features are irrele-
vant to some properties. Using domain knowledge can identify and eliminate irrelevant
features to reduce the degree of freedom of the database. Moreover, drawing upon the
perspective of data science, it is noteworthy that, while certain input features may appear
to mathematically correlate with specific properties, this might be a result of a data domain
limitation. Contrarily, from a cement chemistry viewpoint, these features might not gen-
uinely correlate with target properties. The inclusion of such illusory correlations can lead
to the overfitting of ML models, thereby compromising their generalizability. Section 2.3
will delve into three feature reduction methods (i.e., Pearson correlation, SHAP value, and
variable importance). The core objective of these methods is to rank input variables based
on their influences on target properties. Post-ranking, the less significant variables are
removed from subsequent analyses. This judicious reduction ensures that the ML models
reduce the processing time without scarifying prediction accuracy, and in many instances,
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the accuracy is bolstered. Section 2.4 introduces the feature enhancement technique. A key
advantage of this approach is its ability to merge multiple input variables into a singular,
more informative feature. Therefore, ML models can learn more useful correlations from
a reduced number of inputs while consuming fewer computational resources. This not
only enhances the models’ learning capability but also substantially curtails computational
complexity (and, thus, the time required to train the models). Furthermore, this method
saves computational power, paving the way for improved prediction performance.

mm
Q+ _ Xi..XT Y

ximxm Y,

Experimental Domain
Data Knowledge

Original Database

v

- — - 1 2 3 4
Xl X" =pxl . xm-2 X X5 X X f
Reduce the Number of Features Consolidate Several Inputs into
Feature Empirical Single Input
Analysis Model

Feature Reduction Feature Enhancement

Figure 1. Schematic representation of feature selection method proposed in this study. Researchers
utilize their knowledge to pre-filter irrelevant input variables while consolidating the database.
The feature reduction method can be used to further reduce the degree of freedom of the database.
The feature enhancement method can use a new singular input variable to represent information
performed by several input variables.

2.2. Random Forest (RF)

The RF model builds upon the conventional classification-and-regression tree (CART)
model to deliver more accurate and robust predictions. Unlike CART, RF incorporates
the bagging algorithm [46,47] and a two-step randomization [47,48] process to create a
forest consisting of independent decision trees. During training, RF constructs hundreds
of these trees, each grown from a randomly selected subset of the parent training dataset,
with repeated selection permitted. The unselected data records are defined as an out-of-
bag (OOB) sample. Notably, the sub-dataset for training each tree must equal the size
of the parent training dataset, preserving diversity. While the CART model evaluates
all input variables at each node, RF introduces further randomness by selecting only a
certain number of input variables to determine the optimal split. Trees in RF grow until
the homogeneity of the last tree node cannot be further improved by splitting, ensuring
diversity within the forest. Unlike CART, pruning and smoothing algorithms are not
applied in RF, allowing each tree to grow as deeply as possible. At the testing stage, RF
leverages the bagging algorithm to collect and average the outputs from individual trees,
producing the final prediction. This combination of bagging and two-step randomization
effectively reduces both variance and bias errors, enhancing the model’s reliability [49,50].
To avoid overfitting and underfitting, the hyperparameters of RF are optimized via the
10-fold cross-validation (CV) [51,52] and grid-search methods [51,53].

Tree-based models provide a unique feature: they can rank the importance of variables
without an additional algorithm. This ranking capability allows researchers to filter out
insignificant or irrelevant input variables, enhancing models’ computational efficiency and
performance. When the RF model processes numerical data, variable importance [54-57] can
be detailed as follows. For each individual tree, t, within the forest, there is a corresponding
OOB sample, OOB;. The OOB; sample comprises data points that are not included in the
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bootstrap sample used to grow the tree, . When tree, ¢, produces predictions about OOB;, the
error (mean absolute error) is denoted as errOOB;. To calculate the importance of a variable,
the values of the target input variables of OOB; are randomly permuted to obtain a new
sample, denoted OOBJ . Then, the model evaluates the prediction performance (errOOBtf ) of
the OOBy/ sample. The variable importance is defined as

. 1 j
Variable Importance = M;(errOOBt - errOOBt) 1

where ntree represents the number of trees, t, in the forest. In the end, the RF model ranks
input variables based on their importance. Researchers can use it as a guideline to remove
insignificant variables and reduce the complexity of the tree structure.

2.3. Feature Reduction Methods

This section presents three feature reduction techniques, emphasizing their capacity
to prioritize input variables based on their impact on the output. By harnessing this
knowledge, insignificant input variables can be systematically removed, thereby reducing
the dimensionality of the LC® database. While the descriptions of Pearson correlations
and SHAP values are demonstrated herein, the variable importance is detailed in the
previous section.

The Pearson correlation coefficient [58], often represented as R, is a statistical measure
used to quantify the linear relationship between two variables. Its value can range from
—1to 1. A value of 1 signifies a perfect positive linear relationship, indicating that as one
variable increases, the other does as well in a directly proportional manner. Conversely,
a value of —1 implies a perfect negative linear relationship, meaning that as one variable
increases, the other decreases in a directly inverse proportion. A coefficient of 0 suggests
no linear correlation between the variables. The calculation for this coefficient is derived
from the following formula:

fe T - D-7)
VI (- 022 - 9)°

where x and y represent individual data points, and ¥ and ¥ are the means of the respective
datasets. It is crucial to understand that the Pearson correlation coefficient strictly measures
linear relationships. Hence, nonlinear relationships might not be effectively captured by
R. Additionally, a correlation value of 0 does not necessarily indicate the variables are
independent; it simply denotes the absence of a linear relationship. Furthermore, it is
pivotal to remember that this coefficient does not equate to causation. A high correlation
between two variables does not inherently suggest that changes in one cause changes in
the other; other factors or underlying variables could influence the observed relationship.
In summary, while the Pearson correlation coefficient offers valuable insight into the linear
dependence between two variables, its interpretation demands careful consideration and
often warrants further analysis.

SHapley Additive exPlanations (SHAP) is a method developed by Lundberg and
Lee [59] to reveal the importance and effects of input features. It is built on the concept
of the Shapley value by unifying the additive feature attribution method, game theory,
and local explanations. Using principles from cooperative game theory, SHAP calculates
the Shapley value for each feature, representing the average marginal contribution of that
feature across all possible combinations of features. To be specific, in a database with the
input variables x = (x, xy, ..., X;), where 7 is the number of input variables, SHAP creates

@)
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simplified inputs, x’, which map into x through x = h,(x") . Based on the x’, the original
model, f(x), can be approximated with a linear function:

M
f(x) =8(x') = g0+ ) i ®)
i+1

M represents the number of input features; ¢q is the constant when all inputs are
missing; ¢; is the feature attribution value expressed by

gi=Y |Zl|!(M]_VI|!Z/|_1)![fx(Z/)*fx(zl\i)] @)

fo(@) = F(1M () = ELf(0)] 2] )

|/ | represents the number of non-zero entries in x, and ¢; is the SHAP value. Given
these structures, the SHAP value inherits the properties of additivity, local accuracy, miss-
ingness, and consistency [60,61].

The two unique advantages of the SHAP value are its dual levels of interpretability—
both global and local. Unlike many traditional feature importance metrics in machine
learning, SHAP not only discerns the significance of each input feature but also ascertains its
positive or negative influence. While global interpretability provides an overarching view
of the model, highlighting general feature influences on predictions, local interpretability
delves deeper, examining individual instances. Moreover, the SHAP value enhances the
interpretability of ML models by consistently explaining interaction effects between features
for individual predictions.

2.4. Feature Enhancement Method

This section introduces a feature enhancement method that consolidates multiple
input variables into a single parameter that embodies extensive information. For clay,
calcination removes water from clay and transforms crystalline structures into amorphous
ones, enhancing their reactivity [6]. Yang et al. [62] found that the reactivity of amorphous
calcium aluminosilicate materials can be envaulted by a singular parameter—number
of constraints—which can be calculated with topological constraint theory [63,64]. Our
preceding research [65-67] further validated how this parameter can reliably estimate the
reactivity of various families of aluminosilicate-rich cementitious materials. Additionally,
our studies highlighted the potential of the number of constraints to replace various input
variables used in ML and enhance prediction accuracy. The benefit of using this parameter
is twofold: it simplifies the dataset for machine learning models and encapsulates vital
information on the molecular structure and aqueous reactivity of aluminosilicate-based
cementitious materials. Consequently, the number of constraints is utilized in this study
to replace the chemical composition and processing parameters of clays. Most clays in
our database underwent calcination at temperatures exceeding 600 °C for over an hour,
ensuring their largely amorphous nature.

The fundamental constituents of the clay framework are SiO,, CaO, and Al,O3, dis-
regarding any minor components. The normalized chemical composition is represented
as (Cao0)x(Al,03)y(Si02)1.ry, where x and y denote the molar fractions. Two chemical con-
straints found in amorphous calcium aluminosilicate materials are angular bond-bending
(BB) and radial bonding-stretching (BS) constraints [62,68,69]. Si/Al tetrahedrons con-
tribute 4 BS and 5 BB constraints. While O atoms linked to Si/ Al tetrahedrons add 1 BB
constraint, those connected to Ca atoms provide 1 BS constraint [62,69-72]. Calcium alumi-
nosilicate materials can be categorized into three groups based on their chemical compositions:

Depolymerized regime (y — x < —2/3): Dominated by Ca atoms, leading to the
isolation of Si and Al tetrahedrons due to non-bridging oxygens (NBOs). NBOs promote
aqueous reactivity.
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Partially depolymerized regime (—2/3 < y — x < 0): Dominated by Si atoms. Con-
tains both bridging oxygen (BOs) atoms and NBOs, leading to increased crystallinity and
reduced reactivity.

Fully polymerized regime (0 < y — x): Dominated by Al atoms, resulting in a rigid
structure with minimal reactivity due to scarce NBOs.

In this research, all examined clays fall within the fully polymerized regime, which
demonstrates the least reactivity. The formula to determine the number of constraints is
presented in Equation (6).

11 + 13y — 13x
"= T3oavay ©

3. Results and Discussion

The LC? database was partitioned into training and testing datasets, with the former
encompassing 75% of the primary database and the latter constituting the remaining
25%. Figure 2 shows the predictions of compressive strength as yielded by the RF model,
compared with the measurements from the testing dataset. The statistical parameters
representing the accuracy of the predictions—i.e., prediction performance—are itemized in
Table 2. A cursory glance at both the figure and the table reveals impressive reliability in
the compressive strength predictions, underscored by an R-value of 0.94 and an RMSE of
5.64 MPa. The experimental measurement error for compressive strength for cementitious
materials stands at approximately 5 MPa [73]. Remarkably, the deviation in our prediction
closely mirrors this experimental error. This implies that the RF model can yield highly
accurate predictions of the compressive strength of LC3. Such excellent performance holds
significant promise for cement scientists, empowering them to rapidly identify promising
mixture designs and evaluate their compressive strength rather than experimenting with an
expansive array of mixture designs. It is hardly surprising that the RF model exhibits such
excellent performance. A retrospective look at our past research [65-67,74,75] demonstrates
that the RF model consistently produces reliable predictions of compressive strength for
various cementitious materials. These publications also elucidate the reasons that the RF
model—when contrasted with analytical models or other ML models—can achieve such
excellent performance with cementitious materials.

=]
o

o Original R
1 MAE = 4.31 MPa -

o
o
1
5
.
O
I

Predicted Compressive Strength (MPa)
S 8
1 1
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T T

o

T T T T T T T
0 20 40 60 80
Measured Compressive Strength (MPa)

Figure 2. The prediction performance of the compressive strength of LC3 on the testing dataset as
produced by the RF model with original input variables. The mean absolute error (MAE) for overall
predictions is shown in the legend. The solid lines show 10% error bounds, and the dashed line is the
ideal prediction.
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Table 2. Prediction accuracy (represented by five statistical parameters) of compressive strength
of LC3 as produced by the RF model with original inputs, feature reduction, and feature enhance-
ment methods.

ML Model R R2 MAE MAPE RMSE
Unitless Unitless MPa % MPa
Original 0.9453 0.8936 5.641 16.56 5.641
Feature 0.9421 0.8875 4.243 15.52 5.548
Reduction
Feature En- 0.9588 0.9194 3.431 11.30 4.608
hancement

After evaluating the performance of the RF model in predicting the compressive
strength of LC?, the study now shifts its focus to understanding feature selection techniques.
Figure 3 illustrates the Pearson correlation coefficient between input and output variables
for the LC? compressive strength database. Such techniques are commonly employed
during data pre-processing to identify and eliminate irrelevant variables, thereby reducing
the dimensionality of the dataset. In terms of coefficient R, a value close to 1 indicates a
strong positive correlation; while one variable increases, the other does too. Conversely, a
value close to —1 implies a strong negative correlation; while one variable increases, the
other decreases. A value near 0 indicates that no linear correlation is found between the
two variables. However, this does not necessarily mean the variables are independent;
nonlinear correlations might still exist.
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Figure 3. Pearson correlation coefficients between LC3 components, processing parameters, and
compressive strength. The dark color represents positive correlations, and the lighter color represents
negative correlations.
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An analysis of Figure 3 reveals that the absolute value of R between most input
variables remains below 0.5, suggesting that these variables are relatively independent.
In some cement studies, variables such as water content, cement content, and the water-
to-binder ratio are included. The absolute value of R among these three variables may
be high. Consequently, researchers might contemplate excluding one of these to prevent
potential overfitting in ML models. This caution arises because high correlations may assign
additional weights to certain parameters. However, the removal of any variable should
be approached judiciously. Some variables may exhibit strong mathematical correlations—
for instance, an R-value of 0.47 between OPC content and calcination time—but they
are independent in real experiments. Such discrepancies can be attributed to the data
distribution in the sampled database. Incorporating a larger and more diverse database
might drive such correlation coefficients closer to 0. Considering the R-values between
OPC content, clay content, and limestone content in LC?, these variables are negatively
correlated. This is anticipated, as their measurements are in the % ,4s of LC3; an increase in
one implies a decrease in the others. Some researchers may remove one of these three input
variables owing to their strong correlations. However, it is imperative to retain all three
variables in the database since they significantly influence the compressive strength. ML
models, by their nature, do not understand these three parameters collectively, accounting
for 100%. Without applying constraints, the model could establish incorrect correlations
and fail to optimize the mixture design of the new LC5.

After interpreting Pearson correlations between input variables, we shift our attention
to the relationships between inputs and output. The underlying assumption is that input
variables should exhibit a discernible relationship with the output. If certain input variables
demonstrate little-to-no correlation, they might be pruned from the database. However,
this principle is not universal. To further elaborate this concept, the chemical compositions
of clay, limestone, and OPC do not manifest direct linear correlations with compressive
strength. These chemical parameters fundamentally define these three raw materials. The
relationship between chemical composition and compressive strength becomes clearer
when considered in tandem with raw material content. When researchers review exper-
imental results from prior research, they will find that certain correlations between LC3
parameters and compressive strength are already established. By comparing these known
experimental correlations with Pearson correlations, discrepancies may be identified. If
Pearson correlations appear to contradict experimental findings, it could lead to doubts
regarding the database’s reliability and its data diversity. Figure 3 reveals the robust posi-
tive correlation between age and compressive strength. This observation aligns with prior
findings showing that compressive strength tends to increase monotonically with age.
However, an unexpected insight is the negligible correlation observed between the water-
to-binder ratio, curing conditions, and compressive strength. Conventionally, lower water
content is associated with higher compressive strength. However, exceedingly low water
levels can hamper the hydration reaction, thereby undermining the compressive strength.
Moreover, optimal curing conditions, like elevated temperatures and high-humidity en-
vironments, are known to accelerate hydration and enhance compressive strength. This
divergence between the database and experimental findings is attributed to the fact that the
majority of LC> samples share similar water content and curing conditions, which dilutes
their influences on compressive strength. Although Pearson correlation presents some
limitations in feature selection, it provides invaluable insights into data selection when
introducing new materials and complex materials (e.g., fly ash) to LC® systems. Given that
the interactions between these novel materials and LC® are not extensively studied, Pearson
correlation offers an initial framework to elucidate potential relationships. Compared
with other feature section techniques, Pearson correlation is easy to apply to any database
without the need for in-depth machine learning or programming expertise. This approach,
therefore, can be a powerful tool in efficiently filtering out insignificant variables.

Figure 4 demonstrates SHAP values corresponding to each input variable for indi-
vidual predictions. This visualization aids in understanding the relative influence of each
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variable on the RF model’s predictions. The variables are arranged hierarchically, with the
most influential ones positioned at the top. The color-coding—red and blue—is indicative
of the magnitude of the input values. Specifically, a red dot represents high input values,
while blue signifies lower values. The positioning of these colors relative to the zero base-
line provides insights into their impact on the output. For instance, when most red dots are
situated on the positive side, it denotes that the higher values of that input variable tend to
increase the output. Conversely, if more red dots are on the negative side, it signifies that
higher values lead to a decrease in the output properties. Blue dots are interpreted similarly
but with the opposite value behavior in mind. Compared with Pearson correlations, the
SHAP value method has several advantages. While Pearson correlation primarily provides
global relationships between variables, SHAP values provide additional information for
interpreting the influences of input variables. They not only highlight the significance
of each variable for specific predictions but also elucidate the quantitative influence an
input variable has on the output. This presents a detailed picture beyond just a generalized
correlation coefficient. SHAP values can also be instrumental in developing analytical
models, which allow end-users to predict properties without the need for advanced pro-
gramming expertise. The magnitude of both positive and negative correlations between
inputs and outputs provides valuable insights into determining weight assignments within
these models. By setting these weights appropriately, coefficients can be fitted in refined
ranges, leading to accurate prediction performance. Nonetheless, it is essential to recognize
that SHAP values only evaluate the correlations between inputs and outputs. As a result,
SHAP values do not effectively determine whether or not a given input variable has the
potential to cause overfitting.

High
Age coshBle ooo Sefeihe .-‘l .*s
OPC Content ° oo emoeme % oo
OPC_SO3
Clay_SiO2
Clay_CaO
Curing Temperature
Limestone Content
Clay_Al203
Limestone_CaO

Water-to-Binder Ratio

Feature value

Calcination Temperature
OPC_CaO

OPC_Fe203

Clay Content
Calcination Time
OPC_SiO2

OPC_AI203

Relative Humidity

Low

-30 -20 -10 0 10

SHAP value (impact on model output)

Figure 4. SHAP values of LC3 components and processing parameters for each prediction of com-

pressive strength. The most influential variable is ranked at the top. The red color represents positive
correlations, and the blue color represents negative correlations.

Figure 4 reveals that age is the most significant variable, exerting a positive influence
on the compressive strength of LC3. This observation aligns with foundational principles
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in cement chemistry, wherein longer hydration periods translate into greater compressive
strengths [6,76,77]. Such correlations can be used to debug ML models. For instance, a
SHAP analysis indicates a diminishing compressive strength with increasing age, while
Pearson correlation suggests the contrary (which means that the database is error-free). The
monotonous, directly proportional relationship between the age and compressive strength
of LC3 is well known. Such a discrepancy suggests that the ML model may have learned
an incorrect correlation. In such cases, the solution might involve adjusting the model’s
hyperparameters and re-training or even embedding certain constraints to guide the model
in establishing accurate correlations. The content of OPC demonstrates a pronounced
positive correlation with compressive strength. This is anticipated, given that OPC serves
as the primary constituent responsible for providing strength. Meanwhile, the SO3 content
in OPC is placed in the third rank, displaying an inverse relationship with compressive
strength. Earlier research showed that even a small amount of gypsum can substantially
delay the hydration reaction, leading to a notable dip in compressive strength during the
initial 3-day period [65,78-80]. Compounds such as ettringite and monosulfoaluminate,
which form from SOj3, contribute minimally to compressive strength. Given the vast range
of SO3 content variations, the RF model can sufficiently learn the influences of SO3 on
compressive strength. Further down the rankings, SiO, in clay exhibits a strong negative
correlation. Higher SiO; levels imply a more rigid clay molecular structure, resulting in a
reduced dissolution rate and reactivity. Interestingly, other components of OPC compo-
sitions and relative humidity seem to exert minimal influence. This could be attributed
to narrow ranges and the limited variability of these input variables. Such unforeseen
outcomes also highlight the potential limitations of SHAP values. Although a SHAP value
can be utilized to evaluate the influence of input variables across diverse ML models, it
might be inefficient when the model assigns less weight to an input. This is because SHAP
values primarily assess the shifts in predicted values prompted by incremental changes
in specific input variables. When a variable holds minimal weight, it corresponds to only
slight variations in prediction, potentially obscuring its true impact.

Figure 5 presents the variable importance derived from the RF model for each input
variable. These variables are systematically arranged: the variables exerting the most-
to-least influence are positioned from left to right. It is noteworthy that the ranking of
variables may differ between the SHAP value and variable importance; this discrepancy
arises from the distinct mechanisms underlying each method. The SHAP value calculates
predictions that fluctuate when a specific variable is altered. Essentially, it aggregates
local data to quantify the global influence of an input variable. The performance is heavily
reliant on the dataset in use, which means that a wide range of highly varied input variables
could have strong influences. Conversely, variable importance is determined by shuffling a
particular input variable and then measuring its impact on the overall prediction perfor-
mance, making this method more contingent on the model’s features and structures than
the database. Given its direct correlation with prediction performance, variable importance
is especially adept at pinpointing and tailoring inconsequential variables. Meanwhile,
the variable importance provides critical knowledge to develop analytical models. Our
previous studies [53,65,67,74,81-83] successfully harnessed this tool to craft user-friendly,
closed-form analytical models for different materials.

Figure 5 illustrates that the composition of OPC exerts great influence on compres-
sive strength, a finding that seems contradictory to the results derived from the SHAP
analysis. This discrepancy is understandable. While the variability and data range for
OPC compositions might be narrow, they undeniably play a pivotal role in shaping the
prediction accuracy of the RF model. CaO in clay, the calcination temperature, and CaO in
limestone show minimum impacts on compressive strength. One might consider omitting
these from the database to decrease its complexity. Nevertheless, any decision to remove
them must be grounded in cement chemistry insights. Past research has illuminated that,
although only a minor fraction of limestone reacts with the alumina phases in cement and
clay, forming the carboaluminate phase, most of it persists as an inert filler [5,6,34]. Given
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its minimal chemical influence on hydration product formation, the variable related to
limestone quality can be discarded. Furthermore, as clay is typically calcined between
700-800 °C [9], kaolinite begins its decomposition, transitioning into amorphous structures
at temperatures as low as 500 °C [84]. Therefore, the calcination temperature might also
be deemed redundant, especially since all clays in the database underwent calcination at
temperatures exceeding 500 °C. However, caution must be exercised when considering the
removal of CaO from clay. CaO is one of the key factors that determines reactivity. While
our study predominantly features clays with low CaO content, in practical scenarios, some
clays might exhibit higher CaO content. To ensure the generalization, this variable ought to
be retained.

1000
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200 -

Variable Importance (unitless)

0-

Figure 5. Quantitative evaluation of impacts of LC3 components and processing parameters on
compressive strength. The most influential variable is ranked on the left.

By excluding two variables, the RF model discovers underlying correlations for LC3
with only sixteen input variables. Figure 6 illustrates the RF model’s predictions of the
compressive strength of LC3, now optimized through feature reduction. A detailed account
of prediction errors from testing datasets is presented in Table 2.
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Figure 6. The prediction performance of the compressive strength of LC3 based on the testing dataset
produced by the RF model while the feature reduction method is applied. The mean absolute error
(MAE) for the overall predictions is shown in the legend. The solid lines show 10% error bounds, and
the dashed line is the ideal prediction.
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An examination of both Figure 7 and Table 2 demonstrates reliable predictions of
compressive strength, especially when fine-tuned using the feature reduction method.
From a quantitative standpoint, the predictions have an R of 0.94, coupled with an RMSE
of 4.54 MPa. Training the model with these 16 variables trims the training time by nearly
10% in comparison with the 18 input variables, and yet, the predictive accuracy is superior.
This reinforces the efficiency of the variable importance method in not only reducing the
complexity of the database but also maintaining robust prediction reliability. While the
SHAP value method was explored to prune input variables, it led to a noticeable slash in
prediction accuracy. Given this outcome, its results have been omitted from this study.
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Figure 7. The prediction performance of the compressive strength of LC3 based on the testing dataset
as produced by the RF model while both the feature reduction and feature enhancement methods are
applied. The mean absolute error (MAE) for overall predictions is shown in the legend. The solid
lines show 10% error bounds, and the dashed line is the ideal prediction.

After applying the feature reduction method, the feature enhancement method is
utilized to replace the chemical composition and processing parameters of the clay with
the number of constraints. As a result of implementing both methodologies, the RF model
only needs to learn input-output correlations from 13 input variables. This simplification
notably reduces both computational memory usage and the time required for training and
testing. Figure 7 illustrates the RF model’s predictions of the compressive strength of LC®
when informed by feature reduction and enhancement techniques. A detailed account of
prediction errors from the testing datasets is presented in Table 2.

Observing both Figure 7 and Table 2, it is evident that the RF model, when augmented
with the aforementioned methods, yields accurate predictions of compressive strength.
Quantitatively, the R and RMSE values for the predictions stand at 0.95 and 4.61 MPa,
respectively. This figure demonstrates the superiority of predictions implemented with
a combination of feature reduction and enhancement over those generated solely by the
RF model or just with feature reduction. This can be attributed to the enhanced scope
of information that the RF model receives. Unlike the standalone model, which is solely
informed by the chemical composition and processing parameters of clay, the number of
constraints provides the RF model with insights into the chemostructural properties of clay.
This includes details like the quantities of various chemical bonds. Such data act as an effec-
tive proxy for representing the reactivity of clay—a facet not directly discernible from just
the chemical composition. Clay with high reactivity readily interacts with free portlandite,
water, and sulfate, leading to the formation of C-A-S-H, ettringite, and monosulfoalumi-
nate [85,86]. These compounds play a pivotal role in reducing the binder’s porosity, thereby
enhancing compressive strength. In essence, such information obtained from the number of
constraints empowers the RF model to robustly discover correct underlying input—output
correlations for LC3.
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In conclusion, the feature reduction and feature enhancement methods have demon-
strated their robust potential in trimming down the degree of freedom within the LC?
database and enhancing the prediction performance. The abovementioned guidelines not
only apply to LC® but can also be extrapolated to encompass other cementitious materials.
Such tailored approaches are pivotal, as they demonstrate the importance of fine-tuning
ML models to better fit the principles of cement chemistry rather than employing these
models generically. Furthermore, the feature reduction methodologies serve a dual purpose.
Firstly, they enhance the interpretability of ML models. This heightened transparency aids
researchers in diagnosing potential issues within ML models and, if necessary, incorpo-
rating new features to refine predictions. Secondly, these methods pave the way for more
informed decisions in the realm of cementitious material experiments. By discerning which
components considerably influence a particular property, manufacturers and researchers
can adjust formulations more precisely, ensuring optimal performance and efficiency in the
resulting product.

4. Conclusions and Perspectives

Reducing its carbon footprint has placed the cement industry at the forefront of re-
search initiatives. LC? emerges as a promising alternative to OPC, with a significantly
reduced carbon footprint. The inherent compositional heterogeneity in select components
of LC3, combined with their convoluted chemical interactions, poses challenges to conven-
tional analytical models when predicting mechanical properties. ML provides a promising
solution for predicting the properties of multicomponent materials (e.g., LC%). However,
the generic applications of ML on cementitious materials may violate some laws of cement
chemistry. This underscores a need for deeper explorations into tailoring ML models that
can seamlessly integrate with cement chemistry’s intricacies. This highlights the ongoing
need for further research to fully understand ML models and integrate knowledge of
cement chemistry into them.

In this study, an RF model was employed to predict the compressive strength of
LC3 in a high-fidelity manner. The database comprises over 400 data records, marking
it sizable in comparison with most cement databases. Nevertheless, from a broader data
science perspective, this scale would still be classified as relatively small. Most data science
databases contain thousands to billions of data records, allowing for a richer understanding
of input-output correlations. Gathering such vast amounts of data is not practical in
cement research given the extensive costs and prolonged durations associated with data
collection, especially for properties like long-term strength and durability. The solution lies
in fostering a culture of collaborative data sharing within the cement research community.
Such collaboration is commonplace in data science, where numerous repositories exist for
researchers to share and access databases. Regrettably, the cement community currently
lacks a dedicated platform for data communication. The development of an open-source
repository for cement research is urgently required. Such a platform would not only
encourage researchers to share data and ML algorithms but also ensure standardized data
quality through the implementation of specific sharing protocols. With the inception of
such a repository, the evolution of ML techniques in cement research would experience a
significant boost. Concurrently, it would empower scientists to innovatively design new
cement formulas more efficiently and at reduced costs.

Furthermore, three data reduction (i.e., Pearson correlations, SHAP value, and variable
importance) and one data enhancement (i.e., topological constraint) methods were explored
in this study. To aid in their application, this research provides an in-depth breakdown
and step-by-step guidelines on how to leverage these data reduction methods to analyze
and understand the intricate relationships between inputs and output. Each technique
has a unique set of strengths and potential pitfalls. For this reason, a robust data analysis
strategy would be better anchored on a combination of these methods rather than overly
depending on just one. For instance, while one method might be good at identifying
weaker correlations, another might be adept at understanding nonlinear relationships. After
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identifying insignificant variables, it is crucial to overlay this understanding with domain
knowledge regarding cement chemistry. This ensures a rational decision-making process
on whether to retain or discard a given input variable. Venturing into data enhancement,
the method amalgamates multiple input variables into a more enriched and informative
single entity. Such an approach not only reduces the complexity of the database but also
presents ML with more potent correlations to analyze and learn from.

Both the data reduction and enhancement strategies signify a pivotal shift from a broad,
one-size-fits-all approach to ML to more tailored, cement-chemistry-based ML. Looking to
the future, there is an evident trajectory toward further refining this symbiosis between
ML and cement chemistry, starting with science-informed ML, where input variables
are rooted in established scientific principles, and then, a transition toward ML models
constrained and guided by material laws can occur, where these models would be adept at
learning specific trends across diverse scenarios. The zenith of this evolution would be the
development of ML models highly integrated with thermodynamic or kinetic frameworks.
Such models would encapsulate material laws at every juncture of prediction, magnifying
the reliability of their outputs.

To conclude, it is undeniable that ML has revolutionized research related to cement
science, ushering in the conceptualization and development of innovative cementitious
materials. While this paper merely scratches the surface of the potential intersections be-
tween ML and cement chemistry, but it ignites a robust dialog focused on customizing ML
to cement science. The rapid evolution of Al has brought forth the emergence of generative
Al as a cutting-edge field of exploration. Currently, its applications span a myriad of do-
mains, from content creation in writing and image generation to advanced video synthesis.
However, the potential of integrating generative Al with cement chemistry remains largely
untapped. Imagine a scenario where generative Al is harnessed to learn from cement
databases. This Al model could then extrapolate and design novel cementitious formulas
that not only diverge from known databases but also amalgamate insights across them.
Such an approach could inspire researchers to explore unthought realms. Generative Al
could be profound, potentially fast-tracking the development of sustainable cement toward
a future of carbon neutrality.
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