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Abstract: This review provides information on the latest advances in inorganic materials with
antimicrobial properties based on a metallic species immobilized on the clay mineral montmorillonite
realized between the years 2015 and 2023. This class has shown many promising results compared to
certain organic agents. Montmorillonite in natural and/or modified forms is a good platform for the
storage and release of metallic species, and several researchers have worked on this mineral owing
to its cation exchange capacity, low cost, biocompatibility, and local availability. The preparation
methods and the properties such as the antibacterial, antifungal, and toxicological activities of this
mineral are discussed. The main characteristics of this antibacterial class for the elimination of
pathogenic bacteria were examined and the known weak points of its antimicrobial application are
discussed, leading to suggestions for further research.

Keywords: clay minerals; montmorillonite; nanocomposite; antibacterial activity; pathogenic bacteria;
metallic species

1. Introduction

Diseases caused by pathogens such as bacteria, fungi, viruses, and protozoa are
disturbingly on the rise, and the increasing frequency of their resistant strains has increased
researchers’ efforts to develop efficient, non-toxic, inexpensive, and strong inhibitory
materials for disinfection. These antimicrobial materials can be broadly divided according
to their chemical composition: organic and inorganic agents. Organic antibacterial agents
have been widely utilized due of their strong inhibitory effects on bacterial growth [1–4].
However, these compounds suffer from many problems such as low thermal stability, high
cost, toxicity, and a short shelf life, which limit their applications in this field. In recent
years, inorganic materials have been targeted as very particular alternatives by virtue of
their prospects as antibacterial agents. Several studies have suggested that clay-based
nanocomposites are effective, biocompatible, inexpensive, and stable materials for treating
various pathogens [5–13].

Generally, metallic nanoparticles have a good bacteriostatic effect resulting from
their large surface/volume ratio, allowing them to contact the bacterial cell in a desirable
manner [14–18]. Recently, metallic ions, metal nanoparticles, and metal oxides based on sil-
ver [19–21], gold [22], copper [23], cerium [24,25], iron [26], cobalt [27], copper oxide [28,29],
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zinc oxide [30–32], nickel oxide [33], tin oxide [34], manganese oxide [35], nickel hydrox-
ide [36], and magnetite [37] have been applied in various fields, especially in medicine,
dentistry, the pharmaceutical industry, food packaging, coatings, the paint industry, and
biology. Recently, the growing concerns about microbial infections and their resistance
have increasingly pushed researchers to develop powerful new antimicrobial agents that
are stable and sustainable. Several researchers have shown that the antibacterial effect of
nanoparticles depends on their size, shape, distribution in the matrix, morphology, surface
functionalization, and physical and chemical stability [14,38,39]. In addition, the use of
these antibacterial metal nanoparticles has shown many interesting advantages compared
to organic antibacterial materials, and among the important advantages is the diversity
of their preparation methods by physical, chemical, and even biological processes. These
nanoparticles can be easily fabricated using green methods, which have an advantage for
human health and our ecosystem. These antimicrobial nanoparticles are very important ma-
terials for fundamental research with a wide range of applications, due to their remarkable
characteristics, which are represented by their nanometric size, their large specific surface
area, and their physical and chemical stability. When using these pure particles alone, many
problems can arise, such as their complexation, precipitation, and agglomeration, and
they can even react with other compounds present in the reaction medium, thus leading
to a decrease in their reactivity. To overcome these disadvantages, researchers have sup-
ported them in appropriate matrices such as clays [5,34,40], zeolites [41–44], mesoporous
materials [45–48], and polymers [49–54].

Several supporting substrates for these antimicrobial nanoparticles have been devel-
oped in recent years such as grapheme [55], diatomite [56], zeolites [57–59], polysaccha-
rides [60–62], hydrated layered polysilicates [63–67], mesoporous materials [68,69], and
double-layered hydroxides [70,71] for the preparation of the bacteriostatic hybrids’ com-
ponents. Consequently, the resulting composites generate a synergistic effect between the
support and the metal to eliminate a variety of pathogenic microorganisms. Addition-
ally, silver species loaded on organic or inorganic carriers as hybrid composites are the
most-popular and the most-effective antibacterial materials, on account of their excellent
bacteriostatic characteristic [66,72–75], and several studies have shown that these compos-
ites are very effective at killing different types Gram-positive and Gram-negative bacteria,
as well as fungi [20,76,77]. Most of these supports present a handicap either in their avail-
ability, their preparation, their stability, their high costs, their biodegradability, or their
toxicity, e.g., graphene and its modified forms have been shown to be effective at capturing
bacteria from contaminated water, but they are very expensive to prepare. Special attention
has been paid to silver species loaded on montmorillonite as the carrier, which is superior
in terms of safety and long-term antibacterial effectiveness when compared with other ma-
terials. Figure 1 presents a diagram of the numerous scientific publications on antibacterial
materials based on zinc, copper, silver, and other metallic species, which are supported
on montmorillonite for antimicrobial applications. More than 50 scientific publications
have been produced during the period from 2015 to 2023 on silver and montmorillonite
as a precursor for the preparation of antibacterial composites. Silver has been used on
account of its high activity and low bacterial resistance [78]. When bacteria approach silver
particles, positively charged silver ions are formed due to Coulomb gravity. The silver ions
attract the sulfhydryl group on the enzyme protein of the bacteria, leading afterwards to
the loss in the activity of the bacteria and, then, its death [79,80].

Clay minerals are relatively abundant in nature, biocompatible, and non-toxic to the
environment and humans, as well as have good physical and chemical stability [7,81,82].
This class of solids has been widely used for medicinal applications throughout human
history in view of their characteristics of adsorbing and fixing viruses, bacteria, and other
harmful substances [76,83–88]. They have been used as a mineral remedy for ailments such
as diarrhea, dysentery, tapeworms, hookworms, wounds, and abscesses [83,89,90]. They
have been used for the elimination of fungi, viruses, and Gram-negative and Gram-positive
bacteria, due to their high cation exchange capacity, high surface area, high swelling
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capacity, high water dispersibility, stability, and non-toxic properties [91–93]. Without
any modification, the negative charge on their surfaces allows the exchange of positively
charged antimicrobial substances. Their combinations with antimicrobial metallic species
constitute an important class of composites known by the name inorganic–clay hybrids.
The clay also acts as a protective agent for the nanoparticles, as a stabilizer (prevents
aggregation and dissolution), and as a suitable surface for homogeneous dispersion.
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Figure 1. Number of articles based on antibacterial metallic species supported on montmorillonite
(based on Scopus database searches).

The most-common clay used for the fabrication of this class of antibacterial materials
is montmorillonite [94]. This mineral is the main component of bentonite; its deposits
mostly develop from the weathering of volcanoclastic rocks [95]. It is extensively used in
the medicine and biological fields owing to its excellent intrinsic properties; it has been
specifically used as an adsorbent, dispersant, suspender, coagulant, and filler [96–99]. Mont-
morillonite belongs to the group of smectites with a 2:1 layer structure, which is formed
by coordination bonds between silicon (Si4+) and oxygen atoms with one octahedral sheet
in between, which is formed by either Mg2+ or Al3+ coordinated with oxygen atoms and
some hydroxyl (OH) groups on the cleavage sites [100]. With isomorphic substitutions
using Si4+, Mg2+, and Al3+ atoms, negative charges can be created all over the layers, which
are neutralized by cations such as Na+, K+, Ca2+, and in some cases, Mg2+. These charges
have the ability to fix positive substances in the interlayer space [72]. In addition, the
Si–OH and Al–OH groups can react with silane coupling agents, giving rise to hybrid
organoclays [72,101]. Several studies have been carried out using montmorillonite in a
modified or unmodified form with the aim to prepare antimicrobial agents. Due to this,
particular attention has turned toward these solids and their nanocomposite counterparts.
Recently, montmorillonite supporting spherical SnO2 nanoparticles having a particle size
of less than 10 nm showed good antibacterial activity against a Gram-positive bacterial
strain [34]. Another study attributed the antibacterial activity of chitosan/AgNP–bentonite
composite beads against Staphylococcus aureus and Pseudomonas aeruginosa bacteria to the
AgNPs species loaded in the bentonite [67]. Chitosan-based nanocomposites containing
bentonite-supported silver and zinc oxide nanoparticles have also been used for water
disinfection with a bacteria removal efficiency of 78%. Furthermore, leaching tests have
demonstrated that nanocomposite-based montmorillonite is stable and, consequently, could
be effectively used as an antibacterial material for water disinfection [102]. Recently, new
antibacterial paper nanocomposites stabilized by montmorillonite have shown excellent
antimicrobial activity against several types of bacteria: Escherichia coli, Pseudomonas aerugi-
nosa, Aspergillusniger, Staphyloccocus aureus, and Bacillus subtilis [103]. Giraldo et al. [72] also
reviewed the main montmorillonite and silver incorporation strategies for the preparation
of a potential antibacterial material with prolonged antibacterial activity.



Minerals 2023, 13, 1268 4 of 29

Through these studies described above and the others that will also be mentioned in
this review, montmorillonite and antibacterial metallic-species-based nanocomposites have
attracted much attention from researchers over the last five years. This review focused on
a group of inorganic antimicrobial materials based on antibacterial metallic species and
montmorillonite as the inorganic carrier. In addition, an assessment of the most-promising
antimicrobial properties of these composites is presented, as well as the most-effective
materials are discussed, providing a viewpoint about the possible directions for actual
applications.

2. Structural Features of Montmorillonite

The surface area of montmorillonite is the key factor that allows it to accommodate
metallic species, as well as to adsorb microorganisms in its interlayer space [104]. The
schematic structure of the 2:1-type clay mineral is presented in Figure 2. Montmorillonite
belongs to the family of 2:1 smectite minerals. Due to its swelling characteristic, its specific
surface area is higher than other types of minerals such as the 1:1-type. It is composed of
one octahedral sheet between two tetrahedral sheets, which forms an interlayer thickness
of 1 nm [100]. The substitutions of Si4+ in the tetrahedron sheet by Al3+ or those of Al3+

in the octahedron sheet by Fe2+ occur in this group of minerals [105]. This results in a
negative surface charge all along the sheet, allowing the easy exchange of cations such as
Na+, K+, H+, Ca2+, and Mg2+. These characteristics provide it a higher charge density, a
large surface area, and an elevated swelling capacity. Table 1 presents the values of the
typical parameters of montmorillonite.
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Figure 2. Structure of the Na–montmorillonite (2:1 type) of clay minerals.

Table 1. Representation values of typical parameters of montmorillonite such as cation exchange
capacity, surface area, porosity structure, and point of zero charge.

Parameter Value References

Basal spacing (Å) 10–13 [106,107]
Typical thickness (mm) 2 [108]

Exchange capacity (mEq/100 g) 80–120 [106]
Specific surface area (m2/kg) 164.79 [109,110]

Micropore surface area (m2/g) 38.48 [111]
External surface area (m2/g) 126.31 [111]
Total pore volume (cm3/g) 0.271 [112]

Average pore size (Å) 64.74 [113,114]
Point of zero charge (pHpzc) 8.0 [115]

The acidity, such as the Brønsted and Lewis types, in clays considerably increases
their adsorption capacity. The Brønsted acidity originates from the hydrogen ions of the
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water molecules present on the clay’s surface, which is due to the substitution of Si4+ by
Al3+, while the Lewis acidity is created either from the exposed trivalent cations, mostly
Al3+ at the edges, or Al3+ arising from the rupture of the Si–O–Al bonds, or through the
dehydroxylation of some Brønsted acid sites [107].

3. Classification of Antibacterial Composite Materials

Antibacterial materials based on inorganic or organic substances have been widely
studied for various characteristics such as mechanical, chemical, or thermal stability,
potential activity against different types of bacteria, as well as long-term antibacterial
effectiveness [116–118]. This category of materials can be classified into three main
groups: inorganic–inorganic, organic–inorganic, and organic–organic materials [117,119].
Based on this, clay-based antibacterial materials can also be classified into two categories:
(i) inorganic–clay antibacterial materials and (ii) organoclay hybrids (Figure 3) [117,120].
The inorganic–clay compounds include metal or metal oxides supported on clay, while
the organic–clay hybrid supports antibacterial organic compounds such as quaternary
ammonium compounds, antibiotic drugs, fungicides, and other bacteriostatic organic
agents. Therefore, each material has its own concept, history, architecture, and properties.
In this review, we only discuss inorganic clay materials. These materials are considered
the most-popular due to the fact that they have unique properties, molecular selectivity,
hyper-functional activity, and preparations based on abundant substances, and these com-
posite materials have also shown a non-toxic characteristic. The use of layered materials
such as montmorillonite, as a carrier for metal oxides, has become the subject of intensive
research due to their effective catalytic and antibacterial activities, despite that natural
clay minerals, such as kaolinite, montmorillonite, and vermiculite, have no antibacterial
effect [121,122]. Some clays have been found to have good antibacterial activities against
various bacteria when an antibacterial agent is intercalated or adsorbed on their surfaces.
Several studies have shown that these inorganic materials based on clays and oxides such
as TiO2, ZnO, Ag2O, and SnO2 have very good antimicrobial activities, especially in water
disinfection [34,123,124]. Another study by Ugwuja et al. [83] showed interesting results:
they prepared several clay minerals modified by inorganic substances for the elimination
of harmful pathogens present in water. The last class of antibacterial composite materials
are those that contain only organic substances [125]. Several fabricated materials based on
quaternary ammonium, antibiotic, and fungicide molecules have been immobilized on a
polymer or biopolymer matrix to test their antimicrobial activities [126–130].
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4. Some Important Properties of the Antibacterial Metallic Species Loaded on
Montmorillonite

Montmorillonite (Al2−xMgx(Si4O10)(OH)2·(Nax·nH2O)) is a 2:1 phyllosilicate. Its host
layer constitutes an octahedral metal–oxygen sheet, which is confined by two adjacent
tetrahedral [SiO4] sheets, these forming a sandwich-like structure with a thickness of
0.96 nm. Isomorphic substitutions in the octahedral (Al3+ by Mg2+) and tetrahedral (Si4+

by Al3+) sheets result in the negative surface charge, which is neutralized by sodium
cations and crystal water molecules and can be further exchanged with other cations,
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e.g., K+, Na+, Ca2+, Mg2+, and H+, or even organic tetra-alkyl ammonium groups [131].
Montmorillonite has an ecological nature and is abundant, inexpensive, non-toxic, and
thermally stable, making it a very good candidate compared to other supports for the
design and fabrication of antibacterial materials [132]. The montmorillonite sheets’ particles
are plate-shaped, typically 1 nm in thickness and 0.2–2 µm in diameter. Due to its cost
effectiveness, as well as its good compatibility with most polymers [133], it has been utilized
in various fields such as laboratory research, as well as in industry for manufacturing
commercial products. This layered silicate is a promising support for nanoparticles with
excellent hydrophilicity, a good adsorption ability, a large specific surface area, and a stable
physicochemical property [134]. Consequently, various researchers have expounded on
the benefits of these interesting properties and the application of montmorillonite and
its modified forms in diverse fields. Their negative surface charge can be modified with
cationic surfactants, and these can be used as solid carriers and as antibacterial agents [101].
The interaction forces between the guest antibacterial substance and the clay sheets’ surface
can delay drug release. This feature can be favorable when the slow and controlled
desorption of the bactericidal compound has a positive effect on its therapeutic action.
Montmorillonite modified with Tris [2-(dimethylamino)ethyl]amine was evaluated for
antibacterial activities against multi-drug-resistant strains, and the resulting composite
was able to absorb different microorganisms onto the surface and, accordingly, acted as
a very effective antibacterial agent [135]. Montmorillonite can strengthen polymers and
provide them with various characteristics such as antimicrobial activity, facilitated recovery,
electrical and/or thermal conductivity, chemical and thermal stability, targeted delivery,
compatibility, and biodegradability [133]. Various modification methods of montmorillonite
offer it a variety of properties that can have several fields of application.

5. Antibacterial Metallic Species

Nanoparticles have good antibacterial and antifungal properties due to their large
surface/volume ratio, providing a desirable contact with the bacterial cell [15,17,76,136].
In recent years, metallic nanoparticle species based on silver, gold, copper, zinc, and
titanium have been applied in various fields such as medicine, dentistry, the pharmaceutical
industry, and biology [63,137–143]. With the growing concerns about bacterial infections,
antibiotic resistance, and the side effects caused by antibiotics [143], there is a growing
need to develop new stable and potent antimicrobial agents. For this, several studies have
developed antibacterial materials based on metal oxides, such as copper oxide (CuO) [91],
zinc oxide (ZnO) [92], silver cations (Ag+) [144], silver oxide (Ag2O) [15], zero-valence-state
silver nanoparticles (Ag0) [145], and titanium oxide (TiO2) [94], which have been used as
agents either directly or incorporated into a solid support. While their combination has
proven a good solution, the resulting antibacterial material has a promising antimicrobial
characteristic with low toxicity. Recently, a study was reported by Özdemir et al. [91] in
which they suggested that Na–montmorillonite has no antibacterial activity against S. aureus
and E. coli bacteria. While modified montmorillonite using cationic/anionic surfactants
and Cu2+/Zn2+ has shown a synergistic effect of the ions against both bacteria, it has
been confirmed that their toxicity was reduced. Bimetallic nanoparticles based on copper
and silver were evenly distributed on the montmorillonite’s surface with particle sizes of
10.1 ± 1.7 nm. The release rate of the Cu and Ag ions was higher with the antimicrobial
action of bimetallic NPs depending on the concentration of the materials concerned and
their stability in the medium [146]. Among the inorganic antibacterial agents, there is
chlorine and its compounds, which are agents mainly used in water treatment owing to
their effectiveness and low cost. However, their additions alter the taste of the water and
react with the constituents present in the medium, and this results in the formation of by-
products that are carcinogenic. In addition, bacteria can develop strong resistance against
these agents. The TiO2-nanoparticle-based materials are some of the most-commonly used
materials for photocatalytic antibacterial applications in view of their low cost, chemical
stability, and non-toxic characteristics [147].
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The utilization of these metal species alone as an antibacterial agent likely will present
challenges with much inconvenience. The major concerns are the unknown post-release
health effects of their use. Their accumulation also poses a problem for the environment.
Their performance in the laboratory is not guaranteed until they are used in real applica-
tions. The precipitation, agglomeration, and complexation phenomena can decrease or
weaken their antibacterial activity. Another disadvantage of using these species is their
effects on non-target microorganisms.

6. Various Preparation Processes of Antibacterial Metallic Species Supported on
Montmorillonite

Microbial infections in everyday life, and especially in hospitals and clinics, often
present potentially serious or even fatal situations, especially in immune-compromised
patients. To minimize this, there is a need to develop low-cost, easy-to-prepare, non-toxic
biomaterials with excellent antimicrobial properties. Nanocomposite materials have been
part of this line of research for some time. The smectites have excellent properties, often
chosen to reinforce and enhance solids in numerous studies for the elaboration of antimi-
crobial nanocomposites. Montmorillonite alone has no antimicrobial properties [148], but
is capable of absorbing microorganisms due to its large specific surface area and excellent
adsorption capacity, while the incorporation of substances into its lamellar spaces make
it antibacterial and/or antifungal depending on the nature of the guest substances used.
Composites based on metallic species (cations, oxide, or zero valence state) supported on a
montmorillonite matrix can be synthesized using several direct or indirect methods, and
their preparation is still based on techniques such as intercalation using an ion exchange
process, γ-irradiation, hydrothermal synthesis, chemical reduction methods, polyol re-
duction methods, solvo-thermal methods, electroless plating, hydrothermal synthesis, the
sol–gel process, and ultra-sonication [6,149]. The most-reported modification process of
montmorillonite using these antibacterial metal species is either by a simple ion exchange
method or by organic surfactants, which can provide a higher specific area to host more
metal species. The guest metallic particles’ size plays a determining role in the antimicrobial
behavior. Due to this, several studies have been realized with the aim to optimize their
dimensions [144,145,150,151]. As described previously, the variety of reduction methods
either by chemical salts, solvents, bacteria, plant extracts, UV and MW irradiation, or
thermal treatment have all had an effect on the shape, size, and distribution of the particles
on the surface [145,150,152]. Very interesting studies have been carried out in this area;
in the rest of this part, some of them will be mentioned. Roy et al. contributed a very
informative work: they reported a comparative study on the synthesis and the antibacterial,
antifungal, and toxicological behaviors of silver and copper nanoparticles deposited on a
montmorillonite matrix using different reduction media [145]. They realized four different
ways for reducing the silver and copper metals present on the montmorillonite surfaces
(two chemical routes and two physical routes), as presented in Figure 4i. TEM micrographs
of the hybrids of silver or copper nanoparticles deposited on montmorillonite are presented
in Figures 4ii and 4iii, respectively. From the TEM images, the four reduction processes
successfully reduced the silver and copper cations to zero valence states. The size of the
nanoparticles dispersed on the clay sheets was strongly reliant on the type of reducing
agent used. The smallest diameter of silver and copper nanoparticles was obtained by
reduction using borohydride (NaBH4), while the largest mean nanoparticles diameter was
obtained by a thermal process (calcination of the clays). As a result, the authors claimed
that montmorillonite had no antimicrobial activity, confirming that the bactericidal action
was entirely contributed by the silver and copper species supported on the montmorillonite
sheets. The smaller-diameter nanoparticles exerted a toxic effect on the bacteria due to their
instability and high reactivity.
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Because of their small particle size, they can be difficult to recover from solutions, if not
supported on another matrix such as polymers or biopolymers. For this, another attractive
study was realized Roy et al. [148], in which they prepared nanocomposite antimicrobial
agents based on zinc cations and zinc oxide supported on montmorillonite and polyethylene
(HDPE). Figure 5i shows the schematic preparation process of the Zn–montmorillonite
and ZnO–montmorillonite materials. TEM images of the prepared materials are presented
in Figure 5ii. Spherically shaped ZnO nanoparticles supported by the montmorillonite
sheets were observed with a mean particle diameter of about 20 nm. The bactericidal
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results of these materials are exhibited in Figure 5iii. The authors concluded that the
Zn–montmorillonite material presented a better antibacterial and antifungal activities than
the ZnO–montmorillonite material, as the zinc cations were relatively mobile compared to
the ZnO nanoparticles.
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7. Characterizations of the Antibacterial Metallic Species Loaded on Montmorillonite
Composites

The most-beneficial techniques that have been used to prove montmorillonite’s modi-
fication, as well as dispersion and the content and the forms of metallic species on the clay
surface are generally XRD, TEM, and XPS analyses.

Figure 6 presents the XRD and TEM analyses of the antibacterial nanocomposites based
on silver carbonate and silver nanoparticles stabilized on a montmorillonite matrix [153].
As depicted in Figure 6i, the XRD patterns for the Ag–montmorillonite nanocomposites
exhibited the characteristics peaks of metallic silver. The diffraction of the d-spacing (d001)
was shifted to a lower degree, due to an increase in the interlayer distance, which could be
attributed to the intercalation of silver and Ag2CO3 nanoparticles into the montmorillonite
galleries. From the XRD, it can be concluded that the presence of the characteristic peaks
corresponded to the metallic species and the change in the interlayer distance (d001),
suggesting the formation of a metallic–montmorillonite composite.
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Figure 6. (i) XRD and (ii) TEM analyses of Ag–montmorillonite and Ag2CO3–montmorillonite
nanocomposites. Reproduced with permission from [153].

TEM images of Ag–montmorillonite nanocomposites are exhibited in Figure 6ii. By
varying the media treatments of the reaction, the mean diameters of the silver nanoparticles
changed. This change was detected by the resolution of the TEM analysis. It can be
observed that, for each sample, the silver nanoparticles’ size was varied. For example,
the sample that was treated with ethylene glycol showed a dispersion of small spherical
silver nanoparticles with a mean diameter of around 2–3 nm. The other samples showed
nanoparticles with mean diameters in the ranges of 7–9 and 15–50. This variety in particle
sizes both influenced and was responsible for the antibacterial activity. It has been reported
that the antibacterial property was related to the nanoparticles’ size and their dispersion
throughout the clay.

The XPS technique helped to confirm the metallic species that existed on the clay’s
surface. Figure 7 presents the elemental dot mapping and XPS spectrum of the SnO2–
montmorillonite composite. As can be seen from Figure 7i, the SnO2 nanoparticles sup-
ported by the montmorillonite displayed a good and homogeneous distribution of SnO2
on the clay support. Several studies have shown that the good distribution of particles on
a lamellar structure has a favorable effect on the antibacterial activity [29]. XPS analysis
provides the chemical oxidation state of the metal. Figure 7ii presents the XPS spectra of
the SnO2–montmorillonite composite. The two peaks of binding energy (B.E.) localized
at 490 and 498.2 eV were attributed to (Sn3d5/2) and (Sn3d3/2), respectively, showing the
existence of Sn4+ in the SnO2 nanoparticles. The SnO2 nanoparticles loaded on the mont-
morillonite sheets were tested against S. aureus and P. vulgaris bacteria and showed positive
results. The presence of metallic oxide particles with their high surface area was the effect
responsible for the enhanced chemical and biological properties of the composite.
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8. Applications Fields of Clay Minerals

Clays are widespread, more-easily available, and low-cost chemical substances. Both
in their native state and in numerous modified forms, clays are versatile materials that
have a wide range of applications [7,154,155]. Just as it can be molded into any shape, its
micro-structure can be modified to suit the needs of chemists depending on the application
to be achieved. Several applications of these materials and their composite counterparts are
mentioned in Figure 8. As shown in this figure, we can say that the application fields of these
materials are very wide, apart from some of them, which are still limited. Clay minerals are
receiving more attention in industrial applications, such as being used as a raw material in
construction. Clay minerals rich in silica are used for the manufacture of Portland cement
and of several ceramic products. Kaolinite is the most-suitable for the manufacture of white
Portland cement [156]. Clays that have high potassium content are used as agro mineral
additives to enhance soil fertility. Montmorillonite and kaolinite are exploited in pesticide
preparations as diluents to enhance the dispersion of the toxicant and keep the pesticide
on the plants. They have also been used for centuries in pharmaceutical preparations of
intestinally adsorbed drugs and other therapeutically useful applications. Food packaging
films and plastic surface modifications are further fields of application. The addition
of clay particles to plastics leads to improved strength, barrier, and abrasion properties,
excellent surface qualities, low thermal expansion, and very good flow properties and
treatment [157]. Their applications in the environmental field for water treatment are due
to their good dispersion and their high adsorption capacity [7,158]. They can also be used
to reduce and eliminate bad odors and bad tastes from water and also to soften water.
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8.1. Clay Minerals in Water Disinfection

Montmorillonite is a type of clay mineral that has been studied for its potential
applicability in water disinfection and purification processes. While it may play a role in
water treatment, it is important to note that it is not a standalone method for complete
water sterilization, especially for water contaminated with pathogenic microorganisms.
Instead, clay minerals including montmorillonite can be used as a part of a multi-step water
treatment process. The mechanism of montmorillonite’s role in water disinfection primarily
involves adsorption, a process in which molecules or particles adhere to the surface of the
clay mineral. Here is how it can contribute to water treatment:

Adsorption of impurities: Montmorillonite has a high surface area and a net negative
charge, which makes it attractive for adsorbing various impurities present in water. These
impurities can include organic matter, heavy metals, and some pathogens.

Pathogen removal: Montmorillonite can potentially adsorb certain pathogens such as
bacteria and viruses to its surface due to its physical and chemical properties. However, it
may not be highly effective in removing all types of pathogens, especially if they are not
strongly attracted to the clay’s surface.

Heavy metal removal: Montmorillonite can be particularly effective in removing
heavy metal ions from water. The negatively charged surface of montmorillonite can attract
and bind positively charged heavy metal ions, helping to reduce their concentration in
the water.

Adsorption of organic compounds: It can also adsorb organic compounds, which
can improve the water’s aesthetic quality and reduce the presence of some potential
contaminants.

However, it is important to note that montmorillonite alone may not provide complete
water sterilization or disinfection, especially for water sources that are heavily contami-
nated with pathogenic microorganisms. To achieve effective water disinfection, multiple
treatment steps are typically necessary such as coagulation and flocculation, filtration,
disinfection, and montmorillonite treatment.

Prior to using montmorillonite, the coagulation and flocculation processes are often
employed to clump together suspended particles, including pathogens, making them easier
to remove. After flocculation, water is usually passed through a filter to physically remove
larger particles and microorganisms. This is a critical step in achieving pathogen removal.
Following filtration, a disinfection step is required to kill or inactivate any remaining
pathogens. Common disinfection methods include chlorination, UV treatment, ozone
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treatment, or other chemical disinfectants. Montmorillonite can be used as a supplementary
treatment step to adsorb any residual impurities and improve water quality further.

Montmorillonite can play a beneficial role in water treatment by adsorbing impurities,
including some pathogens and heavy metals. However, it is not a standalone method for
complete water sterilization. To ensure safe drinking water, it should be used as part of a
comprehensive water treatment process that includes coagulation, filtration, disinfection,
and, possibly, additional steps based on the specific water source and contaminants present.

8.2. Use of Montmorillonite-Supported Metallic Nanoparticles as a Potential Antimicrobial for
Food Packaging

The spoilage and contamination of food with bacteria and fungi can induce serious
human infections, especially in the case of resistant bacteria [159]. Metallic nanoparticles
have revealed strong antimicrobial activities. Silver, copper, and zinc species nanoparticles
have demonstrated powerful antimicrobial effects against foodborne pathogenic bacte-
ria [160–162]. Metallic nanoparticles stabilized on modified montmorillonite clay resulted in
a synergistic antimicrobial effect. The fabrication of food packaging based on this modified
clay can generate important physical, chemical, mechanical, and antimicrobial proper-
ties [160,163]. It has been shown that the dispersion of montmorillonite in polymers and
biopolymers for food packaging leads to interesting thermal and barrier properties. Shiji
et al. [164] fabricated packaging films that were reinforced with montmorillonite and silver
nanoparticles. The resultant nanocomposite films were revealed to be highly suitable for
food packaging. Due to the presence of the montmorillonite and metallic species, the films
showed remarkable properties such as mechanical, light transmittance, moisture content,
water adsorption capacity, solubility, and great antimicrobial properties. As can be seen
from Figure 9i, the prepared film containing silver species and montmorillonite/PVA/rice
starch solution (PASM) had a brown color that was due to the formation of the silver
nanoparticles. The surface morphology analysis of the hybrid nanocomposite film clearly
showed the montmorillonite aggregates, flakes of rice starch, as well as silver nanoparticles
in the form of spots. The antimicrobial properties of the PASM film against food-borne
pathogens is presented in Figure 9ii. It shows that the PASM film had a remarkable activity
against both S. typhimurium and S. aureus, which proved its applicability in protecting food
from established pathogens. Promising work was realized by Afsaneh et al. [165] in which
they prepared novel active biodegradable food packaging based on the chitosan polymer,
glycerol, and montmorillonite–CuO. It was concluded that the incorporation of only 3%
of the montmorillonite–CuO nanocomposite increased the antibacterial property of the
composite film against both Gram-positive and Gram-negative bacteria. Martucci et al.
immobilized Cu (II) cations through complexation with hydroxyl groups in the layered
space of montmorillonite to reduce the cations’ leaching. The prepared gelatin/Cu(II)
montmorillonite films exhibited low leaching in the tested conditions and retained almost
90% of their inhibitory activity against E. coli and L. monocytogenes. In the conclusion of
their study, the addition of the exchanged Cu(II)–montmorillonite material as an inorganic
antibacterial material in the film improved the tensile strength and water vapor permeabil-
ity properties. Another interesting study was realized by Eskandarabadi et al. [166]. The
authors synthesized an intelligent active food packaging by incorporating different addi-
tives including a modified montmorillonite. The addition of the montmorillonite material
decorated with iron nanoparticles improved the thermal stability, mechanical, antioxidant,
and antibacterial properties. Consequently, various important aspects for the use of this
phyllosilicate material can be adapted as needed to achieve the desired functionality in the
composite film [164,167]. This strategy can prevent food spoilage through the use of its
biodegradable food packaging with varying antibacterial properties [168,169].
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8.3. Use of Montmorillonite-Supported Metallic Nanoparticles for Water Disinfection

Nanoclays such as montmorillonite are less expensive, less toxic, and more abundant
solids with high adsorption capacity for the removal of pathogenic contaminates from
wastewater. These solids, with their large surface areas, represent an excellent support for
the immobilization of metallic nanoparticles [74,170,171]. The resulting hybrid materials
can be used in the disinfection process [83,172–175]. Chao et al. [176] realized a filter paper
impregnated with montmorillonite saturated with Fe3+ cations, which was produced to
filter E. coli bacteria present in water. Figure 10i exhibits the photographs of the filter papers
without and with the iron cations. From the SEM images (Figure 10i), it was shown that,
after using the paper to filter the contaminated water sample containing E. coli bacteria,
some cells remained on the surface of the filter paper. The cells underwent morphological
changes, becoming distorted and shrinking. This change was due to the contact with
the Fe3+-saturated montmorillonite particles bound to the fibers of the filter paper. The
efficiency of water disinfection by the filter paper was evaluated by varying several pa-
rameters such as the filter paper/montmorillonite ratio, the amount of bacteria cells in the
water, and the presence of Fe–montmorillonite in the filter paper. Figure 10ii presents the
water disinfection efficiency results of the filter papers that contained Na–montmorillonite
or Fe3+–montmorillonite using two different volumes of E. coli-bacteria-containing water.
After the use of the filter paper without montmorillonite (unmodified), the number of
colony-forming units of E. coli remained the same, demonstrating that the clay-free paper
fibers were not able to trap the cells. During the filtration using the filter paper impregnated
with Na+–montmorillonite, the cells were trapped, but they remained alive. When the
Fe3+–montmorillonite-impregnated filter paper was used, the neutralization efficiency
of the E. coli bacteria significantly improved up to 99% cell removal. Another form of
material was developed to eliminate microorganisms from wastewater. Lovatel et al. [177]
prepared montmorillonite–alginate–AgNP hybrid beads for the disinfection of industrial
wastewater intended for reuse. The presence of the spherical silver nanoparticles with
an average diameter of 13 nm supported by the montmorillonite in the hydride beads
indicated a reduction of up to 98.5% of the total coliforms. The authors confirmed that
the result was slightly higher when compared to the use of UV radiation. Jiang et al. [174]
fabricated a nanomaterial based on montmorillonite decorated with lysozyme-modified
silver nanoparticles for bacterial disinfection. The montmorillonite structure prevented the
aggregation of the AgNPs and promoted nanomaterial–bacteria interactions.
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Figure 10. Photographs of impregnated filter papers that were Fe3+-saturated or contained Na+–
montmorillonite. Scanning electron micrograph showing E. coli cells retained on Fe3+-saturated
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8.4. Use of Montmorillonite-Supported Metallic Species as Antibacterial Materials

Each metal species, whether cations, oxides, or in the zero valent state, exhibits dif-
ferent antimicrobial properties. Their characteristic properties provide desirable contact
with the bacterial cell. Several authors have proven that the antibacterial effect of antibacte-
rial metal particles depends on their dimensions, form, distribution, morphology, surface
functionalization, and stability. To prevent these species from aggregating, precipitating,
and complexing and to retain their antibacterial activity as long as possible, they have
been loaded onto various inorganic supports. Due to their well-defined crystal system,
montmorillonite along with other layered solid supports are more favorable for metallic
species’ stabilization. In this sense, several authors have exploited montmorillonite as an
inorganic support for antibacterial metallic species. Table 2 summarizes the important
recent studies realized from 2015 to date. The collected studies covered the use of montmo-
rillonite as a support for various metallic species and their employment as an antimicrobial
agent. We tried to collect the realized studies on a variety of metallic species that mentioned
cations, oxides, and nanoparticles to see their behavior on a variety of microorganisms. To
prepare antibacterial hybrid materials, most researchers have used montmorillonite as a
support for metallic species. It is the most-used inorganic support for the immobilization of
metal species with antibacterial and antifungal properties. This solid has been used as an
effective carrier for silver, copper, zinc, and other metallic species. The immobilization of
silver on montmorillonite as an antibacterial agent is predominant due to the antibacterial
effects being very successful against several pathogenic bacteria. Manqing et al. fabricated
biocompatible nanomaterials with effective antibacterial activities countering two types
of pathogenic bacteria: Gram-positive and Gram-negative [178]. As the result, it was
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noted that the bactericidal characteristic of the AgNPs–montmorillonite composite was
solely caused by the existence of the silver nanoparticles on the montmorillonite sheets
(Figure 11i), and this was caused by the electrostatic forces inhibiting the growth of the
bacteria. Despite this highly effective activity against several types of bacteria, the use of
silver species alone remains troublesome. Their use alone is always dangerous due of their
high toxicity and loss of activity; this type of metal is always in need of a support to be
more effective and less toxic.

Table 2. Various studies on montmorillonite-supported metallic species and their preparation for
antibacterial activities.

Samples Preparation Methods Antibacterial
Activity Assay Bacteria Initial

Diameter
Final

Inhibition
Zone Diameter

Antibacterial Properties
Comments References

Montmorillonite

Disk diffusion
method E. coli 6.0 ± 00 mm

6.2 ± 0.1 mm
The Ag2CO3–

montmorillonite
nanocomposite exhibited
an antibacterial activity

higher than the Ag-MMT
sample against
Escherichia coli.

[153]

Ag–
montmorillonite 14.5 ± 0.3 mm

Ag2CO3–
montmorillonite

Silver nanoparticles
were prepared by the
reduction of (AgNO3)

over montmorillonite in
the presence and absence

of the Na2CO3
compound in ethylene

glycol.
8.5 ± 0.4 mm

Nano-silver-loaded
acid-activated

(AgNPs–
montmorillonite)

Disk diffusion
test

Gram-negative
bacteria E. coli
(ATCC 25922)

15 mm 44 ± 1.6 mm
The nanocomposite of

AgNPs–montmorillonite
showed antimicrobial

activity marginally lower
than silver nanoparticles

alone, although the
silver content was about
10-times lower than the

silver nanoparticles.

[144]

The silver-loaded clay
(AgNPs–

montmorillonite) was
synthesized by

converting the sodium
clay form into an

acid-activated clay, form
then- it was treated by
two concentrations of

silver nitrate solution to
obtain two types of acid

activated
Ag–montmorillonite.

Gram-positive
bacteria S.

aureus (ATCC
29213)

15 mm 54.7 ± 1.2 mm

Acid-activated
montmorillonite-
supported SnO2

nanoparticles

Diffusion
method on

Muller–Hinton
Agar

S. aureus
(MTCC96) - 13 mm

[34]
Proteusvulgaris

(MTCC426) - 10 mm

SnO2 nanoparticles
supported on

montmorillonite showed
for antibacterial activity

against both Gram + and
Gram − bacterial strains.

Ag–
montmorillonite/

polycarbonate

Disk
susceptibility

test

S. aureus
(ATCC6535) 6.0 mm 9.5 mm The nanocomposite

showed an antibacterial
activity against both
Staphylococcus aureus

ATCC 6535 and
Escherichia coli ATCC

8739, and the mean
diameter of inhibition
zone was almost 50%

larger than the
polycarbonate alone.

[179]

The polycarbonate
solution was mixed with
silver-loaded modified
montmorillonite and,

then, treated with
1,4-dimethylbenzene to

obtain functional
Ag-Mt/PC with

superhydrophobicity.

E. coli
(ATCC8739) 6.0 mm 10.7 mm

Zn–
montmorillonite-

coated
AZ31

Disk diffusion
method

E. coli (ATCC
25922) gram

(−)
- 22 mm The good inhibition of

the Zn–montmorillonite
coatings of bacteria was

attributed to the slow
and sustainable release

of Zn2+ ions (up to
144 h).

[180]

A Zn–montmorillonite
coating was

hydrothermally
prepared using

Zn2+-ion-intercalated
Na–montmorillonite

upon magnesium alloy
AZ31.

S. aureus
(ATCC 25923)

Gram (+)
- 32 mm

CMC/montmorillonite
5%

Disk diffusion
method

E. coli
- 0 mm

The simultaneous
incorporation of the

ZnO–montmorillonite
material improved the

functional characteristics
of the film, and it has a
wide potential for food
packaging applications.

[181]

- 18.4 ± 2.6 mm

CMC/montmorillonite
5%/ZnO 4% S. aureus

- 0 mm

Via the casting method,
novel

carboxymethyl-cellulose
(CMC)-based

nanocomposite films
containing

Na–montmorillonite (5%
wt) and ZnO

nanoparticles at different
% were prepared.

- 20.4 ± 3.3 mm
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Table 2. Cont.

Samples Preparation Methods Antibacterial
Activity Assay Bacteria Initial

Diameter
Final

Inhibition
Zone Diameter

Antibacterial Properties
Comments References

CMC–
montmorillonite

Carboxymethyl-cellulose
(CMC)-based films

incorporating
montmorillonite clay

nanoparticles modified
with silver and copper

ions.

Agar diffusion
method

E. coli (Gram-
negative)

- 0.00 ± 0.00
mm

The microbial tests
revealed that

AgNPs–montmorillonite
had significantly higher

antibacterial activity
than

CuNPs–montmorillonite
against Gram-negative

and Gram-positive
bacteria.

[182]

CMC–
montmorillonite–

CuNPs
- 2.19 ± 0.23

mm

CMC–
montmorillonite–

AgNPs
- 3.88 ± 0.19

mm

CMC–
montmorillonite

S. aureus
(Gram-

positive)

- 0.87 ± 0.06
mm

CMC–
montmorillonite–

CuNPs
- 2.45 ± 0.24

mm

CMC–
montmorillonite–

AgNPs
- 6.66 ± 0.18

mm

AgNPs–
montmorillonite

AgNPs–montmorillonite
materials were

synthesized by the
chemical reducing

method using NaBH4 in
the external and

interlamellar spacing of
montmorillonite at room

temperature.

Disc diffusion
method using

Mueller–
Hinton

agar

E. coli (ATCC
25922) 6.0 mm 8.74 ± 0.23 mm

The silver nanoparticles
with a smaller size were

found to have
significantly higher
antibacterial activity,
which can be used as

effective growth
inhibitors in different

biological systems,
making them applicable
to medical applications.

[39]

E. coli O157:H7
(ATCC 43895) 6.0 mm 10.74 ± 0.32

mm

Klebsiellapneumoniae
(ATCC 13883) 6.0 mm 10.98 ± 0.17

mm

S. aureus
(ATCC 25923) 6.0 mm 10.02 ± 0.10

mm

methicillin-
resistant S.

aureus (ATCC
700689)

6.0 mm 8.97 ± 0.27 mm

Cu–
montmorillonite–

BC

The process was to
combine the wound

healing property of BC
with the antimicrobial

activity of the
Cu–montmorillonite
material to design a

novel artificial substitute
for burns.

Agar disc
diffusion
method

S. typhimurium - 34.33 ± 0.47
mm

The findings
demonstrated that

modified
montmorillonite-

Bacterial cellulose
nanocomposites can be
used as a novel artificial
skin substitute for burn
patients and a scaffold

for skin tissue
engineering.

[183]

S. aureus - 33.16 ± 0.24
mm

E. coli - 36 ± 0 mm

C. fruendii - 0 ± 0 mm

MRSA - 0 ± 0 mm

P. aeroginosa - 0 ± 0 mm

Montmorillonite

Silver halides (AgX, X =
Cl, Br, I) were dispersed
in the montmorillonite

surface in the dark.

Disk diffusion
method

S. aureus - -

The antibacterial effects
on Staphylococcus aureus,
Micrococcus luteus, and

Escherichia coli decreased
in the order:

AgCl–montmorillonite
>AgBr–montmorillonite
>AgI-montmorillonite.

No antibacterial activity
was detected for

Pseudomonas aeruginosa.

[14]

M. lutes - -

E. coli - -

P. aeruginosa - -

AgCl–
montmorillonite

S. aureus - 20 ± 0.1 mm

M. lutes - 16.2 ± 0.3 mm

E. coli - 19.3 ± 0.2 mm

P. aeruginosa - -

AgBr–
montmorillonite

S. aureus - 15.4 ± 0.2 mm

M. lutes - 15.2 ± 0.2 mm

E. coli - 14.2 ± 0.1 mm

P. aeruginosa - -

AgI–
montmorillonite

S. aureus - -

M. lutes - 12.0 ± 0.1 mm

E. coli - -

P. aeruginosa - -

Konjacglucomannan–
montmorillonite–
AgNPs with 0.1
mol/L of Ag+

concentration

Disk diffusion
method

S. aureus 10 mm
9 mm

20 mm
23 mm

The antibacterial test
showed that the

Konjacglucomannan–
montmorillonite–AgNPs

composite films
significantly suppressed
bacterial growth, which
makes them favorable

for the biomedical field.

[184]
Konjacglucomannan–

montmorillonite–
AgNPs with 0.2
mol/L of Ag+

concentration

In the fabrication
procedure, hybrid

building blocks were
assembled with a thin

layer of
Konjacglucomannan

coating on the
montmorillonite

nanosheets to form
Konjacglucomannan–

montmorillonite
composite films via

vacuum filtration, then
the silver nanoparticles

were incorporated in the
composite.

E. coli 11 mm
11 mm

21 mm
23 mm
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Table 2. Cont.

Samples Preparation Methods Antibacterial
Activity Assay Bacteria Initial

Diameter
Final

Inhibition
Zone Diameter

Antibacterial Properties
Comments References

Montmorillonite
A biofilm DFBF was

immersed in the
Ag–montmorillonite
exchanged material

solution and oscillated
for 24 h and freeze-dried

to form the
AgNPs/MMT/DFBF

composite.

Disc diffusion
method

S. aureus - -

The montmorillonite,
silver cations, and silver
nanoparticles resulted in
the AgNPs/MMT/DFBF

composite films
effectively inhibiting the
growth of G(+) and G(−)

bacteria.

[185]

E. coli - -

P. aeruginosa - -

Ag+–
montmorillonite

S. aureus - 10.3 ± 0.1

E. coli - 10.8 ± 0.1

P. aeruginosa - 10.2 ± 0.1

AgNPs–
montmorillonite

reduced with 0.01
mol/L NaBH4

S. aureus - 8.5 ± 0.1

E. coli - 8.7 ± 0.1

P. aeruginosa - 7.4 ± 0.2
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9. Biocompatibility (Toxicity)

Recently, several authors have evaluated the cytotoxicity characteristics of solid mont-
morillonite; the usage of this clay mineral as an additive in various medicinal products
has been authorized by regulatory agencies [81]. Despite this, the use of montmorillonite
in drugs is yet to be approved the reports discussing the biocompatibility and toxicity of
nano-clay, organoclays, and pristine clay minerals being important and effective. On the
contrary, some nanoparticles are bio-safe materials such as ZnO, which possesses photo-
oxidizing and photocatalysis effects on chemical and biological species [186]. Zinc plays an
important role in the human body, since it is one of the most-important trace elements. In
this context, we presented various studies that have evaluated the compatibility and toxicity
of montmorillonite and its nanocomposites. Jiao et al. [9] evaluated the cytotoxicity of a
series of montmorillonite exchanged by metallic cations using zinc and/or copper. In this
approach, Cu/Zn-MTT of 0.1 mg/mL exhibited a slight cytotoxicity of 10% to IPEC-J2 cells
within 24 h of incubation, while Cu/Zn-Mt-2 with a higher concentration of 0.3 mg/mL led
to increased cytotoxicity of about 20% within 24 h. The authors suggested overall that the
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concentrations of the cell population showed stabilization at concentrations beyond the min-
imum inhibitory concentration value. They explained this as follows: a lower concentration
of Cu or Zn had minimal adverse effects on the cells in vitro. Due to their high absorptive
characteristic, this has an importance in reducing several toxin types. Montmorillonite
was considered as a dermatological and gastrointestinal protector. It played a strategic
role in minimizing the cytotoxicity of the Cu/Zn–montmorillonite composite material.
Consequently, the resultant Cu/Zn–montmorillonite was a good antimicrobial material
with little cytotoxicity. An interesting approach has been reported by Roy et al. [145]
concerning the hemocompatibility and the cytocompatibility of Ag–montmorillonite and
Cu–montmorillonite hybrid materials. They found that the hemolysis rate was 18–55%
for Ag–montmorillonite hybrids and 15–33% for the Cu-MMT samples, in which the per-
centage of hemolysis increased with the increasing NP-MMT concentration. The authors
revealed that the copper–montmorillonite hybrid materials are healthier than silver-based
hybrid materials in terms of blood compatibility within the human body. The authors also
evaluated the cytocompatibility of Ag–montmorillonite and Cu–montmorillonite hybrid
materials in vitro against human fibroblast cells. It was demonstrated that the smaller
dimension of the metallic nanoparticles was the probable reason for the higher cytotoxi-
city effects of the Ag–montmorillonite and Cu–montmorillonite materials. It was noted
that the immobilization of the antibacterial nanoparticles on montmorillonite, which is
a non-toxic solid, generated a synergistic effect on its cytotoxicity demeanor, and they
developed a novel cyto-compatible material with a high antimicrobial activity. In addi-
tion, it was suggested by Krishnan et al. [5] that the Ag/TiO2/bentonite nanocomposite
was an effective non-toxic antibacterial material for public health. They found that the
nanocomposite can be used to destroy the bacteria that can cause major diseases by direct
infection or producing toxins. More than 25 µg/mL of Ag/TiO2/bent nanocomposite
can destroy S. aureus and E. coli without any side effects on human health. Mainly, it is
an antibacterial material that is non-toxic to human beings. Liliana et al. [187] evaluated
the biocompatible properties of montmorillonite and a Ag–montmorillonite biocomposite,
which were investigated using cytotoxicity assays with the HeLa cell line. Consequently,
the in vitro cytotoxicity assays revealed that the montmorillonite and its nanocomposite
did not exhibit any significant toxicity. The montmorillonite and antibacterial silver cations
had an excellent synergistic effect on the nanocomposite. These types of materials promise
potential future use in biomedical applications. Misuse of these substances always has
a negative impact on the environment. Excessive use of nanoparticles in various fields
such as biological sciences, medical sciences, and commercial products leads to leaks and
accumulations in the ecosystem [188]. Protecting the environment and beneficial bacteria
against these nanoparticles is very important [189]. Blind use of these nanomaterials, such
as silver or copper, their release into the environment, and their leakage can result in one of
the most-serious threats to beneficial microbes and microbial communities in ecosystems
and to public health. Many microbes benefit the environment and the ecosystem due
to their role in bioremediation, the cycling of elements, and nitrogen fixation for plant
growth [188,190]. The particle sizes are also responsible for their toxic characteristic [39].
Several researchers have shown that silver nanoparticles with a size less than 5 nm possess
high toxicity against nitrifying bacteria via interaction with the cell membranes [188].

10. The Antibacterial Mechanisms

Several studies have exhibited that montmorillonite, as well as zeolites and layered
silicates alone did not present any antibacterial activity [42,101,178], unless some antibacte-
rial agents were absorbed or incorporated onto their surfaces. Usually, these solids serve as
a carrier for the dispersion of particles, as well as the adsorption of microorganisms due to
their high exchange capacity. Many theories have been proposed regarding the mechanism
responsible for the death or growth inhibition of bacteria. The antibacterial mechanisms of
various agents vary from cell-wall-/membrane-damaging abrasiveness, the release of metal
ions to inhibit certain oxidative enzymes, the denaturation of proteins, or interference with
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DNA/RNA replication [191]. Several authors have suggested the interactions between
metal species and the bacteria that describe the antibacterial activity [181,192,193]. For this,
four main mechanisms are proposed as follows:

• Metallic species are capable of blocking the electron transport system in bacteria.
• Metallic species kill bacteria cells by rupturing the cell membrane and cell wall.
• Metallic species interact with bacterial cell DNA, which results in mutation and causes

cell death.
• The destruction of bacterial cells by silver free radicals.

Although the antibacterial effects of metal species against various bacterial systems are
well established, several studies were based on TEM and SEM analysis in order to reach the
real mechanism of these species. Matai et al. [193] tried to establish a plausible mechanism
at the molecular level and the mode of action of these metallic species. Four possible actions
of these species against bacteria have been shown, as presented in Figure 12i. As can be
seen, the principal actions are summarized as follows [193–199]:

1. The direct interaction with the bacterial cell membrane via electrostatic interactions
between the ions released and the negatively charged bacterial cell wall.

2. The second action is the disruption of the bacterial cell membrane, by paving a way
into the bacterial cells, leading to membrane protein and lipid bilayer damage.

3. The third action is at the cellular level by the disruption of the bacterial cell mem-
brane, by either altering the membrane proteins or enzyme activity in an ROS-
mediated manner. At the molecular level, it inhibits DNA/plasmid replication and
proteins/enzymes in cells either via ROS formation or by metal ions directly.

4. The fourth action is the leakage of intracellular material owing to membrane dis-
ruption, which may cause the shrinkage of the cell membrane, ultimately leading to
cellular lysis.
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11. Conclusions, Future Research Proposition, and Deficits

Montmorillonite alone has been utilized as a good living microorganism adsorbent
owing to the existence of differing types of active sites located on the sheets, such as
high ion exchange sites and Lewis and Brønsted acid sites. The direct modification of
montmorillonite by antibacterial metallic species was obtained by a variety of rapid, simple,
and inexpensive processes. Additionally, its indirect modifications using organic surfactants
provide a higher specific area for metallic species’ immobilization.
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This review unveiled the antimicrobial materials based on the supported antibacterial
metallic elements on montmorillonite for the elimination of a variety of pathogenic bacteria.
A comparison of the antibacterial activity of each nanomaterial alone, namely montmo-
rillonite, montmorillonite-supported metal, and metal revealed that the activity of the
montmorillonite-supported metal is the most-effective among them. The good dispersion
of the metallic species on the surface of the montmorillonite was the parameter responsible
for the exposure of the antibacterial activity. The results demonstrated that the order of the
antibacterial activities of the nanomaterials were in order of metal species–montmorillonite
> metal species > montmorillonite. Metallic species impregnated on montmorillonite as
additives can be used not only for water disinfection, but also for the removal of organic
contaminants from water. Several benefits might be generated through the use of metallic
species supported on montmorillonite in the elaboration of hybrid composites such as
compatibility, biodegradability, and reducing the toxicity and the cost. Another challenge
that can be awaiting these antibacterial materials is their competition with conducting
polymers for bio-applications. These types of polymers resemble metals due to their elec-
trical and optical properties. These materials are versatile because their properties can
be easily modulated by surface functionalization and/or doping. Their structure allows
the possibilities of interaction and incorporation/immobilization, as well as the even dis-
persion of the material, and their design and easy synthesis result in the inheritance of
more advantages that offer new functionalities due to the synergistic effects between the
components. Therefore, it is possible to combine these two classes of materials to arrive at
nanocomposite structures with unusual physicochemical properties, biocompatibility, and
multifunctionality, facilitating their bio-applications. The synergistic effects between these
two classes can also make these materials particularly attractive in biomedicine.

From the perspective of low cost, antibacterial materials such as natural clays modified
with metallic species hold great promise. Future efforts will involve large-scale application
of modified montmorillonite, which will require significant financial and technological
resources. Montmorillonite modified with these antibacterial metallic species would be
the subject of several future studies in which work has been initiated. To minimize human
contamination of public surfaces, it is important to use them as additives in paints, cements,
and general building materials.

Certain challenges remain to be assessed for this type of composite, namely:

• The need to establish the antimicrobial activity of these materials with different bacte-
rial populations.

• The evaluation of antibacterial activity efficiency after several cycles of regeneration.
• Studies should be carried out to quantify and detect the chemical nature of the metallic

substances released.
• Ensuring that the antibacterial property of these materials is preserved over time.
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delivery carrier in alginate dressing. Mater. Lett. 2017, 201, 46–49. [CrossRef]

126. Liu, X.F.; Guan, Y.L.; Yang, D.Z.; Li, Z.; Yao, K. De Antibacterial Action of Chitosan and Carboxymethylated Chitosan. J. Appl.
Polym. Sci. 2001, 79. [CrossRef]

127. Cheah, W.Y.; Show, P.-L.; Ng, I.-S.; Lin, G.-Y.; Chiu, C.-Y.; Chang, Y.-K. Antibacterial activity of quaternized chitosan modified
nanofiber membrane. Int. J. Biol. Macromol. 2019, 126, 569–577. [CrossRef]

128. Mohamed, N.A.; Sabaa, M.W.; El-Ghandour, A.H.; Abdel-Aziz, M.M.; Abdel-Gawad, O.F. Quaternized N-substituted car-
boxymethyl chitosan derivatives as antimicrobial agents. Int. J. Biol. Macromol. 2013, 60, 156–164. [CrossRef]

129. Bai, H.; Zhang, H.; Hu, R.; Chen, H.; Lv, F.; Liu, L.; Wang, S. Supramolecular Conjugated Polymer Systems with Controlled
Antibacterial Activity. Langmuir 2017, 33, 1116–1120. [CrossRef]

130. Wan, H.; Yan, A.; Xiong, H.; Chen, G.; Zhang, N.; Cao, Y.; Liu, X. Montmorillonite: A structural evolution from bulk through
unilaminar nanolayers to nanotubes. Appl. Clay Sci. 2020, 194, 105695. [CrossRef]

131. Sajjadi, M.; Baran, N.Y.; Baran, T.; Nasrollahzadeh, M.; Tahsili, M.R.; Shokouhimehr, M. Palladium nanoparticles stabilized
on a novel Schiff base modified Unye bentonite: Highly stable, reusable and efficient nanocatalyst for treating wastewater
contaminants and inactivating pathogenic microbes. Sep. Purif. Technol. 2020, 237, 116383. [CrossRef]

132. Murugesan, S.; Scheibel, T. Copolymer/Clay Nanocomposites for Biomedical Applications. Adv. Funct. Mater. 2020, 30, 1908101.
[CrossRef]

133. Peng, K.; Wang, H.; Gao, H.; Wan, P.; Ma, M.; Li, X. Emerging hierarchical ternary 2D nanocomposites constructed from
montmorillonite, graphene and MoS2 for enhanced electrochemical hydrogen evolution. Chem. Eng. J. 2020, 393, 124704.
[CrossRef]

https://doi.org/10.1016/j.cis.2007.12.008
https://doi.org/10.2110/jsr.2017.63
https://doi.org/10.1006/jcis.1998.5930
https://www.ncbi.nlm.nih.gov/pubmed/9924120
https://doi.org/10.1021/la00047a025
https://doi.org/10.1016/j.colsurfa.2009.12.014
https://doi.org/10.1346/CCMN.2006.0540604
https://doi.org/10.1016/j.jhazmat.2016.09.003
https://doi.org/10.1016/j.clay.2004.01.001
https://doi.org/10.1021/acs.jafc.5b05214
https://doi.org/10.1016/j.molcata.2007.10.024
https://doi.org/10.1016/j.clay.2014.06.016
https://doi.org/10.1016/S0378-1135(00)00157-7
https://www.ncbi.nlm.nih.gov/pubmed/10808094
https://doi.org/10.1007/s10847-020-00978-z
https://doi.org/10.1016/j.jcis.2009.10.051
https://www.ncbi.nlm.nih.gov/pubmed/19931868
https://doi.org/10.1016/j.apcatb.2017.11.018
https://doi.org/10.1016/j.jcis.2018.07.020
https://doi.org/10.1021/jf505783e
https://doi.org/10.1016/j.matlet.2017.05.008
https://doi.org/10.1002/1097-4628(20010214)79:7%3C1324::AID-APP210%3E3.0.CO;2-L
https://doi.org/10.1016/j.ijbiomac.2018.12.193
https://doi.org/10.1016/j.ijbiomac.2013.05.022
https://doi.org/10.1021/acs.langmuir.6b04469
https://doi.org/10.1016/j.clay.2020.105695
https://doi.org/10.1016/j.seppur.2019.116383
https://doi.org/10.1002/adfm.201908101
https://doi.org/10.1016/j.cej.2020.124704


Minerals 2023, 13, 1268 27 of 29

134. Kenawy, E.-R.; Berber, M.R.; Saad-Allah, K.; Azaam, M. Synthesis of montmorillonite-based tris(2-ethylamine)-Schiff-base
composites with remarkable antibacterial activity. J. Saudi Chem. Soc. 2020, 24, 81–91. [CrossRef]

135. Zhang, E.; Liu, C. A new antibacterial Co-Cr-Mo-Cu alloy: Preparation, biocorrosion, mechanical and antibacterial property.
Mater. Sci. Eng. C 2016, 69, 134–143. [CrossRef]

136. Mokhtar, A.; Djelad, A.; Bengueddach, A.; Sassi, M. CuNPs-magadiite/chitosan nanocomposite beads as advanced antibacterial
agent: Synthetic path and characterization. Int. J. Biol. Macromol. 2018, 118, 2149–2155. [CrossRef]

137. Zhou, W.; Ma, Y.; Yang, H. A Label-Free Biosensor Based on Silver Nanoparticles Array for Clinical Detection of Serum P53 in
Head and Neck Squamous Cell Carcinoma. Int. J. Nanomed. 2011, 6, 381–386. [CrossRef]

138. Giljohann, D.A.; Seferos, D.S.; Daniel, W.L.; Massich, M.D.; Patel, P.C.; Mirkin, C.A. Gold Nanoparticles for Biology and Medicine.
Angew. Chem. Int. Ed. 2010, 49, 3280–3294. [CrossRef]

139. Luo, J.; Jiang, S.; Zhang, H.; Jiang, J.; Liu, X. A Novel Non-Enzymatic Glucose Sensor Based on Cu Nanoparticle Modified
Graphene Sheets Electrode. Anal. Chim. Acta 2012, 709, 47–53. [CrossRef] [PubMed]

140. Hossain , S.I.; Kukushkina, E.A.; Izzi, M.; Sportelli, M.C.; Picca, R.A.; Ditaranto, N.; Cioffi, N. A Review on Montmorillonite-Based
Nanoantimicrobials: State of the Art. Nanomaterials 2023, 13, 848. Available online: https://www.mdpi.com/2079-4991/13/5/848
(accessed on 26 September 2023). [CrossRef]

141. Mekki, A.; Mokhtar, A.; Hachemaoui, M.; Beldjilali, M.; Meliani, M.F.; Zahmani, H.H.; Hacini, S.; Boukoussa, B. Fe and Ni
nanoparticles-loaded zeolites as effective catalysts for catalytic reduction of organic pollutants. Microporous Mesoporous Mater.
2021, 310, 110597. [CrossRef]

142. Soumia, A.; Adel, M.; Amina, S.; Bouhadjar, B.; Amal, D.; Farouk, Z.; Abdelkader, B.; Mohamed, S. Fe3O4-Alginate Nanocomposite
Hydrogel Beads Material: One-Pot Preparation, Release Kinetics and Antibacterial Activity. Int. J. Biol. Macromol. 2020, 145,
466–475. [CrossRef] [PubMed]

143. Roy, A.; Butola, B.; Joshi, M. Synthesis, characterization and antibacterial properties of novel nano-silver loaded acid activated
montmorillonite. Appl. Clay Sci. 2017, 146, 278–285. [CrossRef]

144. Roy, A.; Joshi, M.; Butola, B.; Malhotra, S. Antimicrobial and toxicological behavior of montmorillonite immobilized metal
nanoparticles. Mater. Sci. Eng. C 2018, 93, 704–715. [CrossRef] [PubMed]

145. Cruces, E.; Arancibia-Miranda, N.; Manquián-Cerda, K.; Perreault, F.; Bolan, N.; Azócar, M.I.; Cubillos, V.; Montory, J.; Rubio,
M.A.; Sarkar, B. Copper/Silver Bimetallic Nanoparticles Supported on Aluminosilicate Geomaterials as Antibacterial Agents.
ACS Appl. Nano Mater. 2022, 5, 1472–1483. [CrossRef]

146. Amin, S.; Pazouki, M.; Technology, A.H.-P. Synthesis of TiO2–Ag Nanocomposite with Sol–Gel Method and Investigation of Its
Antibacterial Activity against E. Coli. Powder Technol. 2009, 196, 241–245. [CrossRef]

147. Roy, A.; Joshi, M.; Butola, B. Preparation and antimicrobial assessment of zinc-montmorillonite intercalates based HDPE
nanocomposites: A cost-effective and safe bioactive plastic. J. Clean. Prod. 2018, 212, 1518–1525. [CrossRef]

148. Motshekga, S.C.; Ray, S.S.; Onyango, M.S.; Momba, M.N. Microwave-assisted synthesis, characterization and antibacterial activity
of Ag/ZnO nanoparticles supported bentonite clay. J. Hazard. Mater. 2013, 262, 439–446. [CrossRef]

149. Girase, B.; Depan, D.; Shah, J.; Xu, W.; Misra, R. Silver–clay nanohybrid structure for effective and diffusion-controlled antimicro-
bial activity. Mater. Sci. Eng. C 2011, 31, 1759–1766. [CrossRef]

150. Wei, J.-C.; Yen, Y.-T.; Wang, Y.-T.; Hsu, S.-H.; Lin, J.-J. Enhancing silver nanoparticle and antimicrobial efficacy by the exfoliated
clay nanoplatelets. RSC Adv. 2013, 3, 7392–7397. [CrossRef]

151. Sohrabnezhad, S.; Rassa, M.; Seifi, A. Green synthesis of Ag nanoparticles in montmorillonite. Mater. Lett. 2016, 168, 28–30.
[CrossRef]

152. Sohrabnezhad, S.; Pourahmad, A.; Moghaddam, M.M.; Sadeghi, A. Study of antibacterial activity of Ag and Ag2CO3 nanoparticles
stabilized over montmorillonite. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 136, 1728–1733. [CrossRef] [PubMed]

153. Sun, B.; Xi, Z.; Wu, F.; Song, S.; Huang, X.; Chu, X.; Wang, Z.; Wang, Y.; Zhang, Q.; Meng, N.; et al. Quaternized Chitosan-Coated
Montmorillonite Interior Antimicrobial Metal–Antibiotic in Situ Coordination Complexation for Mixed Infections of Wounds.
Langmuir 2019, 35, 15275–15286. [CrossRef] [PubMed]

154. Cecilia, J.A.; García-Sancho, C.; Vilarrasa-García, E.; Jiménez-Jiménez, J.; Rodriguez-Castellón, E. Synthesis, Characterization,
Uses and Applications of Porous Clays Heterostructures: A Review. Chem. Rec. 2018, 18, 1085–1104. [CrossRef] [PubMed]

155. Obaje, S.; Omada, J.; Dambatta, U.D. Clays and Their Industrial Applications: Synoptic Review. Int. J. Sci. Technol. 2013, 3.
156. Seray, M.; Hadj-Hamou, A.S.; Uzunlu, S.; Benhacine, F. Development of active packaging films based on poly (butylene

adipate-co-terephthalate) and silver–montmorillonite for shelf life extension of sea bream. Polym. Bull. 2021, 79, 3573–3594.
[CrossRef]

157. Afra, E.; Narchin, P. Creating extended antimicrobial property in paper by means of Ag and nanohybrids of montmorillonite
(MMT). Holzforschung 2017, 71, 445–454. [CrossRef]

158. Nakazato, G.; Kobayashi, R.K.; Seabra, A.B.; Duran, N. Use of nanoparticles as a potential antimicrobial for food packaging. In
Food Preservation; Elsevier: Amsterdam, The Netherlands, 2017; pp. 413–447. [CrossRef]

159. Cirillo, G.; Kozlowski, M.A.; Spizzirri, U.G. Composites Materials for Food Packaging; Cirillo, G., Kozlowski, M.A., Spizzirri, U.G.,
Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; ISBN 9781119160243.

160. Roy, A.; Joshi, M.; Butola, B. Antimicrobial performance of polyethylene nanocomposite monofilaments reinforced with metal
nanoparticles decorated montmorillonite. Colloids Surf. B Biointerfaces 2019, 178, 87–93. [CrossRef]

https://doi.org/10.1016/j.jscs.2019.09.005
https://doi.org/10.1016/j.msec.2016.05.028
https://doi.org/10.1016/j.ijbiomac.2018.07.058
https://doi.org/10.2147/IJN.S13249
https://doi.org/10.1002/anie.200904359
https://doi.org/10.1016/j.aca.2011.10.025
https://www.ncbi.nlm.nih.gov/pubmed/22122930
https://www.mdpi.com/2079-4991/13/5/848
https://doi.org/10.3390/nano13050848
https://doi.org/10.1016/j.micromeso.2020.110597
https://doi.org/10.1016/j.ijbiomac.2019.12.211
https://www.ncbi.nlm.nih.gov/pubmed/31883898
https://doi.org/10.1016/j.clay.2017.05.043
https://doi.org/10.1016/j.msec.2018.08.029
https://www.ncbi.nlm.nih.gov/pubmed/30274104
https://doi.org/10.1021/acsanm.1c04031
https://doi.org/10.1016/j.powtec.2009.07.021
https://doi.org/10.1016/j.jclepro.2018.11.235
https://doi.org/10.1016/j.jhazmat.2013.08.074
https://doi.org/10.1016/j.msec.2011.08.007
https://doi.org/10.1039/c3ra23476b
https://doi.org/10.1016/j.matlet.2016.01.025
https://doi.org/10.1016/j.saa.2014.10.074
https://www.ncbi.nlm.nih.gov/pubmed/25467663
https://doi.org/10.1021/acs.langmuir.9b02821
https://www.ncbi.nlm.nih.gov/pubmed/31665888
https://doi.org/10.1002/tcr.201700107
https://www.ncbi.nlm.nih.gov/pubmed/29485231
https://doi.org/10.1007/s00289-021-03671-4
https://doi.org/10.1515/hf-2016-0195
https://doi.org/10.1016/b978-0-12-804303-5.00012-2
https://doi.org/10.1016/j.colsurfb.2019.02.045


Minerals 2023, 13, 1268 28 of 29

161. Salmas, C.; Giannakas, A.; Katapodis, P.; Leontiou, A.; Moschovas, D.; Karydis-Messinis, A. Development of ZnO/Na-
Montmorillonite Hybrid Nanostructures Used for PVOH/ZnO/Na-Montmorillonite Active Packaging Films Preparation via a
Melt-Extrusion Process. Nanomaterials 2020, 10, 1079. [CrossRef]

162. Makwana, D.; Castaño, J.; Somani, R.S.; Bajaj, H.C. Characterization of Agar-CMC/Ag-MMT nanocomposite and evaluation of
antibacterial and mechanical properties for packaging applications. Arab. J. Chem. 2018, 13, 3092–3099. [CrossRef]

163. Mathew, S.; Snigdha, S.; Mathew, J.; Radhakrishnan, E. Poly(vinyl alcohol): Montmorillonite: Boiled rice water (starch) blend film
reinforced with silver nanoparticles; characterization and antibacterial properties. Appl. Clay Sci. 2018, 161, 464–473. [CrossRef]

164. Nouri, A.; Yaraki, M.T.; Ghorbanpour, M.; Agarwal, S.; Gupta, V.K. Enhanced Antibacterial effect of chitosan film using
Montmorillonite/CuO nanocomposite. Int. J. Biol. Macromol. 2018, 109, 1219–1231. [CrossRef] [PubMed]

165. Eskandarabadi, S.M.; Mahmoudian, M.; Farah, K.R.; Abdali, A.; Nozad, E.; Enayati, M. Active intelligent packaging film based on
ethylene vinyl acetate nanocomposite containing extracted anthocyanin, rosemary extract and ZnO/Fe-MMT nanoparticles. Food
Packag. Shelf Life 2019, 22, 100389. [CrossRef]

166. Savas, L.A.; Hancer, M. Montmorillonite reinforced polymer nanocomposite antibacterial film. Appl. Clay Sci. 2015, 108, 40–44.
[CrossRef]

167. Kuswandi, B. Nanotechnology in Food Packaging; Springer: Cham, Switzerland, 2016; pp. 151–183. [CrossRef]
168. Khalaj, M.-J.; Ahmadi, H.; Lesankhosh, R.; Khalaj, G. Study of physical and mechanical properties of polypropylene nanocom-

posites for food packaging application: Nano-clay modified with iron nanoparticles. Trends Food Sci. Technol. 2016, 51, 41–48.
[CrossRef]

169. Xu, G.; Qiao, X.; Qiu, X. Preparation and Characterization of Nano-Silver Loaded Montmorillonite with Strong Antibacterial
Activity and Slow Release Property. J. Mater. Sci. Technol. 2011, 27, 685–690. [CrossRef]
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