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Abstract: In this study, SDS is used to enhance the sulfuric acid leaching of chalcopyrite in aqueous
and isopropanol media. The presence of SDS increased copper extraction into the solution in both
solvents. However, it was the “isopropanol–sulfuric acid–SDS” system that proved to be particularly
effective for copper recovery from chalcopyrite. The positive effect of SDS can be attributed to the
reduction in the solution’s surface tension and the enhancement of mineral wetting. Additionally,
the presence of SDS as a surfactant induces changes in the adsorption patterns of formed sulfur
species on the mineral surface. SDS competes with sulfur for occupancy on the surface binding sites.
This competitive interaction has the potential to diminish the formation of a substantial sulfur layer
on the mineral surface. Under optimal conditions (isopropanol media, 2 M H2SO4, 65 ◦C, 120 min,
0.6 g/L SDS), copper recovery into the solution was 83%, and this is a considerable achievement for
chalcopyrite leaching at ambient pressure in the absence of strong oxidizers.
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1. Introduction

The extraction of copper from its primary sources has long been a linchpin of economic
development, as it serves as a conduit for conducting electricity, a building block for infras-
tructure, and a key ingredient in countless consumer products. While the pyrometallurgical
method has historically stood as the primary means of processing copper concentrate,
it is imperative to acknowledge its intrinsic limitations. The intense heat required for
metallurgical processing not only demands significant energy inputs but also contributes to
substantial greenhouse gas emissions, thus exacerbating environmental concerns in an era
defined by sustainability imperatives [1–3]. Moreover, the smelting process associated with
pyrometallurgy often leads to the release of noxious sulfur dioxide fumes, contributing to
air pollution and necessitating extensive and costly gas treatment systems. Consequently,
significant attention has been directed toward the hydrometallurgical processing of copper
concentrate for the past half-century, and this remains an ongoing and pertinent topic [4,5].

The target components of copper concentrates are sulfide minerals, predominantly
chalcopyrite (CuFeS2), bornite (Cu5FeS4), chalcocite (Cu2S), and covellite (CuS). Among the
minerals mentioned, chalcopyrite is generally considered the most difficult to leach using
conventional hydrometallurgical methods [6–8]. This is due to its complex crystal structure
and the presence of iron within the mineral lattice. Chalcopyrite’s resistance to leaching is
a significant challenge in the extraction of copper from certain ore deposits. Chalcopyrite
is often surrounded by a thin layer of iron sulfide minerals, which can act as a barrier
to the leaching solution, limiting its access to the copper-bearing mineral. Additionally,
the iron content in chalcopyrite can lead to the formation of passivating layers on the
mineral surface, further impeding the leaching process. To address this issue, a range of
ways is used, including high-temperature pressure leaching [9–11], bioleaching [12–15],
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chemical pretreatment [16,17], and a combination of leaching methods [18–20]. The use of
sulfate, nitrate, chloride, and other leaching agents has been investigated. Yet, the more
favorable approach involves subjecting chalcopyrite to sulfuric acid media leaching due
to its convenient manageability and the alignment of the process with well-established
solvent extraction–electrowinning technology.

Recently, non-polar organic solvents have been employed to enhance the efficiency
of chalcopyrite leaching [21,22]. Ethylene glycol has demonstrated its prowess as an
exceptional medium for this objective, as it prevented the formation of a passivation layer
on the mineral’s surface, thereby guaranteeing an almost complete retrieval of copper into
the solution [23–32]. Solis-Marcial and co-workers conducted experiments using alcoholic
acid media—specifically, isopropanol and methanol—for the purpose of acidically leaching
copper from chalcopyrite [33,34]. Their findings revealed that alcohol serves a constructive
role in the oxidative leaching of chalcopyrite, involving the stabilization of Cu+ ions through
alcohol interaction.

To facilitate the extraction of copper from chalcopyrite at lower temperatures, the
presence of potent oxidizing agents in the solution is necessary. One of the most commonly
used oxidizing agents for this purpose is hydrogen peroxide, which has a redox potential
of 1.77 V [35–38]. It has been found that the combination of non-polar organic solvents with
hydrogen peroxide is effective for leaching chalcopyrite [25,27,39]. However, hydrogen per-
oxide’s use in mineral leaching presents challenges. High cost, intricate chemistry, potential
side reactions, safety risks, and environmental concerns are drawbacks. Selectivity issues,
scalability challenges, and equipment compatibility further complicate its application in
industrial processes.

A promising reagent for leaching minerals is sodium dodecyl sulfate (SDS) (Figure 1).
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Figure 1. Chemical formula of sodium dodecyl sulfate.

It was found that the addition of a small amount of SDS (mass fraction of 0.04%)
increased the leaching rate of rare earth, and reduced the consumption of the leaching
agent [40].

SDS significantly enhanced the leaching of potassium from phosphorus–potassium as-
sociated ore [41]. Kolmachikhina and co-workers demonstrated that sodium lingosulfonate
and SDS mixtures positively influence the high-temperature oxidative pressure leaching
of zinc concentrates and enhance the process [42]. SDS was successfully exploited for the
biooxidation of copper mine tailings using Acidithiobacillus ferrooxidans [43].

The SDS leaching of minerals operates through a mechanism called “collective ad-
sorption”, where molecules of the surfactant form a monolayer on the mineral surface.
This layer reduces the surface tension of the leaching solution, allowing for better contact
between the mineral and the leaching reagents [44]. Additionally, the hydrophobic tail of
SDS interacts with hydrophobic mineral surfaces, aiding in the detachment of minerals
from the ore. This process enhances the mass transfer of leaching reagents to the mineral
surfaces, increasing the leaching efficiency.

In the present work, the effect of SDS on the sulfuric acid leaching of chalcopyrite in
aqueous and isopropanol media was studied for the first time. A comparative investigation
of the effectiveness of water and isopropanol as the solvents was performed. The effects
of the SDS and sulfuric acid concentration, leaching duration, as well as temperature on
copper recovery were investigated.
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2. Materials and Methods
2.1. Raw Material

A sample of copper concentrate was received from the «Kazakhmys Smelting» copper
plant (Kazakhstan). The milled and sieved (~90% of particles ≤ 74 µm) concentrate was
subjected to leaching.

2.2. Reagents

The isopropanol (>99.5%), sulphuric acid (96%), sodium dodecyl sulfate (>99%), and
sodium hydroxide (≥97%) were purchased from Sigma-Aldrich (Merck Group, St.Louis,
Missouri, United States) and used without further purification. Bidistilled water was used
for the aqueous leaching and in all washing and cleaning procedures.

2.3. Leaching Procedure

The batch leaching experiments were performed in a 200-mL round-bottom glass
reactor, equipped with a thermometer. The leaching solutions were prepared by adding a
predetermined amount of reagents into the solvent (isopropanol or water). In the reactor, a
predetermined amount of sulfuric acid and SDS (if required) was added into the 50 mL of
solvent, and the total volume was then filled to 100 mL with solvent. Then, the reactor was
placed on the magnetic stirrer IKA RT 5 (IKA-Werke GmbH & Co. KG, Staufen, Germany)
and the required temperature was set. Once the desired temperature was reached, 5 g of
the concentrate was placed into the solution; thus, the pulp density was 5% in all leaching
tests. The copper concentrations were determined by taking liquid samples of the solution
(micropipette was used) every 30 min.

To evaluate the efficiency of leaching, the recovery of copper (α) was determined using
the following formula:

α =
mx

m0
× 100% (1)

where mx and m0 are the masses of metal in the solution and initial sample, respectively.
Once the leaching procedure was completed, the dried solid residue was subjected to

XRD analysis.

2.4. Surface Tension Measurements

The surface tensions of the pre-leaching solution and post-leaching solution were
measured using a surface tension meter (A101, USA King Industry).

2.5. Contact Angel Measurement

The chalcopyrite mineral samples were selected for analysis. The glass slides were
cleaned thoroughly. Initially, droplets of isopropanol were placed on the mineral samples.
Subsequently, for the experimental group, droplets of SDS solution (of concentration of 0.2,
0.4, 0.6 g/L) were placed on the same mineral samples previously exposed to isopropanol.
The temperature of all solutions was 45 ◦C. The contact angles formed by the droplets
on the mineral surface were measured immediately using a goniometer (KSV SAM 101,
KSV Instruments). There were 3 measurements taken for each mineral sample, and visual
observations of the wetting behavior were noted.

2.6. Analytical Techniques

The XRD patterns of the initial concentrate and leaching residue were recorded using
a Bruker D8 Advance diffractometer (Billerica, MA, USA) with CuKα (40 kV, 40 mA)
radiation.

Scanning electron microscopy (SEM) imaging was performed by using a Quanta 200i
3D (FEI Company, Hillsboro, OR, USA) electron microscope.

The elemental composition of the concentrate was determined using atomic absorp-
tion spectrometry (AAS) on an AA-6200 spectrometer (Shimadzu, Japan); preliminary
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decomposition of the sample with concentrated nitric acid at 90–95 ◦C and a pressure of
10 atm was performed prior the copper content determination in a resulting solution.

3. Results and Discussion
3.1. Characterization of Initial Copper Concentrate

The chemical composition (wt. %) of the concentrate was Cu 26.2, Fe 23.3, and Si 11.5.
Chalcopyrite (CuFeS2) and quartz (SiO2) were identified as the crystalline phases in

the starting concentrate according to XRD analysis.
The SEM image of the initial concentrate is presented in Figure 2 and indicates that

the concentrate is characterized by a particle size in the range of 5–60 µm with different
shapes, having a smooth surface, and without conglomerates formed. The particles of the
concentrate are not covered with any film.

Minerals 2023, 13, x FOR PEER REVIEW 4 of 16 
 

 

2.6. Analytical Techniques 

The XRD patterns of the initial concentrate and leaching residue were recorded using 

a Bruker D8 Advance diffractometer (Billerica, Massachusetts, U.S.) with CuKα (40 kV, 40 

mA) radiation. 

Scanning electron microscopy (SEM) imaging was performed by using a Quanta 200i 

3D (FEI Company, USA) electron microscope. 

The elemental composition of the concentrate was determined using atomic absorp-

tion spectrometry (AAS) on an AA-6200 spectrometer (Shimadzu, Japan); preliminary de-

composition of the sample with concentrated nitric acid at 90–95 °C and a pressure of 10 

atm was performed prior the copper content determination in a resulting solution. 

3. Results and Discussion 

3.1. Characterization of Initial Copper Concentrate 

The chemical composition (wt. %) of the concentrate was Cu 26.2, Fe 23.3, and Si 11.5. 

Chalcopyrite (CuFeS2) and quartz (SiO2) were identified as the crystalline phases in 

the starting concentrate according to XRD analysis. 

The SEM image of the initial concentrate is presented in Figure 2 and indicates that 

the concentrate is characterized by a particle size in the range of 5–60 μm with different 

shapes, having a smooth surface, and without conglomerates formed. The particles of the 

concentrate are not covered with any film. 

 

Figure 2. SEM image of the initial concentrate. 

3.2. Leaching Experiments 

The influence of the following factors on the extraction of copper into solution was 

studied: sulfuric acid concentration; temperature; leaching duration; and SDS concentra-

tion. Water and isopropanol were used as solvents. 

Figure 3 illustrates the interdependencies within the copper extraction process into 

an aqueous solution of sulfuric acid, considering variations in acid concentration and 

leaching duration at a temperature of 45 °C. Generally, augmenting both the acid concen-

tration and leaching duration resulted in an amplified recovery of copper into the solu-

tion. Nevertheless, the upper limits of this enhancement were modest, reaching 7% under 

conditions of 1.0 M H2SO4 and 13% under 2.0 M H2SO4 concentration. These findings align 

with the research presented by Olubambi and Potgieter [37]. Substituting water with iso-

propanol as the solvent demonstrated a marginal elevation in the copper extraction effi-

ciency (Figure 4). Notably, at a 1.0 M acid concentration, the maximal copper extraction 

into the solution reached 21%, maintaining a constant trend despite the escalation of acid 

Figure 2. SEM image of the initial concentrate.

3.2. Leaching Experiments

The influence of the following factors on the extraction of copper into solution was
studied: sulfuric acid concentration; temperature; leaching duration; and SDS concentration.
Water and isopropanol were used as solvents.

Figure 3 illustrates the interdependencies within the copper extraction process into an
aqueous solution of sulfuric acid, considering variations in acid concentration and leaching
duration at a temperature of 45 ◦C. Generally, augmenting both the acid concentration and
leaching duration resulted in an amplified recovery of copper into the solution. Nevertheless,
the upper limits of this enhancement were modest, reaching 7% under conditions of 1.0 M
H2SO4 and 13% under 2.0 M H2SO4 concentration. These findings align with the research
presented by Olubambi and Potgieter [37]. Substituting water with isopropanol as the solvent
demonstrated a marginal elevation in the copper extraction efficiency (Figure 4). Notably,
at a 1.0 M acid concentration, the maximal copper extraction into the solution reached 21%,
maintaining a constant trend despite the escalation of acid concentration to 2.0 M. The extracted
copper manifested in the form of a soluble complex, as elucidated in prior studies [33,34].
However, this level of copper recovery remains suboptimal from an economic standpoint.
Elevating the temperature to 75 ◦C induced a notable upswing in copper extraction, reaching
19% and 28% in the aqueous and isopropanol media, respectively.
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The incorporation of 0.6 g/L SDS into an aqueous sulfuric acid solution yielded a
notable upsurge in copper retrieval (see Figure 5).
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Figure 5. Effect of sulfuric acid concentration on copper recovery in aqueous solution at 45 ◦C in the
presence of 0.6 g/L SDS.

As the sulfuric acid concentration increases, there is a general trend of higher copper
recovery percentages. Additionally, the incorporation of 0.6 g/L SDS enhances the copper
recovery across all sulfuric acid concentrations. As the leaching time progresses, the
copper recovery tends to increase, with the highest values achieved at longer leaching
durations. These trends indicate that both sulfuric acid concentration and SDS presence
play pivotal roles in promoting effective copper recovery from the concentrate. At a H2SO4
concentration of 2.0 M and a leaching duration of 210 min, the highest attainable copper
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extraction into the solution reached 36%. In comparison, without the presence of SDS but
under identical conditions, the copper recovery was a mere 12% (refer to Figure 3).

The impact of SDS on copper recovery from chalcopyrite ore through the leaching
process can be explored from a physicochemical perspective. SDS, possessing amphiphilic
characteristics, exhibits a pronounced affinity for mineral surfaces due to its hydrophilic
head and hydrophobic tail configuration [45,46]. Its introduction into the leaching solution
facilitates preferential adsorption onto chalcopyrite surfaces, an action that restructures
surface properties to facilitate leaching interactions [47].

The effect of the presence of SDS on the sulfuric acid leaching of copper from chal-
copyrite was also investigated using isopropanol as a solvent (Figure 6).
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Figure 6. Effect of sulfuric acid concentration on copper recovery in isopropanol solution at 45 ◦C in
the presence of 0.6 g/L SDS.

The copper recovery percentages exhibited remarkable disparities between the two
solvents. Isopropanol consistently yielded higher recoveries across varied sulfuric acid
concentrations and leaching durations compared to water. Notably, the water-based recov-
eries were lower, particularly at lower acid concentrations and shorter leaching intervals.
For instance, at a sulfuric acid concentration of 1.0 M and a leaching time of 210 min, the
recovery with isopropanol was 45%, while with water, it was only 27%.

The choice of solvent appeared pivotal. Isopropanol, being an organic solvent, demon-
strated superior solubilizing capabilities and penetration efficiency, contributing to more
efficient copper extraction. Conversely, water’s polar nature appeared to limit its interaction
with mineral surfaces, leading to reduced copper recoveries. The maximal copper recovery
achieved with isopropanol was 76% (2.0 M sulfuric acid, 210 min), whereas water resulted
in a maximal recovery of only 36%.

Isopropanol’s organic properties were also implicated in its enhanced mineral break-
down efficiency. This led to greater exposure of the copper-bearing phases within the
chalcopyrite mineral, facilitating better leaching agent access. In contrast, water’s abil-
ity to disrupt the mineral structures seemed less pronounced, resulting in incomplete
copper extraction.

The leaching kinetics were notably affected. Isopropanol-based leaching showed faster
increases in copper recovery percentages over time, indicating accelerated copper disso-
lution. Water-based leaching, however, exhibited comparatively slower rate increments,
suggesting a less efficient process.

The chemical interactions were distinct between the solvents. Isopropanol’s organic
nature introduced the possibility of unique chemical complexes with copper ions or different
interactions with mineral surfaces. Conversely, water’s interactions relied primarily on physical
processes and hydrogen bonding, potentially less effective in driving copper dissolution.

Several rounds of testing were conducted in order to enhance the sulfuric acid leaching
process of chalcopyrite within an isopropanol medium. The parameters under investiga-
tion included the concentration of SDS (ranging from 0.2 to 0.8 g/L) and the solution’s
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temperature (ranging from 45 to 75 ◦C). Throughout all the experiments, the sulfuric acid
concentration was maintained at 2.0 M, and the leaching process lasted for 180 min.

The first series of experiments was carried out to identify the effect of the SDS concen-
tration (Figure 7).
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Figure 7. Effect of SDS concentration on copper recovery in isopropanol solution at 45 ◦C in the
presence of 2.0 M H2SO4.

An optimal recovery was observed with an SDS concentration of 0.6 g/L, reaching
a plateau of approximately 74% after 150 min and remaining constant thereafter. Lower
concentrations exhibited incremental increases in recovery over time, while higher concen-
trations demonstrated quicker attainment of peak recovery percentages.

In subsequent experiments, the temperature of the solution varied, while the concen-
trations of sulfuric acid and SDS remained constant (2.0 M and 0.6 g/L, respectively). The
results of the experiments are presented in Figure 8.
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H2SO4 and 0.6 g/L SDS.

The influence of temperature on copper extraction is evident; a rise in temperature
up to 65 ◦C notably boosted the copper solubility. In 120 min, approximately 83% of
the copper dissolved, in contrast to around 60% at 45 ◦C within the same timeframe.
Subsequent increments in temperature and leaching duration showed minimal impact on
copper extraction into the solution.

3.3. Kinetic Study

A shrinking core model is widely used to describe the leaching process [48–50]. The
process of the sulfuric acid leaching of chalcopyrite in an isopropanol medium is usually
limited by the chemical reaction between the target mineral and the leaching agent [21,22].
For this kind of processes, the relationship between the metal fraction extracted into the
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solution (XMe) and the rate constant of the chemical reaction (k) at a certain leaching time
(τ) is described by the following models [48]:

1 − (1 − XMe)
1/3 = kτ (2)

The apparent rate constant for the chemical reaction was determined by utilizing
the data from Figure 8 in conjunction with Equation (2). Only the portions of the curves
showing an upward linear trend were selected, specifically the segments of the curves from
0 min to 120 min. Since increasing the temperature from 65 to 75 ◦C had virtually no effect
on copper extraction, the extraction values at 75 ◦C were not included in the calculations.

The resulting graphical representation, shown in Figure 9, depicts 1 − (1 − XMe)1/3

plotted against the leaching duration.
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Figure 9. A plot of 1 − (1 − XMe)1/3 vs. leaching duration for copper recovery from chalcopyrite
(2.0 M H2SO4 in isopropanol; pulp density of 5%).

The chemical reaction rate constants at different temperatures were as follows: 0.0022 min−1

at 45 ◦C, 0.0028 min−1 at 55 ◦C, and 0.0036 min−1 at 65 ◦C. These rate constants were employed
to construct the Arrhenius plot for copper recovery from copper smelter slag, as illustrated
in Figure 10. The linear fit of the data affirms that the copper recovery in the solution is
predominantly governed by the chemical reaction occurring on the mineral surface.

The activation energy (Ea) and pre-exponential factor (A) governing the overall chem-
ical reaction responsible for copper extraction into the solution were determined using
Arrhenius’s law (Equation (3)) [49]:

lnk = −Ea/(RT) + lnA (3)

Here, k represents the rate constant of the chemical reaction, R stands for the universal
gas constant, and T denotes the absolute temperature.

The calculated values for Ea and A were 40.72 kJ/mol and 8103 min−1, respectively.
Both of these values are consistent with the range of values reported for chalcopyrite
leaching [50].
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density of 5%).

3.4. Influence of SDS on the Solution Surface Tension

In Figure 11, the values of the surface tension of aqueous solutions of 2.0 M H2SO4
before and after leaching (120 min, 65 ◦C) are presented, both in the absence and presence
of 0.6 g/L SDS.
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Figure 11. Effect of 0.6 g/L SDS on the pre-leaching and post-leaching sulfuric acid (2.0 M) aque-
ous solution.

The addition of SDS to the sulfuric acid solution significantly reduces its surface
tension (64 mN/m compared to 43 mN/m), which is attributed to the well-known effect of
reducing the surface tension of the solution in the presence of surfactants. In the absence of
SDS, the pre-leaching solution had a lower surface tension than the post-leaching solution;
a decrease in the surface tension of the solution in the presence of metal ions was also
noted by Liu [41] and Zhao [51]. However, in the presence of SDS, a reverse effect was
observed: the surface tension of the post-leaching solution increased (37 mN/m compared
to 33 mN/m). This fact can be explained by the adsorption of SDS on the mineral surface,
which reduces the concentration of surfactants in the solution [52].

Through its ability to lower the surface tension of the leaching solution, SDS facili-
tates an augmented wetting process, encouraging closer interaction between the solution
and the mineral particles [53]. The attendant reduction in surface tension enhances mass
transfer and the overall diffusion of reactants to and from the mineral surface. Moreover,
SDS manifests a dispersant effect through its hydrophobic tail, deterring particle aggre-
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gation and fostering a more dispersed arrangement that exposes a larger surface area for
leaching reactions.

Electrostatic alterations arise due to SDS’s charged head groups, influencing the
surface charge of the chalcopyrite particles [54]. This modulation in electrostatic repulsion
mitigates particle aggregation, bolstering their dispersion within the leaching solution. SDS
also engenders a protective layer on the mineral surface, preventing the accumulation of
passivating species that could impede effective leaching.

A similar series of experiments was also conducted for an isopropanol solution
(Figure 12).
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Figure 12. Effect of 0.6 g/L SDS on the pre-leaching and post-leaching sulfuric acid (2 M) iso-
propanol solution.

Similar trends in changes in the surface tension of the solutions before and after
leaching in the absence and presence of SDS are observed for both the aqueous and
isopropanol solutions; however, the absolute values of surface tension in all cases are higher
for the aqueous solution compared to isopropanol, which was expected since isopropanol
has a lower surface tension than water due to the absence of strong hydrogen bonding
between the isopropanol molecules compared to the extensive hydrogen bonding present
in water. This circumstance explains the better leaching of copper into an isopropanol
solution than into an aqueous one.

3.5. Contact Angle Results

The data in Figure 13 show the contact angle measurements for chalcopyrite at dif-
ferent time intervals (0, 5, 10, 15, 20, 25, and 30 min) when exposed to isopropanol alone
(0 min data point) and isopropanol with varying SDS concentrations (0.2, 0.4, and 0.6 g/L)
thereafter. Notably, the contact angle decreases progressively over time for all SDS con-
centrations, indicating improved wetting of the chalcopyrite surface. Higher SDS concen-
trations correspond to lower contact angles, highlighting the surfactant’s effectiveness in
enhancing chalcopyrite wettability. Initially, at 0 min with pure isopropanol, the contact
angle is around 85◦, but it decreases with longer exposure times. This data underscore that
the addition of SDS to isopropanol significantly reduces the chalcopyrite contact angles,
suggesting enhanced wettability, particularly when compared to pure isopropanol.
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3.6. Analysis of Leaching Residue

In Figure 14, the XRD pattern of the initial sample (1) and the residues after its sulfuric
acid leaching (2.0 M H2SO4, 65 ◦C, 120 min) in both the aqueous (2) and isopropanol (3,4)
media are shown, both in the absence (3) and presence (4) of SDS.
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Figure 14. XRD pattern of the initial sample (1) and leaching residues (2–4) after leaching (2.0 M
H2SO4, 65 ◦C, 120 min). 2—aqueous media, absence of SDS; 3—isopropanol media, absence of SDS;
4—isopropanol media, 0.6 g/L SDS.

After leaching into an aqueous media in the absence of SDS, both components present
in the initial sample (chalcopyrite and quartz), as well as sulfur, were detected in the residue
(2). The formation of sulfur is a result of the interaction between the chalcopyrite and
sulfuric acid in the presence of dissolved oxygen [55]:

CuFeS2 + 2.5O2 + H2SO4 = CuSO4 + FeSO4 + H2O + S◦ (4)
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The sulfur anion in chalcopyrite is oxidized to elemental sulfur (i.e., it acts as a reducing
agent), while oxygen serves as the oxidizing agent.

Replacing water with isopropanol during leaching resulted in the disappearance of
the chalcopyrite peaks, while the quartz and sulfur peaks were preserved (3). Since the
leaching residue was thoroughly washed with water before recording the XRD pattern, the
presence of sulfur in the residue may indicate a bond between sulfur and quartz.

In the case of leaching into the isopropanol in the presence of SDS, only quartz
was observed in the residue (4). Therefore, the presence of the mentioned surfactant
prevented the precipitation and binding of sulfur to the surface of the residue, and sulfur
was separated from it during washing. Apparently, SDS as a surfactant alters the adsorption
behavior of the sulfur species on the mineral surface, and the surfactant competes with
sulfur for the surface binding sites. This competition can potentially reduce the formation
of a thick sulfur layer on the mineral surface.

In Figure 15, SEM images of the residues after leaching into the isopropanol media
in the absence (a) and presence (b) of SDS are shown; images (a) and (b) correspond to
samples (3) and (4) in Figure 14.
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120 min) in the absence of SDS (a) and in the presence of 0.6 g/L SDS (b).

In the absence of SDS, the residue particles (Figure 15a) have a higher tendency to
aggregate and form larger clusters. This can occur because without a surfactant, particles
may have a higher surface tension and a tendency to stick together.

The presence of SDS resulted in smaller and more dispersed residue particles (Figure 15b).
SDS reduced the surface tension of the solution and improved the wetting of particles, poten-
tially leading to more efficient dispersion.

4. Conclusions

In conclusion, the study demonstrates that the use of SDS (sodium dodecyl sulfate) in
the leaching process of chalcopyrite into isopropanol and aqueous media has proven highly
effective for enhancing copper recovery. Specifically, the “isopropanol–sulfuric acid–SDS”
system showed exceptional promise in extracting copper from chalcopyrite.

The positive impact of SDS on copper extraction can be attributed to its ability to
reduce the surface tension of the leaching solution, which improves mineral wetting and
facilitates better contact between the solvent and the chalcopyrite surface. Additionally,
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SDS as a surfactant alters the adsorption patterns of the sulfur species on the mineral
surface, competing with sulfur for binding sites and potentially reducing the formation of
a thick sulfur layer.

Under optimized conditions (isopropanol media, 2.0 M H2SO4, 65 ◦C, 120 min, 0.6 g/L
SDS), a remarkable 83% copper recovery into the solution was achieved. This achievement is
significant as it was accomplished at ambient pressure without the need for strong oxidizers,
offering an environmentally and economically favorable approach to chalcopyrite leaching.
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