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Abstract: This work aims to model mineral prospectivity for intrusion-related gold deposits in the
central portion of the Tapajés Mineral Province (TMP), southwestern Para state. The scope includes
experimentation and evaluation of knowledge and data-driven methods applied to multisource data to
predict potential targets for gold mineralization. The radiometric data processing allowed to identify
a hydrothermal alteration footprint of known gold deposits, providing information in regions with
little or no field data available. The aeromagnetic data analysis prompted the identification of high
magnetic zones, which are probably related to hydrothermal fluid transport. Linear features extracted
from digital elevation data revealed an NNW-SSE general trend, which is consistent with the main
structural control of deposits. The data were integrated through three modeling techniques—fuzzy
logic (knowledge-driven), weights of evidence (WofE, data-driven), and a machine learning algorithm
(SVM, data-driven)—resulting in three prospective models. In all models, the majority of indicated
prospective regions coincide with the known deposits. The results obtained in the models were
combined to generate an agreement map, which mapped the overlapping of their highest prospective
scores, indicating new areas of prospective interest in the central portion of the TMP.

Keywords: mineral prospectivity mapping (MPM); support vector machines (SVM); fuzzy logic;
Bayesian logic; Tapajos Mineral Province

1. Introduction

The growing demand in the mineral sector for the discovery of new mineral deposits
has been a relevant issue for the conception of predictive mapping models for mineral
prospectivity. Such models involve the analysis and integration of evidential maps derived
from multi-source geoscientific datasets to delineate and classify areas favorable to the
presence of undiscovered mineral deposits [1].

For mineral prospectivity modeling, geocomputational methods guided by specialized
knowledge (knowledge-driven), available data (data-driven), or hybrid methods are em-
ployed [1,2]. Knowledge-driven methods are suitable in areas with few exploration targets
and limited information, as well as where there is greater knowledge of mineralization
components. Data-driven methods are generally applied when there is a robust collection
of data with a considerable number of known mineral occurrences [1].

Fuzzy logic (knowledge-driven) and the weights of evidence (WofE, data-driven)
are commonly used methods in geological modeling (e.g., [3,4]). The use of data-driven
methods based on machine learning algorithms is a growing trend. These algorithms
can recognize complex spatial patterns, learn from them, and autonomously indicate
the presence of these patterns in specific areas [5,6]. The simultaneous application and
comparison of results obtained with different methods at exploration boundaries are also
pervasive in the specialized literature [7-11].

Mineral prospectivity studies have a conceptual basis in the analysis of knowledge
about mineral deposits, their environments, and the factors influencing their formation.
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The mineral systems approach [12] provides a comprehensive view of mineral deposit
formation and evaluates critical factors in their formation, including source, metal transport,
deposition, and post-depositional enrichment processes. Furthermore, geological processes
operate at various spatial and temporal scales, encompassing common aspects of different
types of deposits. Mineral systems are divided into orthomagmatic, hydrothermal, and
sedimentary systems [13], which can overlap, considering the tectonic and geodynamic
evolution of the region.

The Tapajos Mineral Province (TMP), the focus of this study, is one of Brazil’s most
important polymetallic provinces, particularly known for gold deposits hosted in grani-
toid bodies. It is a vast region with high economic potential but limited geological and
metallogenetic knowledge (greenfield). The TMP lacks detailed geological knowledge and
analyses of mineral potential using modern data and methods to identify potential mineral
targets. Indicative work on favorable zones for gold mineralization in the TMP has shown
promising results [14-17]. With the increasing development of geotechnologies, coupled
with the addition of new data characterizing different deposits, predictive models can be
improved to indicate potential areas with greater precision.

In this context, this study aims to predict prospectivity on a semi-detailed scale, indi-
cating areas favorable for gold mineralization related to intrusions in the central portion of
the TMP, using knowledge-driven, data-driven methods, and machine learning algorithms
to compare them and contribute to the definition of new strategies for mineral exploration
in the region.

2. Geological Setting

The TMP is located in the central-southern part of the Amazonian Craton, correspond-
ing to the Tapajos domain [18,19] of the Tapajos-Parima (or Ventuari-Tapajos) tectonic
province [20,21] (Figure 1a,b). The region consists of Archean and Paleoproterozoic terranes
that were tectonically stabilized around 1.0 Ga [22,23]. Their origin is associated with the
craton’s structuring through accretion events and crustal shortening of mobile belts and
magmatic arcs predominantly oriented NNW-SSE relative to an Archean protocraton [20-22].
In the southwest of the TMP, basement rocks outcrop, and are metamorphosed from low
to high grade and with variable ductile deformation. In the southeast and central-south
regions, granitoids occur with weak to moderate ductile deformation, which is related to the
NW-SE shear zones. In the eastern and northeastern portions, rocks have mainly undergone
brittle deformation. The gradual variation in the exposed crustal level in the province is also
observed through variations in mineralization controls [14,24-26].
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Figure 1. Geological setting: (a) Amazonian Craton divided into geochronological provinces [27,28].
(b) Tectonic domains of southeast Amazonian Craton and location of the study area. Modified
from [19,29]. The black rectangle in frame (a) represents the extent of frame (b).
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The tectonic evolution of the TMP occurred during the Paleoproterozoic. The lithologi-
cal associations in the study area are illustrated in Figure 2. The basement of the province is
primarily composed of rocks from the Jacareacanga Group (2.1-2.87 Ga) and the Cuit—Cuiud
Complex (2.03-2.0 Ga) [20,30], and is related to the early stages [31] of the formation of
the Cuit—Cuit magmatic arc [14,32-35]. Among the oldest units are (i) the Comandante
Arara Formation (ca. 2.0 Ga) [36], which has a more evolved calc-alkaline signature and
represents the maturation of the arc in distal regions [37], and (ii) the Castelo dos Sonhos
Formation, with auriferous metaconglomerates and metarenites of fluvial origin, deposited
between 2.01 and 2.05 Ga [38,39], outcropping in the extreme southeast of the TMP and
believed to be remnants of a rift or foreland-type basin [31,37].
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Figure 2. Geologic map of the study area, modified from [28].

Following this phase, more distal magmatic events occurred, characterized by high-
potassium calc-alkaline to shoshonitic signatures, which generated rocks of the Vila Rioz-
inho Formation and the Creporizao Suite batholiths between 2.0 and 1.95 Ga [35,37,40,41].
The Sao Jorge Antigo (1.98 Ga, [40]) and Pindobal (1.94 Ga, [42]) granites are correlated
with this suite, whose batholiths are elongated due to emplacement along the NW-SE
shear zones.

Between 1.90 and 1.89 Ga, magmatic pulses produced the granitoids of the Tropas
Suite [31] and the Sao Jorge Jovem granite [43]. The granitoids of the Tropas suite have
a less evolved calc-alkaline signature. They may represent a possible island arc related to
subduction [18,30] or a late post-collisional evolution relative to the Cuiti-Cuit orogeny [14,35].

This episode was followed by (i) significant post-orogenic granitogenesis, represented
by the Parauari Suite granitoids (1.89-1.87 Ga, [20,40]), (ii) intracontinental basic mag-
matism with intrusions of gabbroic bodies from the Ingarana Suite and their equivalents
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(1.88 Ga, [31]), and (iii) late-to-post-tectonic anorogenic magmatism in an extensional setting
(Uatuma magmatism—1.89-1.87 Ga), with alkaline (Maloquinha Suite), felsic (Salustiano,
Aruri, and Moraes Almeida Formations), and intermediate to mafic (Bom Jardim Formation)
compositions [31,44]. Most of the granitoids are controlled by regional NW-SE-trending
faults, and some mafic bodies are elongated in an E-W and NW-SE direction, characterized
by faulted contacts with other units [31,37].

The geological evolution of the province settles with the establishment of intracratonic
estaterian sedimentary basins (Novo Progresso and Coatd Formations) associated with
alkaline magmatism (Crepori Diabase, Porquinho Granite) and a mafic magmatism event
around 1190 Ma, after a hiatus of about 600 Ma (Cachoeira Seca Suite), composed of olivine
gabbros, olivine gabronorites, olivine diabases, and troctolites [31,45,46].

Structures, Metallogeny, and Gold Mineralization

The structural framework of the TMP suggests mutually compressive and extensional
deformation, occurring in both ductile and ductilebrittle to brittle regimes. The regional
structural orientation is primarily NNW-SSE to NW-SE [47]. Santos [48] identified three de-
formation and thermotectonic events involving the mobilization and accretion of magmatic
arcs on a regional scale during the Paleoproterozoic.

The first event (2005-1997 Ma [47]) generated thrust faults with a NNE-SSW orienta-
tion and NW-SE, N-S, and NE-SW lineaments, which were overprinted by the subsequent
event. The second event (1970-1950 Ma [47]) produced brittle shear zones with primary
orientations of NW-SE and NNW-SSE, which are the most prominent in the TMP. The third
event (ca. 1900 Ma [30]) created ductile-brittle shear zones with a NNE-SSW orientation,
accompanied by auriferous quartz veins. Progressive deformation altered and reactivated
NW-SE and WNW-ESE shear zones. A younger extensional brittle event, related to NW-SE
shearing [26,48], is manifested as extensive E-W and ENE-WSW lineaments in the central-
eastern part of the TMP. Subsequent deformation events produced brittle structures and /or
were associated with reactivations of older structures, favoring the intrusion of Cambrian
mafic dikes [47].

The TMP encompasses numerous magmatic—hydrothermal deposits of gold associ-
ated with Ag, Cu, Pb, Zn, Bi, and Mo, with mineralizations of various types and styles,
representing distal, proximal, or dome portions, which are deep or shallow parts of a struc-
turally controlled mineral system. The primary mineralization occurs in quartz veins and,
secondarily, in stockwork and disseminations, with all three forms eventually occurring
simultaneously (e.g., Sao Jorge and Cantagalo). Gold is associated with quartz and sulfides
(mainly pyrite and chalcopyrite, and subordinately sphalerite, galena, and pyrrhotite),
either as sub-microscopic inclusions or in microfractures (e.g., Tocantinzinho, Batalha, and
Sao Jorge). The deposits typically have well-developed hydrothermal alteration halos
(e.g., Sao Jorge, Palito), with fissure alteration (e.g., Cuit—Cuit, Batalha), and sericitic alter-
ation zones are most directly associated with mineralization [47]. Ore bodies are primarily
located within structures such as shear zones and have a strong spatial correlation with the
emplacement of mafic dikes along these structures at contact zones.

3. Materials and Methods

To assess methods for predictive mineral prospectivity mapping in the TMP, this study
involved the following stages: (i) selection of the dataset, (ii) data processing and generation
of evidential themes, (iii) prospectivity modeling using various integration techniques, and
(iv) model validation. Figure 3 illustrates the details of these stages.

The approach to characterizing mineral deposits was developed following the concept
of a mineral system, which evaluates the significance of numerous geological processes for
the formation and preservation of deposits, across all scales of observation [12,49-52].
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Figure 3. Flowchart illustrating the steps involved in the prospectivity modeling of this work.
ROC = receiver operating characteristics curve; AUC = area under the curve.

3.1. Dataset

The data primarily come from the Geological Survey of Brazil and include geological
and mineral resource maps, aerogeophysical data (radiometrics and magnetometry), and
remote sensing data (digital elevation model—DEM). A total of 21 primary gold occurrence
points were selected for training and testing the prospectivity models, with the inclusion of
21 non-deposit points generated randomly. These non-deposit points were distributed at
a minimum distance of 12 km from any known deposit point and 7 km from each other.
Such control criteria are employed to ensure that the marked points are not coincident or
too close to known deposit locations. This is based on the assumption that locations near
existing mineral deposits are likely to have similar multivariate spatial data signatures
as deposit sites, which could jeopardize the results. Table 1 shows the characteristics of
the main prospects in the study area, which are used here as training points. Although
the number of training points is small relative to the analyzed area, balancing the dataset
improves prediction accuracy, especially in machine learning-based classifiers, compared to
imbalanced datasets. Carranza and Laborte [53] demonstrated the successful applicability
of various mineral potential modeling tools, including ML methods that require a large
amount of training data, using few deposit points (e.g., [3,54-57]).
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Table 1. Data summary for the main gold prospects in the central portion of the TMP.
Occurrence Mineralization Style Alteration Structural Control References
Abacate qz veins sil, tur NB8OE/70SE [32]
Agua Branca qz veins sil, carb, sulf, ser, cl 88/125,35/290, 65/315 [58,59]
Asa Branca qz veins sulf, epid 88/175,88/125 [14,58]
Batalha stockwork, qz veins ser, potas, alb, epid, sil, cl 70/315,90/300 [32,60,61]
Boa Esperanga gz veins arg, ser, cl, sulf 220/75SW, 80/80SE [14]
Cantagalo qz veins, stockwork, sulf, lim, sil, kaol, arg, ser ~ 85/060, 90/055, 80/350 [32,34,62]
disseminations
N gz veins,
Cuiti—Cuit/Central hydrothermal breccia ser, cl, carb 75/075 [58,63]
Culu—(él;;/el;/[orelra stockwork, veins ser, sulf, carb, cl, sil, epid 31/305,10/341 [64,65]
.. . . N80W /85NE,
Carneirinho stockwork sulf, sil, ser, epid, potas N15,/85SE [14,62]
Davi qz veins ser, carb, sulf, epid, 90/135,90/305 [32,62]
cl, potas
Mamoal mafic dykes disseminations sulf, potas 88/020 [58,62]
Ouro Roxo disseminations, py and ser, cl, carb 65/090, 35/095 [32,34,66]
qz-py veins
Palito veins ser, sulf, epid, cl, 88/045 [58]
carb, potas
Pimenteiras veins sulf 90/095 [34]
Sdo Chico veins ser, cl, sulf, epid, musc, 50/170, 88/170 [58]
kaol, sil
Sao Domingos/Fofoca qZ_S;LpCiﬁz;Lems’ set, sil, sulf, epid 88/165,72/320 [58,67]
Sao Domingos/Tucano stockwork, . ser, sil, sulf, epid 60/75NW [58,68]
qz-sulphide veins
Sao Joao qz veins epid, arg, sulf N45-65E, N30E /75SE [37]
Sao Jorge qchizlsr;;?:;iiﬁ:rk sulf, musc, cl, carb 80/160 [58,69]
Sucuba qz veins sil, cl EW [37]
Tocantinzinho gz veins, stockwork micg, cl, ser, sil, carb 80/125, 80/345 [58,70]

Py = pyrite; qz = quartz; sph = sphalerite; alb = albitization; arg = argilization; carb = carbonation; cl = chloritization;
epid = epidotization; kaol = kaolinization; lim = limonitization; mic = microclinization; musc = muscovitization;
potas = potassification; ser = sericitization; sil = silicification; sulf = sulfidation; tur = tourmalization.

3.2. Data Processing

The availability of data and the geological knowledge of the region are heterogeneous.
Most of the known deposits are concentrated in the eastern part, while the central part is
less explored. To enhance information and reduce subjectivity in the identification of new
features important for the mineralization context, statistical and semi-automatic methods

were employed.

Aerogeophysical data were integrated into a single database, and grids were interpo-
lated using the minimum curvature method [71] into cells of 125 m. Radiometric channels
were verified, and variables with inconsistent physical behavior for natural radiation
sources were removed to reduce the impact of these values in mathematical operations

between channels.
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To map hydrothermal alteration zones, parameters (such as F), anomalous potas-
sium (K4), anomalous uranium (Ug), and the eTh/K ratio were calculated. The joint
analysis of these parameters helps identify alteration zones associated with the presence
of K-feldspar and/or sericite/muscovite, such as potassic and phyllic alteration. The
F parameter (K x (eU/eTh)) highlights the simultaneous abundance of potassium and
uranium in relation to thorium, and anomalous values are good indicators of altered rocks
(Efimov cited in Gnojek and Pfichystal [72]). This parameter allows the distinction be-
tween zones of hydrothermal alteration in strongly weathered areas and has been widely
used in identifying mineralization related to these zones (e.g., [73-76]). The K4 and Ug
parameters indicate anomalous concentrations obtained by normalizing K and eU with eTh,
calculating the ideal values K; ((Kmean/€Thmean) x €Th) and U; ((Umean/€Thmean) X €Th),
and computing the deviation of measured values from these ideals (Kg = (K — K;)/K;);
Uq = (U — U;)/Uy)) [77,78]. The data are previously classified into gamma spectrometric
domains with relatively homogeneous signatures. In heterogeneous areas, the calculation
of K; and Uj results in false enhancements. The eTh/K ratio has been used in mapping
hydrothermal alteration zones (e.g., [79,80]) due to the observation that eTh mobility is
abnormally low compared to K and eU in hydrothermal processes. It is a valuable explo-
ration vector in magmatic-hydrothermal deposit settings [81], providing a more accurate
indication of the extent of alteration and minimizing the influence of naturally K-rich felsic
intrusions that can mask deposit signatures ([82], among others).

Magnetometric data were reduced from the International Geomagnetic Reference
Field (IGRF), micro-leveled, and interpolated to generate the anomalous magnetic field
(AMF) map. The reduction to the pole (RTP—[83]) filter was applied to the AMF map
to reduce the influence of induced magnetic fields and to centralize anomalies over their
sources. Due to instability in low magnetic latitudes [84], the RTP filter was first tested on
synthetic 3D models (as proposed by Bongiolo [85]) and generated using the open source
MATLAB-based GRAV MAG PRISM program [86], following the geometric and magnetic
parameters shown in Figure 4. The evaluated prisms represent magnetic bodies at different
depths in the crust, with geographic positioning and magnetic field conditions (i) in the
study area, (ii) reduced to the pole in the study area, and (iii) at the Earth’s magnetic pole.

Geometric parameters

Prism P1 P2 P3
Width (m) 500 500 500
Length (m) 2000 2000 2000
Thickness (m) 1000 1000 1000
X central coordinate (m) 750 2250 3750
Y central coordinate (m) 1500 1500 1500

Top depth (m) 100 200 300

Magnetic parameters

Parameters Tapajbs Pole
Latitude 06°07'21” S 85°00°00” N
Longitude 56°42'05" W 132°36°00" E
Declination (D°)  -17.89° 0°
Inclination (I%) -3.04° aa
Magnitude (nT) 25004 56973

Figure 4. Geometric and magnetic parameters of synthetic prisms. Modified from [85].

To verify the continuity of structures in depth, attenuate high spatial frequency sig-
nals, and minimize the influence of shallow sources, upward continuation filters were
applied [87,88]. The following enhancement filters were applied and tested on the con-
tinued data: (i) first vertical derivative (1Dz—[89,90]); (ii) analytic signal amplitude
(ASA—[91-94]); (iii) total horizontal gradient (GHT or THDR—[95,96]); (iv) tilt angle
(ISA or TDR—[97]); (v) tilt angle of the total horizontal gradient (TAHG—[98]). These
filters improve magnetic responses and highlight subtle anomalies more accurately. Addi-
tionally, magnetic worm products were generated on upward continuations to separate
shallow high-frequency data from deeper low-frequency data, highlighting edge features.
This product helps reduce ambiguity in interpretation and provides information about the
overall shape and relative depth of edges, such as faults and geological contacts [99].
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The DEM data were processed for the automatic delineation of linear features. Shaded
relief images were generated at illumination azimuths of 0°, 45°, 90°, and 135°, which
were subsequently overlaid on a multi-directional illumination map, enabling a three-
dimensional perception, and minimizing false trends from artificial lighting. The “LINE”
algorithm, part of the PCI Geomatica platform (2018, PCI Geomatics Enterprises Inc.,
Markham, Ontario, Canada), performs processing in three steps: (i) edge detection;
(ii) thresholding; (iii) curve extraction. These steps result in the detection of linear patterns
in an image and their automatic conversion into vector segments [100].

3.3. Mineral Prospectivity Modelling

The conception of prospectivity maps requires numerous classes of geoscientific infor-
mation to be spatialized in a GIS environment and combined with various mathematical
and logical operations. Mappable criteria indicate the critical parameters (geological pro-
cesses) of the studied mineral system, which are translated into layers of evidence that
result in the classification of promising target areas for future exploration [1,2].

Based on the critical components discussed by Hagemann et al. [13], three critical
elements were adopted for mapping the footprints of the mineral system in the TMP: (i) the
source of energy, metals, and fluids; (ii) fluid migration pathways; (iii) concentration and
deposition processes. From these elements, and based on the theoretical understanding of
the TMP’s gold magmatic-hydrothermal system, geological processes and their mappable
criteria were established. Spatial proxies (evidence layers) were obtained and pre-processed
as described in Section 3.2.

Mineral potential modeling can be achieved by an empirical (data—driven), concep-
tual (knowledge—driven), or hybrid approach [1,2]. Empirical approaches are applied in
areas with limited and poorly distributed data and few known deposits, relying on prior
geological knowledge of the study area. Conceptual approaches are used in well-explored
areas with robust and well-distributed data, using known mineralized sites as control
points. In this study, to examine and compare the results obtained from each approach, the
evidence layers were combined using three different integration methods: a knowledge-
driven (fuzzy logic) approach and two data-driven approaches, one probabilistic (weights
of evidence) and one based on a machine learning algorithm (SVM).

Fuzzy logic [2—4,101-104] is a mathematical tool that converts the probability of a
variable into a continuous series of possibilities using fuzzy membership functions, where
values are distributed from a midpoint (membership) and spread from there. For the
integration of evidence layers, fuzzy OR (logical union) and GAMMA (a combination of
the fuzzy PRODUCT and SUM operators) operators were used. Details on fuzzy functions
and operators can be found in [105,106].

The weights of evidence (WofE) method, or Bayesian logic, works with parameters
estimated from the statistics of the data. Following the procedure described by [2], the
method was used to define weights W+ and W — for each of the classes in the evidence
layers and the contrast C, defined as the difference between the weights. The evidence layers
with relevant weights concerning the deposits are combined, considering the interaction
between the measured probabilities in the areas of the layers and the known deposits, both
a priori and a posteriori. The method assumes conditional independence between events,
and the probability of finding new ore bodies generally increases with the inclusion of new
information and the calculation of weights.

The support vector machines (SVM) method [7,107] consists of a set of supervised
learning algorithms based on the statistical learning theory [108]. The dataset used is
labeled with known class labels, and the algorithm is trained to project an ideal linear
hyperplane that optimizes the distance between the two closest sample points (support
vectors) to separate multiple classes. The larger the distance between the support vectors,
the lower the classification error [109,110].

To explain the method, consider a training set with two separable classes (e.g., min-
eralized and non-mineralized zones), with I samples represented as (x1,y1), -, (X1, y1),
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where x belongs to an n-dimensional space, and y is a class label equal to 1 for one class
and —1 for the other class (i.e., y € {—1,1}) [111]. The classification hyperplanes satisfy
the equation y;(wx; +b) > 1, where i = [1,2,- -, n]; w and b are parameters of the hy-
perplane’s decision function [112]. The decision function is given by f(x) = sgn(wx +b),
where sgn is a function equal to 1, if x > 0; 0, se x = 0; and —1, if x < 0, defining
margin hyperplanes (1 and —1) and the central hyperplane (0). The parameters w e b
are obtained with maximize f(w,b) = 1/2||w||?, which is subject to y;(wx; + b) > 1. This
optimization is constrained, and the solution is given by Lagrange multipliers, as per the
equation L(w,b,a) = 1/2|jw|* - X!, ®;(y;((wx;) + b) — 1). This function is minimized
with respect to w e b and maximized with respect to «; > 0. The a; multiplier is determined
by the equation maximizey:_; a; — 1/225‘,]':1 ajoejy;y; (x;x;), which is subject to a; > 0 e
Zi-:l a;y; = 0. Thus, the rule for classifying based on the ideal hyperplane is determined by
the function f(x) = sgn (Zf’:l yini(xx;) + b).

Non-linear datasets are converted into linear ones by transferring input data to a
higher-dimensional feature space using kernel functions. In this work, the radial basis
function (rbf) kernel function was selected because it has lower error rates compared to
others [107], and it requires simple parameters for geoscientific data applications, namely
the parameter C (balancing errors, margin width, and the number of support vectors) and
the parameter vy (related to the width of the distribution and optimized for better results).

To properly assess the prospective model’s performance, the F1 score [113] was used,
considering both recall (R) and precision (P). R is the percentage of mineralized points
classified as true positives (tp) relative to the total number of samples in the positive class
(tp and false negatives—in). P is the ratio of tp to the total number of samples classified as
positive (i.e., tp and false positives—fp). The score is obtained by calculating the harmonic
mean between R and P. The optimization of the learning of SVM algorithms is achieved
by choosing the kernel function (in this case, rbf) to determine the ideal hyperparameters
Candvy.

The resulting models from the three approaches were validated through graphs for
visualization and organization of classifiers based on their performance (Figure 3). The
receiver operator characteristic (ROC) curve presents the probability that favorable and
unfavorable areas are correctly classified. The area under the curve (AUC) measures
the model’s efficiency in correctly classifying training points [114,115]. The WofE model
was tested with the conditional independence (CI) ratio and test [54], given by the ratio
between the number of observed known deposits (1) and the predicted deposits (T), where
the hypothesis that the difference T-n is null is admitted. High values indicate that the
hypothesis of the data independence condition was not met, i.e., the smaller the values of
this ratio, the better the model [54]. Additionally, success-rate and prediction-rate curves
were used to indicate the cumulative percentage of deposits relative to the cumulative
percentage of prospective areas.

4. Results
4.1. Hydrothermal Alteration Mapping with Gamma-ray Spectrometry

The K, eTh, and eU channel maps were used to individualize gamma spectrometric
patterns. Each channel was statistically reclassified into concentration classes with thresh-
olds defined by the difference between the mean and half of the standard deviation of the
values (Table 2). The combination of these data resulted in a map containing 27 concen-
tration classes, which provided better separation between adjacent regions with similar
gamma spectrometric signatures. The lithogeophysical map in Figure 5 was generated
from the joint analysis of the class map with the ternary K/eTh/eU map and the mapped
geological units.
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Table 2. Classification parameters for gamma-ray spectrometric channel concentrations.

Parameters K (%) eTh (ppm) eU (ppm)
Mean (M) 0.324491 19.620647 2.358534
Standard Deviation (o) 0.166002 10.636025 0.932671
Class Interval
Low <M - Io <0.24 <14.30 <1.89
Intermediate ~ >M — Joand <M + Jo 0.24-0.41 14.30-24.94 1.89-2.83
High >M+ S0 >0.41 >24.94 >2.83

Geologic map

K/eTh/eU ternary image K/eTh/eU classified content

57°45" 57°W
K, eTh and eU content
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57°45

56°30° 56°W 55°30

Figure 5. Map of radiometric domains, generated from analysis of K/eTh/eU ternary image,
K/eTh/eU content class map, and the geologic map. The white areas in the map correspond
to the main rivers and recent sedimentary coverage, which were excluded from the analysis.

From this product, the parameters F, K3, Ug and the eTh/K ratio were calculated,
and were processed in each domain to prevent the masking of ideal K; and Uj; values with
adjacent lithologies naturally rich in K. The resulting maps were integrated into mosaics
(Figure 6a—d) using the stitching technique [116]. The F, K4, and eTh/K maps served
as the inputs for the ternary composition F-K4-eTh/K in Figure 6e. Areas coinciding
with mineralized sites exhibited signatures with high F and Ky values, high to medium
Ugq values, and low eTh/K ratios. Therefore, it was considered that zones identified with
this pattern were potentially hosting a hydrothermal alteration.
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Figure 6. Integrated maps of the (a) F, (b) Ky, and (c) Uq parameters, (d) inverted eTh/K ratio, and
(e) F-K4-eTh/K ternary composition map.

4.2. Interpretation of Magnetic Lineaments

Considering the magnetic and geographic parameters applied to synthetic models,
the following maps were generated: (i) AMF (Figure 7a), (ii) AMF reduced to the pole
(Figure 7b), and (iii) the Earth’s magnetic pole (Figure 7c). These maps were subjected to
enhancement filters, such as ASA (Figure 7d—f), THDR (Figure 7g-i), TDR (Figure 7j-1),
and TAHG (Figure 7m-o0). By comparing the prisms of the anomalous field in the study
area and at the pole, it was observed that the positioning of anomalies did not undergo
significant displacement, allowing the reduction to the pole to be applied to real data.

The reduction to the pole of real magnetic data generated artificial trends coinciding
with magnetic declination, which was corrected with a centered cosine directional filter at
345° and degree 1. Upward continuation filters with distances of 500, 1000, and 2000 m
were also applied to eliminate noise caused by the influence of shallow sources. The map
continued to 1000 m and was selected for the application of the other filters.

From the AMF reduced to the pole, the magnetic worm map was produced, with
delineating features at a set of upward continuations from 1000 m to 10,000 m, with
an emphasis on higher-order features. The map shows linear features primarily in the
NE-SW, WNW-ESE, and E-W directions, extending in depth, sometimes contouring
batholithic bodies.
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Figure 7. Synthetic prisms and application of magnetic data enhancement filters. (a) the anomalous
magnetic field and its (b) reduced—to—pole and (c) in the pole maps. (d) analytic signal amplitude
and its (e) reduced-to—pole and (f) in the pole maps. (g) total horizontal gradient and its (h) reduced-
to—pole and (i) in the pole maps. (j) tilt angle and its (k) reduced—to—pole and (1) in the pole maps.
(m) tilt angle of the total horizontal gradient, and its (n) reduced-to—pole and (o) in the pole maps.
Reduced to the pole TDR and TAHG maps are the ones that most resemble their respective maps at
the pole.

The magnetic lineaments interpreted on the TAHG reduced to the pole, along with
the analysis of other enhancement products (Figure 8), reflect intermediate structures
with a large lateral extent and spatial correlation in depth, indicating that these structures
may have served as conduits for the ascent and percolation of hydrothermal fluids from
deeper crustal zones, favoring the deposition of sulfides and the formation of gold deposits.
The signal of NE-SW trends is well-marked at deeper levels, suggesting that this is the
structural framework of the province’s basement. The WNW-ESE to NW-SE pattern is
more prevalent at intermediate depths and is related to truncation with basement structures.
Lineaments in the N-S and NNW-SSE directions are less distinguishable at the analyzed
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depths and are concentrated to the west of the area, with truncation relationships due to
breaks in the magnetic signal.

ar

n.=1174

18.14%

® training sites

Lineaments
regional
minor

Figure 8. Parts (a—f): enhancement products applied on the 1000 m upward continuation of the AMF
map reduce to pole. (g) Lineament interpretation map with the TDR-THDR map in the background.
The feature frequency diagram is highlighted. n. = number of lineaments; av. dir = average direction;
max. freq. = maximum frequency; conf. = confidence.

4.3. Semi-Automatic Surface Linear Features

The multidirectional illumination map (Figure 9a) served as the input for the linear
feature detection algorithm. The threshold values used were determined after various
combinations to achieve a regular distribution of features, with dimensions and densities
proportional to the working scale and suitable for the geological characteristics of the
area. The result shows a higher density of linear features in the west and center of the
area, with scattered features to the east (Figure 9b). The lineaments are predominantly
distributed in the approximate NNW-SSE to NW-SE direction, consistent with regional
structuring, confirming the possibility of a higher incidence of structuring in these directions
at intermediate to shallow levels.

4.4. Data Integration

The data resulting from the processing described in the previous sections were con-
verted into images using data conversion, reclassification, and presentation tools. The
interpreted magnetic lineaments and intrusive contacts were scaled by their Euclidean
distances, while surface lineaments were scaled by their density. The selected evidence for
modeling included potentially hosting geological units, proximity to intrusive contacts,
structural framework, and potential deposition sites (hydrothermal alteration zones).
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The maps were normalized to the 0 to 1 range to proportionally assess the values of
each evidence map at the pixel where the training points are located. The cumulative value
of the evidence ranges from 49% to 65% of the total sum, with an average of 54%.

I B

- azimuth 0° azimuth 90°
- azimuth 45° - azimuth 135°

58°30°

5°30'

number of lineaments = 4955 N

maximum frequency = 11.20% b
mean direction = 342.4°
95% confidence = +1.7°

15% 15%

Figure 9. (a) Multidirectional shaded relief generated with superimposing shaded reliefs on 0°, 45°,
90°, and 135° azimuths of the DEM, and (b) lineaments extracted with the LINE algorithm after
correction of spurious features. The respective frequency diagram (on the right).

4.4.1. Fuzzy Model

For the modeling of the fuzzy prospectivity map, the evidence maps were combined
using mathematical operators. The geological map was classified with respect to rocks
most favorable for hosting mineralizations, such as the Creporizao suite and alike, the
Tropas Suite (a batholith cut by a shear zone with hydrothermal alteration), and a granitic
host of mineralization related to this suite. Contacts of intrusive bodies with ages between
1.95 and 1.88 Ga are representative of the plutonovolcanic events that drove magmatic
activity and provided energy to the mineralization system [117]. The intrusion of mafic
bodies from the Ingarana suite may have been responsible for transporting fluids, ligands,
and metals from deep portions of the crust, with occurrences of deposits near these contacts.
Distances up to 5000 m from these contacts were considered prospective.

Interpreted magnetic lineaments were organized into four groups. The first group
(NW-SE trend) is related to a brittle/ductile deformation phase (1970-1950 Ma) that affected
the rocks of the province and hosts a large portion of mineralizations in shear zones. The
second (NE-SW trend) represents directions of secondary structures with ore deposition.
The third (E-W trend) corresponds to a predominantly brittle late phase with extensional
tectonics, marked with late mineralized veins. The fourth group (N-S trend) is restricted to
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the western part and denotes structures and shear zones that were important ore deposition
sites for various known deposits and occurrences (prospective distances in Table 3).

Table 3. Summary of parameters used in the fuzzy logic spatial modeling process.

. N Prospective Fuzzy Integrative
Data Source Evidence Map Classifying Process Thresholds Operators Operator
Gogemap oo ucesiieteningotie |
scale 1:100,000 host rocks ! Y . .
geochemical signature.
. . Proximity analysis of
Coogerapy e sow -
B the contacts of intrusive bodies.
Proximity to lineaments
interpreted from magnetometry,
which represent the 2000 m (NW)
Airborne Magnetic magnetic signature of mineralized 1000 m (NE
magnetometry lineaments shear zones, secondary deposit and EW) OR GAMMA,
controls, and mineralized 2500 m (NS) index 0.75
late veins.
Euclidean distance.
. Density of Density of lineaments extracted "
Radar image surface traces from DEM. Densities > 1
F parameter Statistical classification of the Values >M + 1o
K4 parameter values of parameters F, Ky, and Values >M + 1o
Airborne Ugq and the eTh /K ratio, which 1 GAMMA,
radiometry Uq parameter represent the signature of Values <M — 50 index 0.75

eTh/K ratio

The hydrothermal alteration with
positive a correlation with
mineralization.

Values < 0.7

The Kernel density was calculated for the interpreted DEM lineaments to highlight
regions with a cumulative influence of features. These were considered favorable and
fuzzified using the fuzzy LARGE function.

Maps of hydrothermal alteration zones related to gold deposition were statistically
classified, where the parameters F, K4, and Ug have a direct relationship with the values
and were fuzzified with the fuzzy MSLARGE function. The eTh/K ratio has an inverse
prospective relationship, and the values were inverted using the fuzzy LARGE function
for classification.

These themes, which represent the critical factors of the intrusion-related gold system,
were integrated using fuzzy operators, resulting in intermediate themes that were once
again combined to generate the fuzzy prospectivity model shown in Figure 10 (processing
steps and classification criteria are summarized in Table 3).

4.4.2. WofE Model

The WofE modeling method was applied to assess prospective response based solely
on data. The a priori probability was 0.000016, with an area unit of 0.015625 km? in
a 125 x 125 m? cell. The following procedures were adopted in preparing the themes:
(i) reclassification of evidence maps; (ii) principal component analysis (PCA) to analyze the
evidence maps for potential correlations; (iii) calculation of the weights of spatial association
between the classes of maps and deposits; (iv) analysis of the weight distribution in each
map and selection of the maps; (v) integration of the evidence maps.

The classes in the evidence maps were reduced to improve the estimation of weights
for each class, which may not be robust when the number of deposits is small [118].
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The evidence maps derived from radiometric parameters underwent PCA to eliminate
possible correlations between them. PC1, which explained about 85% of the data variance,
was selected as the input for the model, representing the mapped hydrothermal alteration
(Table 4) and was reclassified into a binary component.
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Figure 10. Fuzzy prospectivity model for gold deposits in the central portion of the TMP. The map
shows good spatial relationship between deposits and high scores of prospectivity.

Table 4. PCA eigenvector matrix over the radiometric parameters. The values highlighted in blue
indicate the evidence map with the greatest contribution in each PC.

PC1 PC2 PC3 PC4
F 0.34639 —0.89043 0.29401 0.02670
Ky 0.20787 —0.17201 —0.70639 —0.65438
Ugq 0.17715 —0.11325 —0.62031 0.75565
eTh/K 0.89745 0.40587 0.17258 —0.00790

In the next step, the evidence maps weights were calculated with a confidence level
of 2 for associations classified as positive. The classes that achieved the best contrast values
were selected to compose the prospectivity map, considering the consistency of weights for
the intrusion-related gold model. From these results, 7 predictor variables were selected,
and the posterior probability map was generated (Figure 11). The model mapped the
main deposit sites and indicated prospective zones aligned with structural trends in the
NW-SE direction, as well as several other sites indicated as potential zones, especially in
the central-southern and northwestern portions of the area.

4.4.3. Support Vector Machine (SVM) Model

For the application of the SVM method, 11 key information layers previously defined
and classified according to a priori knowledge were considered. The modeling consisted of
five main steps: (i) composition of a dataset containing all predictor variables, represented
by bands; (ii) automatic and random selection of deposits, separated into 75% for training
and 25% for testing; (iii) conditioned generation of random non-deposit points, adhering to
a distance of more than 15 km from any known deposit and a minimum distance of 7 km
between them; (iv) training and parameterization of the algorithm; and (v) conversion of
the output result into a map.

The grid search algorithm, available in the scikit-learn library [119], was used to select
the best parameters for C and vy, with the following ranges chosen: (i) C [2,2.1,2.2,2.3,24,
2.5,3,3.5,4]; (ii) v [100, 10, 1, 0.1, 0.01]. The algorithm selected the best values based on
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the F1 score from a 5-fold stratified cross-validation. The values obtained were C = 2.3 and
vy=1
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Figure 11. Weights of evidence prospectivity model for the studied area.

Stratified k-fold cross-validation [120] randomly partitions the training point set into
k subsets of approximately equal sizes. In the stratified variation, the k parts preserve the
original percentage of deposit and non-deposit points. Then, the model is trained k times,
using points in k-1 training parts each time. The points from the remaining part are set
aside for model validation. The trained model was applied to the set of evidential variables,
resulting in the map shown in Figure 12.
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Figure 12. SVM prospectivity model, where the values represent the distance from the hyperplane.

4.5. Validation

The models were tested using the ROC curve, which uses training points as actual
positive and negative evidence that needs to be verified in the model. The AUC (area
under the curve) is calculated, where a value of 0.5 indicates random model predictions,
and a value of 1 indicates perfect classification. The steeper the ROC curve, the better the
model’s performance in mapping real deposits and predicting potential zones. The fuzzy
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model had an AUC of 0.980 (Figure 13a), the WofE model had an AUC of 0.948 (Figure 13b),
and the SVM model achieved an AUC value of 0.969 (Figure 13c), demonstrating high

model efficiency.
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Figure 13. Validation graphs: (a) ROC/AUC curve of fuzzy model; (b) ROC/AUC, prediction— and
success-rates of WofE model; and (¢) ROC/AUC, prediction— and success—rates of SVM model. The
light blue areas in the ROC graphs correspond to the area under the curve.

The WofE and SVM models were also validated using success-rate and prediction-rate
curves, which indicate the cumulative percentage of deposits relative to the cumulative
percentage of prospective areas [121]. The WofE model correctly classified about 94% of
training points within the top 15% of the highest posterior probability classes. In relation
to test points, they all were mapped within about 5% of the area (Figure 13b). The SVM
model correctly classified about 94% of training points within the top 10% of the area. A
total of 100% of test points were mapped within less than 5% of the area (Figure 13c).

The assumption of conditional independence between predictor variables is often
violated when producing a prospectivity map with the WofE method, although the degree
of violation depends on the choice and number of maps used as predictors. To evaluate this
condition, the CI ratio and the CI test were calculated [54]. The CI ratio obtained was 0.93,
indicating a very low degree of violation, as values between 1 and 0.85 are acceptable for
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modeling geological scenarios [2]. The CI test indicated subtle conditional dependence,
with a probability of conditional independence of 37.5%.

5. Discussions

The processing of aerogeophysical data to generate spatial proxies revealed geological
features in regions with little or no field information, highlighting valuable information
for interpretation. The maps of the parameters F, K4, and Ug and the eTh/K ratio showed
signatures of K enrichment in known hydrothermalized areas. The association with high
values of F and K, indicates potassium enrichment in areas with pervasive sericitic alter-
ation. The low eTh/K ratios corroborate the low mobility of thorium in hydrothermal
processes [122], accentuated by potassium enrichment in these altered zones. Favorable
lithological units for hosting mineral deposits guided the hydrothermal alteration responses.
The magnetic-structural framework allowed the identification of important features related
to compressive and extensional deformational events that affected the region and led to the
formation of deposits. The density of lineaments extracted from the DEM demonstrated a
positive spatial association with regional lineaments and known mineralized sites.

The three approaches used for prospectivity modeling in the central portion of the
TMP allow a mutual comparison, with highlights provided in Table 5. The prospective
regions correspond to the major deposits in the region. Further, in a few deposits, the
indication of potential zones was of low value or absent. This may have been caused
by (i) the relationship of deposits with other mineralization conditions or structures not
considered in the models; and (ii) biased prior classification of any of the evidence maps,
excluding the region where the deposit is located.

Table 5. Comparison between the integration methods used in this work.

Fuzzy WofE SVM

(1) Easy implementation

(1) Greater robustness, and
handles both linear and
non-linear data; (2) generalization

(1) Allows analysis of the weight of ability, even with few training

Advantages and operator each evidence map and selection of . . .
. . and testing points; (3) effective
knowledge-based control. the best ones for integration. ; .
separation of data with a
maximum margin; (4) increases
decision-making resolution.
. " (1) Need to reduce the number of
(1) Less precise propositions e . .
. h classes (reclassification of evidential
and data inputs being more maps); (2) the assumption of
susceptible to bias; (2) Many ps) | . P (1) Requires extensive knowledge
. conditional independence .
Disadvantages steps and parameters to of ML architectures and

define (e.g., membership
functions, data classification
rules, integration operators).

burdened and invalidated the
modeling numerous times, a
problem which can be minimized

programming languages.

with the use of PCA.

It is important to note that the prospective responses of the three methods are pos-
sible and subject to errors and biases. Therefore, they should be treated and used as the
supporting materials in decision making.

In a final analysis, an agreement map (Figure 14) was generated, which considers
the best results from the three approaches, combining the areas corresponding to the
top 5% scores from each model. Regions with a higher density of overlapping areas were
delineated as prospective areas of interest. The areas in the western part of the map
(Figure 14a) are elongated and spatially aligned with ductile-brittle shear zones, ranging
from N-S to NNW-SSE, which host gold deposits and control granitic and tonalitic bodies.
In the central part of the area (Figure 14b), where geological mapping is scarce and primarily
based on geophysical products, four areas of prospective interest stand out: one elongated
and coinciding with an E-W structure, and three others aligned approximately in the NE
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direction. Although there is very little information to infer the cause of the high potential of
these areas, it is presumed that they reflect the presence of mineral occurrences embedded
in structures or reactivated shear zones with essentially brittle deformation, characteristic of
a younger deformation event. In the eastern portion of the area (Figure 14c), the prospective
areas are smaller and therefore more limited, with most being elongated in the NW-SE
direction, coinciding with the main regional structuring of essentially brittle shear zones
that control the emplacement of most granitic bodies in that region. Other areas indicated
in the overlap of models adjacent to known deposits and mineralized fields are also of great
importance and can be understood as extensions of the already discovered mineralized
bodies or zones.
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Figure 14. Agreement map between fuzzy, WofE, and SVM models, showing 5% of the main
prospective areas. Rectangles highlight areas (a) in western, (b) central, and (c) eastern sectors.

6. Conclusions

In this study, various methods to produce prospectivity maps were evaluated and
compared. The results can be summarized as follows:

1. Radiometric data enhancement is effective for mapping K-enrichment and identi-
fying gold-related hydrothermal alteration zones based on higher intensities of the
parameters examined.

2. Magnetic data processing with enhancement filters produced satisfactory results for
interpreting the structural framework, despite challenges in calculating RTP at low
magnetic latitudes.

3. Semi-automated extraction of linear features from DEM provided valuable informa-
tion on morphostructural lineaments in the study area, which is difficult to access in
a tropical zone with high vegetation and cloud cover. The distribution of features is
consistent with the regional tectonic framework of the area, and the density reflects
the higher incidence of structuring at intermediate to shallow crustal levels.

4. Three different methods for data integration were used for prospectivity modeling in
the central portion of the TMP, resulting in prospectivity sites indicative of the main
deposits in the region.
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5. The fuzzy model (i) effectively identified potential targets, especially in the eastern
portion, reflecting the data availability panorama; and (ii) mapped known mineraliza-
tion sites reasonably, although some deposits had low or zero prospectivity scores.
The model validation with an ROC/AUC curve of 0.980 demonstrates high confidence
in the degree of randomness explored to map the mineralizing event.

6. The WofE method (i) indicated elongated potential zones aligned with prospective
structural trends; and (ii) mapped most of the known deposits in areas of higher
probability and performed well with points not used in the modeling, attested by an
AUC of 0.948 and an ROC curve demonstrating excellent model efficiency in mapping
known deposits and predicting new potential targets.

7.  The ML algorithm (SVM) (i) presented better-defined prospectivity sites and
(if) mapped nearly all known deposits in areas of higher scores and performed even
better with omitted points, achieving an AUC of 0.969—the closest to the best clas-
sification value. Although the training data set is limited and not ideal, satisfactory
results using a limited training data set (<20) can be achieved (e.g., [8,53,123]). The ad-
vancement in the use of more sophisticated machine learning techniques, as well as the
use of classical methods guided by knowledge or data, can substantially contribute to
the risk reduction in mineral exploration and enable decision making through indirect
spatial information complementary to field data.

8.  Anagreement map combining the top 5% scores from each model pinpointed the best
prospective interest areas, offering valuable insights for future exploration.
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