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Abstract: Chalcopyrite (CuFeS2) particles, exposing anisotropic crystal planes during the grinding
process, possess comprehensive surface properties that affect their leaching behaviors. In order to
investigate the influence of anisotropic crystal planes on the leaching mechanisms, CuFeS2 particles
with anisotropic crystal planes were produced by employing three-head laboratory grinder mill (TM),
rod mill (RM), and ball mill (BM) and were then leached in a sulfuric acid solution at pH = 1. Based
on the XRD, SEM, XPS, and simulation results, (112), (102), (312), (110), (116), (100), and (001) planes
were mainly exposed on the CuFeS2 surface during the crushing and grinding process. In addition,
fewer (112), (102), (312), and (110) planes but more (116), (100), and (001) planes were exposed on the
CuFeS2 samples in the TM method than in the RM and BM methods. Since the leaching rates were in
the order of (001) > (100) > (116) > (110) > (312) > (102) > (112) planes, the Cu extractions followed an
order of TM > RM > BM. This study, therefore, provides an excellent theoretical basis for the effect
of anisotropic crystal planes on CuFeS2 leaching, further improving the understanding of CuFeS2

leaching mechanisms.

Keywords: chalcopyrite; leaching; anisotropic crystal planes; density functional theory; mechanisms

1. Introduction

Copper is an important nonferrous metal that has been widely used in various areas
such as the light, electrical, communications, construction, and machinery manufacturing
industries and other industries [1]. Copper metal is mainly purified from chalcopyrite
(CuFeS2), since approximately 70% of the Earth’s copper resources are found as CuFeS2 [2,3].
The average copper grades are about 0.4% and 1~2% for open-cast and underground CuFeS2
deposits [1], respectively. Generally, a flotation process is employed to obtain a CuFeS2
concentrate [4], followed by the metallurgy process for copper production [5]. In addition,
pyrometallurgical methods are preferentially considered for high-grade CuFeS2 concen-
trates (greater than 20%) [6]. However, these methods lead to extensive environmental
problems due to the emission of SO2 [7,8]. As an alternative to pyrometallurgy, hydrometal-
lurgy has been paid much attention due to its advantages, such as being a more economical
method of treating low-grade ores and being more environmentally friendly [3,5].

However, hydrometallurgical processing of CuFeS2 has not been widely adopted in
the industry due to the extremely slow leaching kinetics [9–14], mainly due to the formation
of passivation layers on the CuFeS2 surface [15–21]. Thus, the investigation of the formation
and elimination mechanisms of the passivation layer is very important for the application
of CuFeS2 hydrometallurgy. In recent years, various analytical methods have been applied
to investigate the properties of the passivating layer on the CuFeS2 surface [22–25], such
as scanning electron microscopy (SEM), synchrotron scanning photoelectron microscopy
(SPEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy
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(XPS). However, there is no generally accepted theory as to the composition of the passi-
vation layer. Córdoba et al. [3] reported that the passivation layers were predominantly
composed of bimetallic sulfide, iron-deficient copper polysulfide, and elemental sulfide.
Li et al. [5] reported that the formation of elemental sulfide, disulfide, polysulfide, and
iron hydroxy-oxide inhibited the leaching of CuFeS2. In this case, it is extremely urgent to
clarify the surface properties of CuFeS2 to better understand the leaching mechanisms.

In addition, the surface properties of minerals are closely associated with the mineral’s
exposed planes. For instance, Wei et al. [26] indicated that the MoS2 face (i.e., (001) plane)
exhibited hydrophobic properties while the MoS2 edges (i.e., (103), (105), (100), and (110)
planes) exhibited hydrophilic properties. Therefore, investigations on the anisotropic crys-
tal planes are very important for determining the surface properties of CuFeS2. Normally,
the CuFeS2 (112), (102), (312), (110), (116), (100), and (001) planes are exposed during the
crushing and grinding process [27–30]. The properties of these crystal planes have been
widely investigated using density functional theory (DFT) calculations from the viewpoint
of theory. For example, de Oliveira et al. [31] reported three different reconstruction mech-
anisms for CuFeS2-typical planes, wherein the reconstructed planes presented different
properties. Wei et al. [27] investigated the relaxation and oxidation of the CuFeS2 (001)
and (112) planes on exposure to O2 and H2O, indicating that the formation of disulfide
(S2

2−) on the CuFeS2 (001) plane and polysulfide (Sn
2−) on the CuFeS2 (112) plane inhibited

the leaching process. Meanwhile, the CuFeS2 (001) plane per unit area was more easily
oxidized than the (112) plane. However, the influence of the anisotropic crystal planes’
properties on the actual leaching performance of CuFeS2 and the underlying mechanisms
remain unclear up to now.

In this study, three different grinding methods (i.e., a three-head laboratory mill with
a grinder mill (TM), a rod mill (RM), and a ball mill (BM) were considered to obtain
CuFeS2 particles with anisotropic crystal planes, followed by the leaching experiment
to investigate the influence of the anisotropic crystal plane on the leaching behavior of
CuFeS2. The anisotropy of the CuFeS2 raw samples was analyzed using X-ray diffraction
(XRD) and SEM; XPS and DFT simulation were employed to investigate the anisotropic
oxidation properties of the CuFeS2 planes. This study, therefore, provides an excellent
theoretical basis in revealing the influence of anisotropic crystal planes on CuFeS2 leaching
mechanisms, providing new insights for the application of CuFeS2 hydrometallurgy.

2. Materials and Methodology
2.1. CuFeS2 Samples

The high-purity chunks of CuFeS2 samples (Figure S1 and Table S1, Supplementary
Materials, the content of CuFeS2 was nearly 98 wt%) obtained from the Araci Mine in
Peru were crushed to small particles (around 5 mm) and milled in three ways, i.e., TM
(RK/XPM 120 × 3 three-head grinding machine, Wuhan Rock Grinding Equipment Manu-
facturing Co., Ltd., Wuhan, China), RM (XMB-70, three-roller, four-barrel rod mill, Wuhan
Prospecting Machinery Factory, Wuhan, China), and BM (XMB-70, three-roller, four-barrel
ball mill, grinding mediums using ceramic balls), followed by wet sieving to obtain par-
ticles with two size fractions of 38~75 µm and 75~150 µm. These samples were treated
using ultrasonication (JP-020, Shenzhen Jie Meng Cleaning Equipment Co., Ltd, Shenzhen
China) under ethanol solution conditions at 40 KHz for 2 mins to remove the attached fine
particles from the sample surfaces, which were freeze-dried (LGJ-12, vacuum freeze dryer,
Beijing Songyuanhuaxing Technology Develop Co., Ltd., Beijing, China) to avoid further
surface oxidation.

2.2. Leaching Experiments

Briefly, 500 mL glass reactor vessels with a 5-port lid were used for the leaching
experiments. A 1 g CuFeS2 sample and 400 mL of a sulfuric acid solution at pH = 1 were
poured into the reactor vessel to avoid interference from other ions [5] and were then heated
using a thermostatically controlled silicone oil bath at 75 ◦C. The 5-port lid provided access
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to the leach solution; three ports were used to house a thermometer, a Teflon impeller, and a
reflux condenser, and the remaining two ports were covered with a plug to avoid moisture
evaporation. The four-blade Teflon impeller was driven by a digitally controlled stirrer at a
constant agitation speed of 170 rpm.

Subsequently, 5 mL solution samples were taken twice a day at intervals of 8 h and
16 h, respectively. Then, the solution was filtered through a 0.22 µm membrane for pH and
Cu-concentration tests. The pH was maintained at 1 by adding 5 M H2SO4 [5].

2.3. Bulk and Surface Analyses

In order to determine the exposed crystal planes for the CuFeS2 samples treated
through the TM, RM and BM methods, CuFeS2 samples with size fractions of 38~75 µm
and 75~150 µm were directly tested using XRD (D8 Advance, Bruker, Germany, with
2θ from 10◦ to 70◦ (Cu Kα) at a scanning speed of 0.2◦/min). The obtained data were
analyzed using Jade 6.0 software (Materials Data, Inc., Livermore, CA, USA) to determine
the exposed crystal planes corresponding to each diffraction peak based on the standard
XRD pattern. Since the preferred orientation may exist in the XRD test for bigger CuFeS2
particles, side-loading methods and the rotation of the sample table were considered to
avoid the preferred orientation [32]. SEM analyses (Zeiss Ultra Plus, Oberkochen, Germany)
were conducted on the surface of leached CuFeS2, with an acceleration voltage of 30 keV.

A Thermo Scientific K-Alpha (Thermo Fisher-VG Scientific, Waltham, MA, USA) was
used for XPS analyses of the leached CuFeS2. The XPS instrument was operated using an Al
K-Alpha X-ray source (hv = 1486.6 eV) at 12 kV and 6 mA with a pressure of 2.0 × 10−7 m
Bar. Next, 2.0 g of samples with a particle size of 38~75 µm were conditioned. The obtained
spectra were analyzed using Avantage software (Thermo Fisher-VG Scientific, Thermo
Fisher Scientific, Waltham, MA, USA). The binding energies were referenced to the C 1s
peak at 284.8 eV.

2.4. DFT Calculation

The CuFeS2 bulk was constructed through Materials Studio 8.0 according to our
previous research [27]. The geometric optimization calculation was performed using the
same calculation parameters, i.e., generalized gradient approximation (GGA) with PW91
corrections in the CASTEP package, with a cutoff energy of 351 eV, and a Monkhorst−Pack
scheme with a 3 × 3 × 3 k-point mesh. Subsequently, the CuFeS2 (112), (102), (312), (110),
(116), (100), and (001) planes were cleaved based on the optimized CuFeS2 bulk. The
surface energies (Es) [27,33] and the adsorption energy [34] were calculated to determine
the reactivity of the CuFeS2 plane.

3. Results and Discussion
3.1. Anisotropic Leaching Results

In order to investigate the influence of the anisotropic crystal plane on CuFeS2 leaching,
three different grinding methods (TM, RM, and BM) were employed to obtain CuFeS2
particles with anisotropic crystal planes, which were then leached in a H2SO4 solution. For
the three CuFeS2 samples with a particle size of 38~75 µm, a similar increasing trend of Cu
extractions was obtained (Figure 1a), giving Cu extractions at around 76.2%, 78.9%, and
87.5% at 648 h for the TM, RM, and BM methods, respectively. In contrast, significantly
different evolutions of Cu extractions were observed for the three CuFeS2 samples with a
particle size of 75~150 µm (Figure 1b), giving a Cu extraction order of TM > RM > BM. It
should be noted that Cu was nearly completely extracted within 500 h for the TM method,
while the Cu extractions were around 94% and 53% at 648 h for the RM and BM methods,
suggesting that the TM method was beneficial for the leaching of bigger CuFeS2 particles.
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Figure 1. Leaching experiment results of CuFeS2 samples obtained through three grinding methods:
(a) 38~75 µm; (b) 75~150 µm.

In addition, the leaching rate was higher for smaller CuFeS2 particles in the BM
method due to their bigger surface area [5,35]. However, the bigger CuFeS2 particles
obtained through the TM and RM methods exhibited a higher leaching rate than the smaller
particles, especially for the TM method, suggesting that the surface properties of the CuFeS2
particles in the three grinding methods led to significantly different leaching results.

3.2. Anisotropy of CuFeS2 Raw Samples

In order to investigate the differences in the surface properties, XRD and SEM tests
were employed for the CuFeS2 raw samples. Figure 2 shows the XRD patterns; the typical
exposed planes for all the CuFeS2 raw samples were the (112), (102), (312), (110), (116), (100),
and (001) planes [27–30]. For the size fraction of 38~75 µm, all diffraction peaks at various
planes of the three CuFeS2 samples exhibited a similar intensity, suggesting that the exposed
percentages of each plane for the three smaller CuFeS2 particles were similar (Figure 2a),
since the intensity of the diffraction peak is highly related to the exposed percentage of
the planes [27,33,36]. In contrast, the intensities of diffraction peaks at various planes for
the three CuFeS2 samples with a particle size of 75~150 µm were significantly different
(Figure 2b), suggesting that bigger CuFeS2 particles from all three grinding methods had
different exposed percentages for each plane, thus presenting different leaching rules as
shown in Figure 1b. In other words, the anisotropic crystal planes of the CuFeS2 particles
seemed to dominate their leaching behavior.
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In order to further investigate the anisotropy of the raw CuFeS2 samples, the nor-
malized percentages of the typically exposed planes for three CuFeS2 samples based on
the diffraction peak intensity of each plane were calculated (Figure 3 and Tables S2 and
S3). Obviously, the normalized percentage rules of the (112), (102), (312), (110), (116),
(100), and (001) planes for the three CuFeS2 samples with particle sizes of 38~75 µm and
75~150 µm were different, e.g., the differences in the normalized percentages between the
standard value and the experimental value of the (112) plane for the TM, RM, and BM
methods were −9.279%, −8.210%, and −7.456% for the three smaller CuFeS2 particles,
while they were −15.357%, −13.541%, and −6.307% for the three bigger CuFeS2 particles,
respectively, indicating that the three bigger CuFeS2 particles exhibited greater differences
in their exposure percentages. For the (001) plane, the three smaller CuFeS2 samples still
exhibited similarly normalized percentages for the TM, RM, and BM methods (i.e., 3.856%,
3.908%, and 3.264%, respectively). However, the three bigger CuFeS2 particles exhibited
different normalized percentages of the exposed planes for the TM, RM, and BM methods
(i.e., 3.613%, 2.959%, and 2.053%, respectively), suggesting that the three bigger CuFeS2
particles exhibited greater anisotropy than the smaller CuFeS2 particles. In addition, the
total percentages of the (112), (102), and (312) planes for the three bigger CuFeS2 particles
were in the order of TM > RM > BM, while the (110), (116), (100), and (001) planes exhibited
a total percentage order of TM < RM < BM (Figure 3), further demonstrating the crystal
plane anisotropy for the three bigger CuFeS2 particles.
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Figure 4 presents the SEM results of raw CuFeS2 samples at 75~150 µm for the TM, RM,
and BM methods. It can be clearly observed that the samples in the TM and RM methods
were mainly long, irregular particles, while the samples in the BM method were mainly
rounded particles. As shown in Table 1, the length–width ratios based on the average
length and width for raw CuFeS2 samples in the TM, RM, and BM methods were 1.776,
1.759, and 1.299, respectively, suggesting that the exposure percentage for each plane was
related to the length–width ratio of the particles. Combining the normalized percentage of
the typical exposed plane and the length–width ratio of the raw CuFeS2 samples, the long,
irregular particles in the TM method exposed fewer (112), (102), (312), and (110) planes but
more (116), (100), and (001) planes than the rounded particles in the BM method.

Table 1. Average length, width, and length–width ratio for three raw CuFeS2 samples.

Grinding Methods Average Length (µm) Average Width (µm) Length–Width Ratio

TM 127.762 71.953 1.776
RM 124.724 70.917 1.759
BM 95.234 73.276 1.299
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3.3. XPS Analysis

The three bigger CuFeS2 samples were tested using XPS to investigate the species
differences on the CuFeS2 surface. Figure 5 and Table 2 show the XPS survey spectra of the
CuFeS2 surface and the elemental quantification (at %) of the CuFeS2 surfaces, respectively.
The O 1s peak at 532.1 eV was found on the CuFeS2 surface, and the O contents were 43.87%,
53.37%, and 70.40% on the surface of CuFeS2 treated using the BM, RM, and TM methods,
respectively, indicating that the order of the oxidation degree of the CuFeS2 surface treated
using different methods was TM > RM > BM.
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Table 2. Elemental quantification (at %) of CuFeS2 surface.

Element Bonding Energy (eV)
CuFeS2

BM RM TM

S 2p 161.4 9.26 4.93 8.08
O 1s 532.1 43.87 53.37 70.40
Fe 2p 710.8 8.56 9.48 4.88
Cu 2p 932.6 38.31 32.22 16.64

The Fe contents on the surface of CuFeS2 treated using the BM, RM, and TM methods
were determined to be 8.56%, 9.48%, and 4.88%, respectively, indicating that Fe was more
readily leached from the surface of CuFeS2 when treated with the TM method. The Cu
contents on the surface of the CuFeS2 treated using the BM, RM, and TM methods were
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found to be 38.31%, 32.22%, and 16.64%, respectively, suggesting that Cu was more easily
leached from the surface of CuFeS2 when subjected to the TM method, compared with both
the BM and RM methods. This observation is consistent with the leaching results presented
in Figure 5.

Figure 6 and Table 3 show the fitted S 2p spectra and S species of the bigger CuFeS2
particles treated using the BM, RM, and TM methods. The S 2p3/2 component located at
161.4 eV for CuFeS2 was attributed to the monosulfide S2− species [37,38]. The 2p3/2 spectra
due to S2

2−, Sn
2−, S0, SO3

2−, SO4
2− and the energy loss of CuFeS2 were located at 162.2,

163.2, 163.7, 166.3, 168.8, and 165.1 eV, respectively [38–40]. The concentrations of S2
2−,

Sn
2−, S0, SO3

2−, and SO4
2− on the BM-treated CuFeS2 surface were 8.60%, 0%, 23.57%,

3.81%, and 34.59%, respectively (Table 3). The presence of oxidized S species indicated
that the surface S2− of CuFeS2 was oxidized to S2

2−, Sn
2−, and S0, which were the main

substances forming the passivation layer [41]. The passivation layer composed of S2
2−,

Sn
2−, and especially S0, hindered the further leaching of CuFeS2, which was the main

reason for the low leaching rate of CuFeS2 treated using the BM method.
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Table 3. S species (at %) on CuFeS2 surfaces treated under different conditions.

S Species Bonding Energy (eV) Full Width at Half-Maximum (eV)
CuFeS2

BM RM TM

S2− 161.4 0.7–0.8 27.98 23.01 14.87
S2

2− 162.2 0.7–0.9 8.60 10.32 11.07
Sn

2− 163.2 1.1–1.3 0 5.50 1.19
S0 163.7 1.0–1.2 23.57 8.12 5.44

SO3
2− 166.3 1.1–1.3 3.81 0.54 0.20

SO4
2− 168.8 1.5–1.6 34.59 39.02 61.14

Energy loss 165.1 1.4–1.7 1.46 5.37 6.10

The concentrations of S2
2−, Sn

2−, S0, SO3
2−, and SO4

2− on the RM-treated CuFeS2
surface were 10.32%, 5.50%, 8.12%, 0.54%, and 39.02%, respectively (Table 3). The S species
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content on the surface of CuFeS2 treated using the TM method was comparable to that
observed on the surface of CuFeS2 treated using the RM method, except for a higher
presence of SO4

2− compounds. The low concentration of S0 and the high concentration
of SO4

2− indicated that the surface of CuFeS2 treated using the RM and TM methods
had reduced passivation layer formation, enhancing the generation of highly oxidized
SO4

2− during leaching, further facilitating the leaching process. The highest SO4
2− content

was found on the CuFeS2 surface treated using the TM method, indicating a significant
oxidation reaction and the maximum leaching rate. Overall, the CuFeS2 samples treated
using the BM, RM, and TM methods in the same leaching conditions underwent varying
degrees of oxidation, especially showing different evolutions for the S species on the
chalcopyrite surface. These results indicate that the anisotropic crystal planes of CuFeS2
significantly affected its leaching behavior.

3.4. The Properties of Anisotropic Crystal Planes

In order to further investigate the reactivities of CuFeS2 planes, the properties of the
CuFeS2 planes were investigated through the same calculation methods as in our previous
research (e.g., only Fe and S sites were considered for the adsorption of O2) [27]. Due to the
symmetry of the CuFeS2 structure (i.e., each Cu/Fe atom is bonded with four surrounding
S atoms, each S atom is bonded with two surrounding Cu atoms and two surrounding
Fe atoms) [31], the CuFeS2 (112), (312), (116), (100), and (001) planes exposed both sulfur-
terminated (only exposing S atoms) and metal-terminated (only exposing Fe/Cu atoms)
planes, while the CuFeS2 (102) and (110) planes exposed mixed terminated (exposing both
S and Fe/Cu atoms) planes during the cleavage process (Figure S2), which fully exhibited
the anisotropic structure of CuFeS2 planes.

Table 4 exhibits the surface energies of the CuFeS2 planes, giving the order of
(112)-S < (112)-M < (102) < (312)-M < (312)-S < (110) < (116)-S < (116)-M < (100)-S <
(100)-M < (001)-S < (001)-M planes, suggesting that the stabilities of the CuFeS2 planes
were in the order of (112) > (102) > (312) > (110) > (116) > (100) > (001) planes [27,42–44],
consistent with the exposed percentage of CuFeS2 planes for all the grinding methods
(Figure 3), e.g., the CuFeS2 (112) plane obtained the lowest surface energy (0.923 J·m−2

for the (112)-S plane and 1.018 J·m−2 for the (112)-M plane) and was, thus, preferentially
exposed during the grinding process [27], occupying the highest exposed percentage (more
than 40%, Table S1). It should be noted that the CuFeS2 (001) planes with the highest surface
energy (1.495 J·m−2 for the (001)-S plane and 1.556 J·m−2 for the (001)-M plane) were less
easily exposed during the grinding process, occupying the lowest exposed percentage (less
than 5%, Table S1).

Table 4. Area, surface energy, and adsorption energy per unit area of O2 for CuFeS2 planes.

Planes Area (nm2)
Surface Energy,

Es (J·m−2)
Adsorption

Site
Adsorption Energy per

Unit Area (kJ·mol−1·nm−2)

112-S 0.473 0.923 a S1 −437.384
112-M 0.473 1.018 a Fe1 −1316.631

102 0.774 1.128 a Fe1 −1372.095
S3 −470.755

312-M 1.874 1.207 a Fe1 −1571.115
312-S 1.874 1.221 S2 −477.523

110 0.408 1.332
Fe3 −1633.777

S1 −461.095
116-S 0.909 1.351 S2 −527.396
116-M 0.909 1.494 Fe2 −1654.440
100-S 0.545 1.450 S3 −588.869
100-M 0.545 1.498 Fe3 −1858.123
001-S 0.274 1.495 a S2 −690.193
001-M 0.274 1.566 a Fe −2027.415

a These data have been published in our previous research [27].
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Since the leaching experiments were performed in a sulfuric acid solution at pH = 1,
components such as H2O, O2, SO4

2−, and HSO4
− that could react with the CuFeS2

planes were present in the solution. Research indicated that O2 was adsorbed on the
CuFeS2 planes prior to the adsorption of H2O, SO4

2−, and HSO4
− [27,34,35]. For exam-

ple, de Lima et al. [34,45] reported that the adsorption energies were −142.12, −105.34,
and 95.30 kJ·mol−1 for SO4

2−, HSO4
−, and H2O at Fe sites on the CuFeS2 (001) plane.

Wei et al. [27] reported that the adsorption energies of H2O and O2 at Fe sites on the CuFeS2
(001) plane were −153.94 and −556.12 kJ·mol−1, respectively. In addition, the reactivity
of the Fe sites was stronger than that of the Cu sites on the CuFeS2 metal-terminated
planes [27]. In this case, only the adsorption of O2 at Fe and S sites on the CuFeS2 planes
was considered to compare the reactivity of each plane, and the results are shown in Table 4
and Figures 7 and S3.
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It was clearly seen that the adsorption energy per unit area at Fe sites on each plane
was more negative than that at S sites, suggesting that these Fe sites were more easily
oxidized than the S sites due to the higher affinity of Fe sites for O2 than that of S sites for
O2 [38]. For the adsorption of O2 at Fe sites on CuFeS2 planes, the adsorption energies
per unit area were −1316.631, −1372.095, −1571.115, −1633.777, −1654.440, −1858.123,
and −2027.415 kJ·mol−1·nm−2 for the (112)-M, (102), (312)-M, (110), (116)-M, (100)-M, and
(001)-M planes, respectively, suggesting that the Fe site of the CuFeS2 (001) plane was
more easily oxidized by O2 than that in other planes [27,46], thereby forming two Fe-O
bonds with lengths of 1.846 Å and 1.859 Å (Figure 7g). The adsorption energy per unit
area of O2 at S sites on the CuFeS2 planes exhibited the same rules as that at Fe sites.
The adsorption energies per unit area for the (112)-S, (102), (312)-S, (110), (116)-S, (100)-S,
and (001)-S planes were −437.384, −470.755, −477.523, −461.095, −527.396, −588.869, and
−690.193 kJ·mol−1·nm−2, respectively, suggesting that both the Fe and S sites of the CuFeS2
(001) plane were more easily oxidized by O2; thus, the (001) plane was preferably leached
compared with other planes. Overall, the leaching rates of the CuFeS2 planes were in the
order of (001) > (100) > (116) > (110) > (312) > (102) > (112) planes.
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In addition, it was clearly seen that the adsorption energies per unit area at Fe sites on
the (001)-M and (100)-M planes were more negative than those on other planes (Figure 8a),
while those on the (001)-S, (100)-S, and (116)-S planes were significantly more negative
than those on other planes at the S sites (Figure 8b). In this case, the CuFeS2 samples that
contained more (001), (100), and (116) planes, exhibited faster leaching rates, consistent
with the leaching experiment results, in which the Cu extraction was in the order of
TM > RM > BM methods (Figure 1).
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4. Conclusions

In this work, a three-head laboratory mill with a grinder mill (TM), rod mill (RM), and
ball mill (BM) was employed to obtain CuFeS2 samples with anisotropic crystal planes.
Interestingly, the trend of Cu extractions for three CuFeS2 samples with a particle size
of 38~75 µm increasing with leaching time were similar, while the Cu extractions were
in the order of TM > RM > BM methods for the three CuFeS2 samples with a particle
size of 75~150 µm, indicating that the anisotropic crystal planes of CuFeS2 particles could
significantly affect CuFeS2 leaching behavior. The exposed percentages of the CuFeS2
planes were in the order of (112) > (102) > (312) > (110) > (116) > (100) > (001) planes, and
the long, irregular particles obtained using the TM method exposed fewer (112), (102),
(312), and (110) planes and more (116), (100), and (001) planes. Since the adsorption of
O2 on CuFeS2 planes indicated that the leaching rates were in the order of (001) > (100) >
(116) > (110) > (312) > (102) > (112) planes, CuFeS2 samples treated using the TM method
exhibited the highest oxidization degree. The formation of more SO4

2− species indicated
that CuFeS2 samples treated using the TM method had the least amount of passivation
layer, thus exhibiting the highest leaching rate.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/min13111461/s1: Figure S1. XRD patterns of raw CuFeS2 sample (D8 Advance, Bruker,
Germany). PDF: 71-0507 was the standard XRD pattern of CuFeS2 from Jade 6.0. It was clear that the
diffraction peaks of the raw chalcopyrite sample were highly consistent with the standard CuFeS2
XRD pattern (PDF: 71-0507), indicating that the raw CuFeS2 sample in this study was highly purified.
Figure S2. Structure and exposed atoms of CuFeS2 planes. Figure S3. Layout of the adsorption
of O2 at S sites on the CuFeS2 planes: (a) (112)-S plane; (b) (102) plane; (c) (312)-S plane; (d) (110)
plane; (e) (116)-S plane; (f) (100)-S plane; (g) (001)-S plane; distances are in Å. Table S1. Main element
contents of CuFeS2 sample using XRF (Zetium, PANalytical, Almelo, Netherlands) (wt. %). Table
S2. Normalized exposure percentage of planes for standard and experimental CuFeS2 particles (%).
Table S3. Relatively normalized exposed percentage of planes for CuFeS2 particles between standard
value and experimental value (%).
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