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Abstract: Mineral phase transformation (MPT) of hematite to magnetite by reduction roasting is
a viable means of developing refractory iron ore resources. However, conventional coal-based
reductants are prone to high carbon emissions and environmental pollution. Biomass, as a renewable
green reductant, can make the MPT process more environmentally friendly while reducing the
environmental impact associated with processing agricultural waste. This study systematically
explored the feasibility of waste corn straw as a green reductant for hematite. Under the conditions
of 8 min, 700 ◦C, a mass ratio of corn straw to hematite of 1:4, and a N2 flow rate of 300 mL/min,
the best beneficiation indexes were achieved, with an iron grade of 69.82% and an iron recovery of
93.95%. During the MPT process, hematite was reduced under the action of corn straw, and the new
magnetite particles were loose and porous, showing an acicular crystal structure. Meanwhile, the
corn straw was converted into porous biochar.

Keywords: corn straw; green reductant; mineral phase transformation; iron recovery; microstruc-
ture evolution

1. Introduction

Iron ore, as the basic raw material in steelmaking, plays an indispensable role in
the iron and steel industry [1]. With the explosive growth of steel demand worldwide,
especially the rapidly expanding steel production in China, the supply of high-quality
iron ore has been severely limited while the exploration and exploitation of refractory
iron ore has become urgent [2]. However, traditional beneficiation techniques based on
density, magnetic properties, and surface hydrophobicity pose difficulties to processing
low-grade iron ores with more complex mineralogical assemblage, especially iron ores in
China [3]. An effective solution is to realize the mineral phase transformation (MPT) of
weakly magnetic iron minerals into strongly magnetic minerals via reduction roasting [3,4].
The roasted products can then be effectively beneficiated and upgraded through low-
intensity magnetic separation.

For many years, considerable research has investigated the reduction roasting of iron
ore, including: thermodynamic possibilities [2,4], kinetic mechanisms which control the pro-
cess [5–7], and optimization of process parameters [6,8,9], etc. Practice shows that reduction
roasting-magnetic separation can achieve excellent process indexes and obtain high-quality
ironmaking raw materials from refractory iron ore resources [10,11]. Traditionally, the
process has used carbon-based reductant such as coke, anthracite, and carbon monoxide.
However, today this intensifies the pressure on the steel industry to further reduce carbon
emissions and minimize environmental impact. To meet these challenges researchers began
to explore the use of green, low-carbon, and environment-friendly reducing agents such
as siderite, hydrogen, and biomass in reduction roasting [1,12,13]. These alternatives aim
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to make the reduction roasting process more sustainable while maintaining or improving
process efficiency.

Biomass, as a renewable organic reductant, presents a promising opportunity to
reduce the carbon footprint of reduction roasting and add value to agricultural waste.
Ongoing research continues to optimize biomass types and roasting conditions to realize
the full environmental and economic benefits. Cao et al. [13] successfully realized the
magnetization roasting of hematite with straw-type biomass, achieving an iron recovery of
more than 90% by magnetic separation. Wang et al. [14] discovered that biomass can be
used, not only as a reductant in the magnetization roasting of red mud, but also to improve
cementitious activity in tailings. Deng et al. [15] explored the effects of different types of
biomass on magnetization roasting of iron tailings, and found that woody biomass is better
than straw biomass, and when fir sawdust was the reductant, iron concentrate with an iron
grade of 62.04% and an iron recovery of 95.29% could be obtained. Qiu et al. [16] further
verified the feasibility of using fir sawdust as a reductant in iron tailings, and pointed out
that the biomass oil generated during magnetization roasting would affect the operation of
industrial equipment. In addition, sawdust [17,18], banana tree bark [19], leaf litters [19,20],
etc., have been verified as green reductants that can be used for the reduction roasting of
iron minerals, and can obtain good beneficiation indicators. Furthermore, these studies
show that the reducing gases produced by pyrolysis during biomass roasting are mainly
CO and H2, which are the main reductants for the reduction of iron minerals [13,15,16].

The utilization of biomass as a green reductant in reduction roasting is an appealing
approach. Kinetic data plays a pivotal role in the advancement and optimization of chemical
reactions for industrial applications [21,22]. However, current kinetic studies in this area
lack remarkable depth. Yuan et al. [23] comparatively examined the isothermal reduction
kinetics of iron ore pellets using coke, charcoal, and biomass and indicated that biomass
displayed greater reactivity. Liu et al. [24] explored the kinetics of sawdust reduction of pure
Fe2O3, and determined that the kinetic mechanism was a first-order reaction model, but
they only used a simple model fitting method. Wang et al. [14] centered on the pyrolysis
kinetics of different biomasses, but failed to consider the mixed system involving iron
minerals. Overall, the current kinetic data appears to focus more on the pyrolysis kinetics of
biomass in the roasting process, or fails to pay attention to the roasting process of powder
materials, with relatively basic kinetic research methods being employed.

To further deepen the mechanism of the hematite biomass reduction reaction, the
potential application of corn straw as a green reductant for MPT of hematite was system-
atically investigated. The effect of fluidization roasting conditions on the beneficiation
indexes and saturation magnetization is discussed. The phase transformation during the
MPT process was analyzed by X-ray diffraction (XRD) and in-situ XRD. The microstructure
evolution of corn straw and hematite was investigated using scanning electron microscopy
and energy dispersive spectroscopy (SEM-EDS). Detailed kinetic studies will be carried
out in a separate study on biomass pyrolysis during roasting, using advanced methods
recommended by ICTAC.

2. Materials and Methods
2.1. Materials

The corn straw used in the study was collected from Chaoyang City, Liaoning Province,
China, and was crushed to less than 1 mm. After sieving, the corn straw was dried at 60 ◦C
for 12 h. Table 1 presents the results of the preliminary, elemental, and constituent analyses
of corn straw. The volatile content was 77.52%, while its fixed carbon content, moisture
content, and ash content were 15.54%, 5.57%, and 1.37%, respectively. The most prevalent
elements found in the corn were C, H, and O, accounting for 41.82%, 5.60%, and 48.6%,
respectively. The main components of corn straw are cellulose (40.91%), hemicellulose
(28.57%), and lignin (5.48%).
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Table 1. Preliminary, elemental, and constituent analyses of the corn straw (%).

Preliminary Analysis Elemental Analysis Biomass Constituent

Moisture ad 5.57 C 41.82 Cellulose 40.91
Ash ad 1.37 H 5.60 Hemicellulose 28.57

Volatile ad 77.52 O 48.60 Lignin 5.48
Fixed carbon ad 15.54 N 1.25 Others 24.92

– – P 0.034 – –
– – S 0.07 – –

ad: based on air dried basis.

The hematite was sourced from Anshan City, Liaoning Province, China, and 70%
of the hematite had a particle size of less than 0.074 mm. The composition of different
iron minerals in the hematite samples was analyzed by chemical iron phase, showing that
hematite or limonite accounted for 96.13% and magnetite accounted for 2.67%. The XRD
pattern in Figure 1 indicates that the major mineral is hematite, with minor amounts of
quartz and magnetite. Table 2 presents the results of the chemical composition analysis of
the hematite sample. The sample was found to have a total iron (TFe) content of 67.47%,
with an FeO content of 0.88%. The major impurities were determined to be SiO2 and Al2O3,
which were present at levels of 0.80% and 0.38%, respectively.
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Figure 1. XRD analysis of the hematite sample.

Table 2. Chemical composition analysis of hematite sample.

Component TFe FeO SiO2 Al2O3 CaO MgO Mn TiO2 S P

Content/% 67.34 0.88 0.80 0.38 0.05 0.24 0.13 0.047 <0.01 0.04

2.2. Methods and Equipment
2.2.1. Experimental Apparatus and Procedure

The experiments in this study utilized suspension furnace and magnetic separation,
as depicted in Figure 2. The experimental procedure started with heating the suspension
furnace (OTF-1200X-S-VT, Hefei Kejing Materials Technology Co., Ltd., Hefei, China) and
adjusting the temperature. Additionally, the experimental system was purified using N2.
Next, the raw sample consisting of different proportions of hematite and corn straw was
placed on a perforated quartz plate located in the center of the furnace tube. During the
MPT process, N2 was used to suspend the sample particles. When the predetermined time
was reached, the MPT was stopped and the roasted sample was cooled to room temperature
in N2. The cooled sample was subjected to magnetic separation using a Davis magnetic
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tube (XCQS73-Φ50, JILIN EXPLORATION MACHINERY PLANT, Jilin, China) with a
magnetic field of 198 mT, and a water flow of 500 mL/min. All experimental conditions
were repeated three times and averaged to obtain errors.
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2.2.2. Characterization Methods

The content of the chemical component in the sample was determined using titration
and X-ray wavelength dispersive fluorescence spectrometry. The phase composition of
iron was determined by iron chemical phase analysis [25]. The saturation magnetiza-
tion of the samples was analyzed using a vibrating-sample magnetometry (VSM, JDAW-
2000D, LAKESHORE, Columbus, OH, USA). XRD analysis was performed using an X’Pert
pro MRD diffractometer (PANalytical B.V., Almelo, The Netherlands) at a scan rate of
12◦/min. And the in-situ XRD analysis was performed using a Rigaku Smartlab diffrac-
tometer (Rigaku Corporation, Tokyo, Japan) at a scan rate of 15◦/min with a heating rate of
20 ◦C/min. Microstructural evolution was studied by SEM-EDS analysis (Thermo Scientific
Apreo 2C, Thermo Fisher Scientific Inc., Waltham, MA, USA; Oxford Ultim Max 40, Oxford
instrument, Abingdon, Oxfordshire, UK). The thermogravimetric analysis was performed
using an STA 449F3 thermal analyzer (NETZSCH Group, SELB, Bavaria, Germany) under
a nitrogen atmosphere.

3. Results and Discussion
3.1. Effect of Roasting Conditions

The effects of the main parameters during the roasting process on iron recovery, and
the saturation magnetization of the roasted samples were investigated, as shown in Figure 3.

Optimizing the roasting time can lead to improved separation performance while keep-
ing energy consumption under control. The roasting time was optimized at a temperature
of 700 ◦C, a mass ratio of corn straw to hematite of 1:3 and a N2 flow rate of 500 mL/min.
As depicted in Figure 1a, a significant increase in both iron grade and recovery was ob-
served from 2 to 6 min, with an increase of 2.30% and 28.42%, respectively. After 6 min,
the iron grade continued to improve slightly while the iron recovery gradually decreased.
Meanwhile, the saturation magnetization first increased significantly and then decreased
slightly. This was thought to be caused by the transformation process of hematite and
limonite to magnetite to wustite [13]. The saturation magnetization reached a maximum
value of 75.37 A·m2/kg at 8 min, corresponding to the best beneficiation indexes. Therefore,
the roasting time was set at 6 min, resulting in an iron grade and recovery of 69.75% and
93.65%, respectively.
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Figure 3. Effect of roasting conditions on magnetic separation performance and saturation magneti-
zation, (a) roasting time, (b) roasting temperature, (c) mass ratio of corn straw to hematite, (d) N2

flow rate.

Temperature is an important factor affecting corn straw pyrolysis and hematite re-
duction [13]. After setting the roasting time to 6 min, the effect of roasting temperature
was explored, as shown in Figure 1b. The iron grade increased from 67.39% at 500 ◦C to
69.82% at 700 ◦C, but then reached a plateau. Iron recovery, on the other hand, showed a
single peak of 93.95% at 700 ◦C. This indicates that increasing the temperature promoted
the reduction of hematite. However, at higher temperatures, the pyrolysis of corn straw
was more intense, resulting in the reduction of hematite to antiferromagnetic wustite,
which affected the separation performance [13]. This also brought about a trend, that the
saturation magnetization increased first and then decreased, and the peak value of 75 was
obtained at 700 ◦C. Thus, the optimum roasting temperature was determined to be 700 ◦C,
with an iron grade and recovery of 69.82% and 93.95%, respectively.

In the MPT process, corn straw acts as a reductant. However, when the dosage of
corn straw is low, complete reduction of hematite to magnetite will not occur. Conversely,
at higher dosages, excess corn straw is wasted and can lead to increased CO2 emissions.
Figure 1c shows that for mass ratio between 1:5 and 1:2, the iron grade fluctuated between
69.28% and 69.82%, and the iron recovery was between 93.27% and 94.82%. However,
increasing the corn straw dosage to 50% (mass ratio of 1:1) resulted in a significant de-
crease in both the iron grade and recovery. This suggests that the reductants produced by
the pyrolysis of corn straw exceeded the amount required for the reduction of Fe2O3 to
Fe3O4. The saturation magnetization increased significantly only when the mass ratio was
increased from 1:5 to 1:4, and the saturation magnetization did not change significantly
when the dosage of corn straw continued to be increased. Therefore, the appropriate mass
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ratio of corn straw to hematite was determined to be 1:4, the iron grade obtained to be
69.82%, and the iron recovery to be 93.95%.

Figure 1d demonstrates that the iron grade remained stable as the N2 flow rate in-
creased, ranging between 69.47% and 69.84%. The iron recovery showed minimal change
until the N2 flow rate reached 400 mL/min, maintaining between 93.65% and 94.61%.
However, when the N2 flow rate was increased to 500 mL/min, the iron recovery slightly
decreased. This was likely due to the high N2 flow rate during fluidization process, which
removed the less dense corn straw and the reducing gas produced by pyrolysis, resulting
in poorer reduction of hematite. And the change of saturation magnetization explained
the slight effect of N2 flow rate change on the beneficiation indexes. Thus, the appropriate
roasting gas flow rate is determined to be 300 mL/min, at which the iron concentrate grade
was 69.82% and the iron recovery was 93.95%.

3.2. Phase Transformation

The phase transformation during the MPT process was investigated using XRD and
iron chemical phase analysis, and the results are shown in Figure 4.

Figure 4a illustrates the appearance of characteristic diffraction peaks of magnetite at
2 min. As the roasting time was increased to 8 min, the characteristic diffraction peaks of
hematite disappeared, while those of magnetite gradually increased and became dominant.
Further extension of the time to 10 min resulted in the appearance of characteristic diffrac-
tion peaks of wustite, indicating excessive reduction of hematite by corn straw [13,15].
Figure 4c reveals that the trending change in hematite content was consistent with that
of the characteristic hematite diffraction peaks. Meanwhile, when the roasting time was
6 min, although a small amount of hematite was still present, the generated magnetite was
sufficient to ensure the recovery of the roasted particles by magnetic separation [22,25].
These results were also consistent with the magnetic separation performance obtained.

Figure 4b,e illustrates the effect of temperature on the phase transformation. As the
roasting temperature increased, the transformation process of hematite was like that of
prolonging the roasting time. The magnetite content reached a maximum value of 88.23%
at 700 ◦C. At high temperatures of 800 and 900 ◦C, the formation of wustite became more
apparent. Based on this observation, the previously determined roasting temperature of
700 ◦C was considered reasonable.

During the MPT process, the dosage of corn straw was a critical factor in determining
the concentration of reducing gas [16]. Compared with the time and temperature factors, the
same phase transformation trend was observed (Figure 4c,f). Specifically, a 1:4 mass ratio
of corn straw to hematite resulted in a magnetite content of 82.69%. This level of magnetite
content was enough to achieve a satisfactory magnetic separation index. The results showed
that the 1:4 mass ratio produced enough combined reduction gas to reduce most of the
hematite to magnetite.
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Figure 4. XRD pattern and iron phase composition of roasted samples: (a,d) effects of roasting time;
(b,e) effects of roasting temperature; (c,f) effects of corn straw dosage.

To investigate the phase transformation of hematite during the MPT process, an
in situ heating XRD analysis was carried out, and the results are presented in Figure 5.
As the temperature increased, the characteristic diffraction peaks of hematite decreased
while those of magnetite increased. The characteristic diffraction peaks of hematite were
significantly weakened at 500 ◦C, indicating that the reduction of hematite occurred mainly
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before 500 ◦C. At 700 ◦C, magnetite became the dominant phase, indicating that most of
the hematite had been reduced to magnetite. At 800 ◦C, over-reduction occurred, resulting
in the formation of wustite [19]. The characteristic diffraction peaks of carbon were also
observed, indicating that carbon with great crystallization was deposited on the particle
surface [16]. These observations suggest that during the MPT process of corn straw and
hematite, hematite was first reduced to magnetite, followed by the formation of wustite at
higher temperatures.

Minerals 2023, 13, x FOR PEER REVIEW 8 of 12 
 

 

that of the characteristic hematite diffraction peaks. Meanwhile, when the roasting time 

was 6 min, although a small amount of hematite was still present, the generated magnetite 

was sufficient to ensure the recovery of the roasted particles by magnetic separation 

[22,25]. These results were also consistent with the magnetic separation performance ob-

tained. 

Figure 4b,e illustrates the effect of temperature on the phase transformation. As the 

roasting temperature increased, the transformation process of hematite was like that of 

prolonging the roasting time. The magnetite content reached a maximum value of 88.23% 

at 700 °C. At high temperatures of 800 and 900 °C, the formation of wustite became more 

apparent. Based on this observation, the previously determined roasting temperature of 

700 °C was considered reasonable. 

During the MPT process, the dosage of corn straw was a critical factor in determining 

the concentration of reducing gas [16]. Compared with the time and temperature factors, 

the same phase transformation trend was observed (Figure 4c,f). Specifically, a 1:4 mass 

ratio of corn straw to hematite resulted in a magnetite content of 82.69%. This level of 

magnetite content was enough to achieve a satisfactory magnetic separation index. The 

results showed that the 1:4 mass ratio produced enough combined reduction gas to reduce 

most of the hematite to magnetite. 

To investigate the phase transformation of hematite during the MPT process, an in 

situ heating XRD analysis was carried out, and the results are presented in Figure 5. As 

the temperature increased, the characteristic diffraction peaks of hematite decreased while 

those of magnetite increased. The characteristic diffraction peaks of hematite were signif-

icantly weakened at 500 °C, indicating that the reduction of hematite occurred mainly be-

fore 500 °C. At 700 °C, magnetite became the dominant phase, indicating that most of the 

hematite had been reduced to magnetite. At 800 °C, over-reduction occurred, resulting in 

the formation of wustite [19]. The characteristic diffraction peaks of carbon were also ob-

served, indicating that carbon with great crystallization was deposited on the particle sur-

face [16]. These observations suggest that during the MPT process of corn straw and hem-

atite, hematite was first reduced to magnetite, followed by the formation of wustite at 

higher temperatures. 

 

Figure 5. In situ heating XRD pattern of corn straw and hematite in N2 atmosphere (heating rate: 20 

°C/min). 

¨ Hematite « Magnetite ■ Wustite  · Quartz ▲ C

20 25 30 35 40 45 50 55 60 65

In
te

n
si

ty
/a

.u
.

2θ/°

25

300

400

500

600

700

800

900

T
em

p
er

at
u

re
/°

C

¨

«

«

¨

n
«

n
«

¨ ¨

«
«

¨¨

¨

n
«

¨

▲ ▲

Figure 5. In situ heating XRD pattern of corn straw and hematite in N2 atmosphere (heating rate:
20 ◦C/min).

3.3. Microstructure Evolution

The evolution of microscopic morphology before and after MPT of corn straw and
hematite was explored by SEM-EDS, as shown in Figure 6.

Figure 6a illustrates the complex and diverse morphology of corn straw, showing fiber
rods and irregular crumbs and flakes. Additionally, there are many regular cylindrical
holes and crack-shaped holes within the corn straw. This natural porosity is conducive to
the release of volatiles. As shown in Figure 6b,c, hematite was mainly irregularly granular,
with a relatively flat and dense surface, and no holes or cracks inside.

As shown in Figure 6d–h, the morphology of corn straw was softened and deformed
due to the release of volatiles after roasting. The surface of the corn straw became rougher,
and the number of pores increased significantly with irregular characteristics. This change
in morphology indicates that the deposited carbon participated in gasification reactions
and was consumed, resulting in the formation of irregular porous biochar [16]. After MPT,
the roasted particles exhibited visible irregular cracks and holes on their surface, while
the newly formed magnetite exhibited a porous acicular structure. This is due to the
thermodynamic instability of the magnetite formed after the reduction of hematite during
crystal growth. Magnetite nuclei grow more easily along the magnetic axis, with lower
surface energy and an acicular structure [5]. The observed results suggest that the gas pro-
duced during the pyrolysis of corn straw reacted with the hematite to form magnetite [13].
The temperature stress and phase transformation stress experienced during this reaction
caused the initially dense structure of hematite to loosen, thus facilitating the entry of
reducing gas molecules and leading to a further increase in the degree of reduction.
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3.4. Process Mechanism, Environmental Benefits and Feasibility

Based on the above experimental results, a process mechanism was derived as shown
in Figure 7. The use of biomass reductants proved to be a more environmentally friendly
and sustainable option compared to coal-based reductants, reducing the environmental
impact. Additionally, the mineral phase transformation process used in this study produced
satisfactory indexes (iron grade 69.82%, iron recovery 93.95%). During the MPT process,
corn straw underwent pyrolysis, producing reducing gases consisting mainly of CO and
H2 [13,16,26]. These gases, in turn, participated in the phase transformation process,
transforming hematite into magnetite. The result was the production of porous magnetite,
which was easily beneficiated by the magnetic separation process.
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China produces about 900 million tons of straw annually, 30% of which is corn
straw [27,28]. Unfortunately, much of this is burned directly in the fields, resulting in
significant CO2 emissions. The burning of straw produced approximately 38 million tons
of CO2 [27,28]. The issue is particularly critical in northeast China, where more than 80% of
straw is burned each year, two-thirds of which is corn straw. This has led to environmental
pollution and a significant waste of resources [27,28]. The use of randomly burned straw as
a green reductant for hematite not only reduces airborne dust pollution and CO2 emissions,
but also offers considerable economic benefits.

Based on the MPT process, a semi-industrial pilot plant has been established within
northeast China. Previous experiments involving various minerals such as hematite,
siderite, ferromanganese ore, and flotation tailings from different sources have yielded
favorable results, leading to the industrialization of this technology. To assess the feasibility
of industrial implementation utilizing the abundant straw-based biomass resources within
Northeast China, semi-industrial experiments on biomass roasting are planned for the
near future.

4. Conclusions

The feasibility of using waste corn straw as a green reductant to promote the MPT
of hematite to magnetite was explored. Optimal process parameters were determined
to be a roasting time of 8 min, a roasting temperature of 700 ◦C, a mass ratio of corn
straw to hematite of 1:4, and a N2 flow rate of 300 mL/min. The roasted products were
subjected to magnetic separation, and an iron concentrate with an iron grade of 69.82%
and an iron recovery of 93.95% were obtained. CO and H2 were the primary reducing
gases generated during the roasting of corn straw and participated in the reduction of
hematite. In the MPT process, hematite was reduced to magnetite, and further over-
reduction produced wustite. Meanwhile, the corn straw was turned into porous biochar.
The phase transition of hematite led to a loose and porous roasted particle structure. The
newborn magnetite exhibited an acicular structure, which was beneficial for the subsequent
grinding process. This study demonstrated the potential of using corn straw as a green
and environmentally friendly reductant for iron recovery. Further studies on the detailed
pyrolysis mechanism of corn straw and semi-industrial trials are planned to guide the
design of large-scale prototype plants. This research has added value to agricultural waste
and greened the hematite roasting process, paving the way for environmentally friendly
and sustainable technologies.
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