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Abstract: There is a great risk of roof falls in the advance support section of the mining face (ASSoMF),
and it is difficult to control the roof. Based on the soft roof of Lijiahao coal mine, this paper studies the
stress distribution of the ASSoMF and the space-time evolution of the surrounding rock plastic zone
by using theoretical analysis and numerical simulation, and reveals its failure mechanism. Based
on the control effect of support resistance on plastic zone, it is proposed that the advance support
should mainly adapt to the roadway deformation. Advance equipment without repeated support
for mechanized movement has been developed, and the support timing analysis and strength check
have been carried out. Results show that the roadway at ASSoMF is in a non-uniform stress field,
the confining pressure ratio reaches 1.5~7, and the surrounding rock forms asymmetric failure; the
principal stress direction deflects, the angle between it and the vertical direction is about 10◦~25◦, and
the plastic zone of the surrounding rock also rotates to the roadway roof. The proposed equipment can
adapt to the characteristics of an unsymmetrical large deformation of a soft roof, and can effectively
bear the roof load and maintain the stability of the roadway.

Keywords: failure mechanism of roadway roof; advance support; equipment without repeated
support; soft roof

1. Introduction

The surrounding rock of the roadway in the advance support section of the mining
face (ASSoMF) is affected by the superposition of the original rock stress, the side-mining
stress, and the advance abutment stress [1–4]. The surrounding rock deformation and
damage extent are large, and the risk of roof fall is high [5–7]. At the same time, this
area is also the throat of transportation, pedestrians, and ventilation [8,9]. So, it is the
key point of roadway-surrounding rock maintenance [10–12], but its failure mechanism is
not yet clear [13]. At present, a single hydraulic prop and advance hydraulic support are
mostly used for ASSoMF [14,15]. The problem of safe and efficient transport of the advance
support body and repeatedly supporting the roof and bolt (cable) support system has not
been solved.

In view of the above problems, many scholars have studied the failure mechanism
and control technology of the surrounding rock of ASSoMF. In terms of active support,
Guo et al. [16,17] established a mechanical model of advance support by analyzing the
distribution law of abutment stress in the thick and hard roof, and proposed to use the
cable to replace the single hydraulic prop. Chai et al. [18,19] established a model of support
strength and roof subsidence, and proposed the calculation method of support strength
and support body shrinkage, which provided a certain reference for the determination
of support parameters of ASSoMF. Yao [20,21], Zhou [22] et al. put forward the one-time
active support technology of a cable in the full life cycle of the roadway by establishing
the prediction model of surrounding rock deformation affected by mining in a single-
side goaf roadway and a solid coal roadway. In terms of passive support, Zhao [23],
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Lai et al. [24] studied the stress and deformation of the surrounding rock at ASSoMF, and
proposed that the advance support should be of non-equal strength, based on the stress
distribution and deformation characteristics of the surrounding rock. Zhang et al. [25]
studied the mechanical properties of surrounding rock supported by the coupling of an
advance hydraulic support group and anchor bolt (cable), and proposed a support strategy
of unequal strength. Xu et al. [2,26] put forward the adaptive support theory of advance
support and the movement technology of hydraulic support to solve the problem wherein
the roof and anchor system of roadway are damaged by repeated support; this improved
the ability of the advance support to adapt to the surrounding rock. Wang et al. [27]
developed the cross door-type circulating advance support equipment, and proposed the
cooperative support principle of active support + advance reinforcement support.

From the above analysis, it can be seen that current research focuses on the coupling
between the deformation of the surrounding rock and the support body, but the differ-
ence in geological conditions makes the deformation law of the surrounding rock vary
greatly [28,29]. The failure shapes of surrounding rock of the roadway at ASSoMF are rarely
studied, and the corresponding safe and efficient movement technology of advance support
needs to be further studied.

2. Failure Mechanism of Surrounding Rock of Roadway at ASSoMF
2.1. Background of Lijiahao Coal Mine

Lijiahao coal mine is located at Dongsheng Coalfield, Inner Mongolia, China. The
coal seam is shallow, and the bedrock is thick. The roof and floor rocks are mainly sandy
mudstone and siltstone, with low rock strength and poor stability. The ratio of horizontal
stress to vertical stress in the regional stress field is about 1.2. The geological drilling
column is shown in Figure 1 [13]. The 31115 working face of coal seam 31 has an average
coal thickness of 6 m. The thickness of the coal seam in the whole working face is relatively
stable, with an average buried depth of about 220 m. The working face is arranged with
two roadways, that is, two roadways are excavated at the same time while driving, one of
which is reserved to serve the next adjacent working face, as shown in Figure 2.
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2.2. Construction and Excavation of Numerical Simulation Model

Flac 3D software is used to simulate the mining of the working face of Lijiahao coal
mine. The Mohr Coulomb model is used as the constitutive model. The goaf is filled with
double-yield model [30], and the relevant mechanical parameters are shown in Table 1. The
displacement around the model and the bottom is fixed, and 3.9 MPa equivalent load is
applied above the model to compensate for the vertical stress of the overburden. Gravity is
applied to the model. The model grid is a 5 m/grid in which the surrounding rock of the
roadway at ASSoMF is refined to a 0.5 m/grid; the numerical simulation model is shown
in Figure 3, the physical and mechanical parameters of each rock stratum are shown in
Table 2, and the lateral pressure coefficient is taken as 1.2.
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Table 1. Parameters of double-yield model in goaf.

Density
(kg/m3)

Bulk Modulus
×103 (MPa)

Shear Modulus
×103 (MPa) Friction Angle (◦) Dilation Angle (◦)

1750 5.5 4.6 20 7

Table 2. Lithology and rock physical and mechanical parameters.

Lithology Density
(kg/m3)

Bulk Modulus
×103 (MPa)

Shear Modulus
×103 (MPa)

Friction
Angle (◦)

Cohesion
(MPa)

Tensile
Strength (MPa)

Sandy mudstone 2 2200 2.7 1.6 29 1.2 1.06

Fine-grained
sandstone 2600 4.5 2.8 31 5.6 2.1

Silt stone 2 2400 3.2 2.6 27 1.4 1.3

Coal 1350 2.5 1.2 28 0.9 0.6

Silt stone 1 2400 3.6 2.6 32 1.6 1.3

Sandy mudstone 1 2400 3.8 1.8 28 1.6 1.2

The excavation process of this numerical simulation is as follows. Step (1): An in situ
stress-state is applied, and an initial equilibrium is reached. Step (2): The 31114 working
face and haulage roadway are extracted (from 100 m to 900 m) to obtain the stress state
at the position of the 31115 ventilation roadway (primary mining influence). Step (3):
The 31115 working face is excavated (from 100 m to 600 m) to obtain the stress state at
the position of the 31115 ventilation roadway (secondary mining influence) and haulage
roadway. Step (4) The initial equilibrium state is restored, the 31114 haulage roadway,
31115 ventilation roadway and haulage roadway are extracted, and the equilibrium state
is calculated to. Step (5): The 31114 working face is extracted (from 100 m to 900 m) to
obtain the plastic zone status of the 31115 ventilation roadway (primary mining influence).
Step (6): The 31115 working face is extracted (from 100 m to 600 m) to obtain the plastic zone
status of 31115 ventilation roadway (secondary mining influence) and haulage roadway.

Because the surrounding rock stress will be released after the roadway is excavated, the
stress obtained by numerical simulation is often too small. Through the above excavation
process, this problem can be avoided, and a more accurate stress state and plastic zone
state of the roadway can be obtained.

2.3. Regional Stress Distribution Law of Mining Roadway

After the completion of the previous working face, the stress field at the roadway
position of the next working face will be disturbed. After the implementation of Step 2, the
distribution characteristics of stress field at the side of goaf are shown in Figure 4. It can be
seen that the vertical stress at the goaf is about 0.6 MPa; with the distance away from the
goaf, the maximum principal stress (σ1), minimum principal stress (σ3) and intermediate
principal stress (σ2) showed a trend of first increasing and then decreasing. About 5 m away
from the goaf, each principal stress and vertical stress reach their peak values, of which
the maximum principal stress peak value is about 17 MPa and the minimum principal
stress peak value is about 7.5 MPa. The stress concentration at this point may be due to
the fracture of the side roof of the goaf, and the overburden rock load is carried by the
surrounding rock. With the distance away from the goaf, the confining pressure ratio η
(σ1/σ3) gradually decreases from a peak value of about 3.7. The confining pressure ratio at
the 31115 ventilation roadway is about 1.5, and the confining pressure ratio is reduced to
about 1.2 in the area 35 m away from the side of goaf.
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Near the goaf, the direction of the regional stress field has also changed, as shown
in Figure 5 (purple curve). The maximum principal stress direction is rotated from the
horizontal direction in the original rock stress field to the vertical direction. With the dis-
tance away from the goaf, the maximum principal stress gradually rotates to the horizontal
direction, and the maximum principal stress at the roadway position is about 45◦ from the
vertical direction.
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After the implementation of Step 3, the stress distribution characteristics of the
31115 ventilation roadway (gob-side roadway) are obtained by simulation, as shown
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in Figure 6. The principal stress and vertical stress in front of the working face show a trend
of increasing first and then decreasing. The peak stress appears at about 10 m in front of
the working face. The maximum principal stress peak is about 15 MPa, and the minimum
principal stress peak is about 8 MPa. The peak value of the confining pressure ratio near
the working face reaches about 7.5, and the area within 20 m ahead of working face is
obviously controlled by the advance abutment stress field. The confining pressure ratio
gradually decreases with the distance away from the working face. The confining pressure
ratio is about 1.5 at the front of the working face between 20–100 m. This is consistent with
the distribution characteristics of the side stress field of the goaf, which indicates that the
area 20 m in front of the working face is mainly controlled by the side-mining stress field.
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The angle between the maximum principal stress direction and the vertical direction
near the working face is about 10~30◦. With the distance away from the working face, the
angle gradually increases, and returns to the control of the side stress field of the goaf; then,
the angle is stable at about 45◦, as shown in Figure 5 (orange curve).

After the implementation of Step 4, the axial stress distribution characteristics of the
31115 haulage roadway (a solid coal roadway) are shown in Figure 7. The principal stresses
and vertical stresses also show a trend of increasing first and then decreasing. At about
5 m in front of the working face, each stress value reaches the maximum; the maximum
principal stress peak value is about 12 MPa, and the minimum principal stress peak value is
about 7 MPa, both of which are smaller than the abutment stress peak value of the gob-side
roadway. The confining pressure ratio near the working face also reached about 7.5, and
in the area 10 m away from the working face dropped to about 1.2, indicating that the
influence range of the advance abutment stress of the solid coal roadway is smaller than
that of the gob-side roadway.

Near the working face, the direction of the maximum principal stress deflects at an
angle of 10◦ with the vertical direction. As it is far away from the working face, the direction
of the maximum principal stress gradually deflects to the horizontal direction and returns
to the original rock stress state, as shown in Figure 5 (red curve).
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2.4. Space-Time Evolution Law of Surrounding Rock Plastic Zone

After the implementation of Step 5, the distribution characteristics of surrounding rock
plastic zones at different locations of the 31115 ventilation roadway are shown in Figure 8.
It can be seen that the shape and range of the surrounding rock plastic zone at 200 m and
700 m behind the working face are basically the same. The range of the roof plastic zone at
the side of the coal wall (right) is larger than that at the side of the coal pillar (left), both of
which are distributed asymmetrically. The extent of the roof plastic zone is about 3 m. The
mining of the previous working face caused the stress field of the surrounding rock of the
roadway to be disturbed. The confining pressure ratio reached about 1.5, and the direction
of the main stress also deflected. Therefore, the plastic zone of the surrounding rock of the
roadway presented asymmetry. The surrounding rocks of roadways at different locations
are affected by the same mining disturbance, so the plastic zone is basically the same.

Minerals 2023, 13, 178 7 of 17 
 

 

 
Figure 7. Characteristics of axial stress distribution of solid coal roadway. 

2.4. Space-Time Evolution Law of Surrounding Rock Plastic Zone 
After the implementation of Step 5, the distribution characteristics of surrounding 

rock plastic zones at different locations of the 31115 ventilation roadway are shown in 
Figure 8. It can be seen that the shape and range of the surrounding rock plastic zone at 
200 m and 700 m behind the working face are basically the same. The range of the roof 
plastic zone at the side of the coal wall (right) is larger than that at the side of the coal 
pillar (left), both of which are distributed asymmetrically. The extent of the roof plastic 
zone is about 3 m. The mining of the previous working face caused the stress field of the 
surrounding rock of the roadway to be disturbed. The confining pressure ratio reached 
about 1.5, and the direction of the main stress also deflected. Therefore, the plastic zone of 
the surrounding rock of the roadway presented asymmetry. The surrounding rocks of 
roadways at different locations are affected by the same mining disturbance, so the plastic 
zone is basically the same 

  
(a) (b) 

 

Figure 8. Distribution characteristics of surrounding rock plastic zones at different locations at the 
gob-side roadway (affected by side mining): (a) 200 m behind the previous working face; (b) 700 m 
behind the previous working face. The gray dotted line represents the center line of the roadway. 

Figure 8. Distribution characteristics of surrounding rock plastic zones at different locations at the
gob-side roadway (affected by side mining): (a) 200 m behind the previous working face; (b) 700 m
behind the previous working face. The gray dotted line represents the center line of the roadway.

After the implementation of Step 6, the distribution of surrounding rock plastic zone at
ASSoMF of the 31115 ventilation roadway is shown in Figure 9. The roadway is affected by
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the side-mining stress of the previous working face and the advance abutment stress of this
working face. The plastic zone of the surrounding rock continues to expand on the original
basis. The plastic zone extent of the roadway roof and the side of the coal wall near the
working face increases sharply. The shape and range of the plastic zone of the surrounding
rock do not change much in the area 10 m ahead of the working face and beyond. As a
whole, the plastic zone of roadway-surrounding rock is still distributed asymmetrically,
and the plastic zone of roof is mainly distributed on the side of coal wall (right side). This
shows that on the basis of side-mining stress disturbance, although the superposition of
advance abutment stress has adjusted the direction of principal stress and increased the
confining pressure ratio, the failure direction of the plastic zone of the roof-surrounding
rock has basically not changed, which only causes an increase in the plastic zone range.
In the area beyond the disturbance of advance abutment stress, the plastic zone of the
roadway-surrounding rock is still controlled by the side-mining stress field.
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center line of the roadway.

Both sides of the 31115 haulage roadway are solid coal which is only affected by
mining disturbance of the 31115 working face. After the implementation of Step 6, the
direction of principal stress changes from horizontal to vertical, the confining pressure
ratio increases sharply, and the surrounding rock plastic zone is also developed, as shown
in Figure 10. The surrounding rock plastic zone is still distributed asymmetrically near
the working face, within the range of about 10 m ahead of the working face. The roof-
surrounding rock plastic zone is mainly developed at the side of the coal pillar (right side),
and the side plastic zone is mainly developed at the side of the coal wall (left side). With
the distance away from the working face, the surrounding rock plastic zone gradually
changes from asymmetric distribution to symmetric distribution. The roof, floor and the
two sides’ plastic zone of the roadway are symmetrically distributed, with the center line
of the roadway at 20 m ahead of the working face.
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2.5. Failure Mechanism of Surrounding Rock in Non-Uniform Stress Field

When the surrounding rock of roadway is in a non-uniform stress field (confining
pressure ratio η 6= 1), the plastic zone of surrounding rock will gradually transform from cir-
cular to elliptical and butterfly shape with an increase or decrease in the confining pressure
ratio. The plastic zone of butterfly leaf is located in the direction of the bisector of the angle
between the maximum principal stress and the minimum principal stress. When the stress
direction deflects, the plastic zone of butterfly leaf will also deflect accordingly [31,32].

According to the forementioned simulation results, the η of the 31115 ventilation
roadway is about 3 m in front of the working face, the minimum principal stress (σ3) is
5 MPa, and the angle between the maximum principal stress and the vertical direction (α) is
10 ◦, after the implementation of Step 6. According to the stratum data of Lijiahao coal mine,
the boundary of surrounding rock plastic zone under the conditions of different confining
pressure ratios and principal stress rotations are drawn through Equation (1) [31], as shown
in Figure 11. When the confining pressure ratio increases gradually from 1, the plastic zone
of surrounding rock changes from circular to butterfly shape; when the direction of the
principal stress deflects, the butterfly leaf in the plastic zone deflects to the roadway roof,
showing an asymmetric distribution with the roadway center.

f (
a
R
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a
R
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8
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where
K1 = 9(1− η)2

K2 = −12(1− η)2 + 6(1− η2) cos 2θ

K3= 10(1− η)2 cos2 2θ − 4(1− η)2 sin2(ϕ) cos2 2θ − 2(1− η)2 sin2 2θ − 4(1− η2) cos 2θ +

(1 + η)2



Minerals 2023, 13, 178 10 of 17

K4 = −4(1− η)2 cos 4θ + 2(1 − η2) cos 2θ − 4(1 − η2) sin2(ϕ) cos 2θ − 4
P (1 − λ) cos(2θ)

sin(2ϕ)C

K5 = (1− η)2 − sin2(ϕ)
(

1 + η + 2C
P

cos(ϕ)
sin(ϕ)

)2

where a is the roadway radius, P is the minimum principal stress, C, ϕ are the cohesive
force and friction angle, respectively, and R is the radial plastic zone boundary of the
roadway-surrounding rock.
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The surrounding rock at ASSoMF is in a non-uniform stress field. The confining
pressure ratio can reach about 7.5, and the butterfly-shaped plastic zone of roadway-
surrounding rock is developed; the direction of the maximum principal stress in the stress
field rotates from the horizontal direction to the vertical direction, which causes the butterfly
leaf in plastic zone to deflect to the roof of the roadway, causing asymmetric damage to
the roadway roof. The ASSoMF at the goaf-side roadway is controlled by the stress field of
the side goaf and affected by the advance abutment stress field of the working face. The
butterfly plastic zone deflects to the coal wall side, and the roadway roof damage mainly
develops at the coal wall side; the ASSoMF at solid coal roadway is only affected by the
advance abutment stress field of the working face, and the plastic zone of the butterfly leaf
deflects to the side of the coal pillar, so the roadway roof failure is mainly located at the
side of the coal pillar.

3. Stability Control of Roof Surrounding Rock at ASSoMF
3.1. Current Situation of Advance Support Technology

In order to study the current situation of advance support, some coal working faces in
the Shendong mining area are investigated (see Table 3). At present, self-moving advance
hydraulic support and single-prop support are still widely used for advance support at
ASSoMF. Some mines have also started to test cable (grouting) reinforcement support, and
portable support. The reinforcement cable is mainly applied to the primary mining-affected
roadway (i.e., the haulage roadway) with good roof conditions and weak ground pres-
sure behavior, and the secondary mining-affected roadway (i.e., the ventilation roadway)
with poor roof conditions and strong ground pressure behavior is mainly dominated by
single pillars.

Table 3. Advance support technology for some coal mining in Shendong mining area.

Mine Name Working Face Mining Height Burial Depth Advance Support Technology

Ulan Mulun 12405 2.5~3 m 140 m HR: reinforcement cable; VR: advance
hydraulic support

Ulan Mulun 31411 3.8 m 170 m Single-prop support

Liuta 22102 3 m 110 m HR: single-prop support; VR: advance
hydraulic support
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Table 3. Cont.

Mine Name Working Face Mining Height Burial Depth Advance Support Technology

Shigetai 22201 1.9 m 80 m HR: reinforcement cable; VR:
single-prop support

31307 3.6 100 m HR: reinforcement cable; VR: advance
hydraulic support

Cuncaota No. 2 Mine 31205 3.6 m 310 m HR: single-prop support; VR: advance
hydraulic support

Halagou 22521 4.6 m 60 m Advance hydraulic support
Shangwan 22104 6.5 m 120 m Advance hydraulic support

Bulianta 22408 6.5 m 250 m HR: reinforcement cable; VR: advance
hydraulic support

Daliuta 52502 6.8 m 170 m Advance hydraulic support
Yujialiang 52209 4.2 m 100 m Single-prop support

Baode 81308 Ming 3.8 m
Caving 2.8 m 350 m HR: advance hydraulic support; VR:

portal support

Buertai

22204 3.9 m 280 Single-prop support

42106 Ming 3.6 m
Caving 3 m 350 HR: single-prop support; VR: advance

hydraulic support

42204 Ming 3.7 m
Caving 2.5 m 400 m HR: reinforcement cable; VR: advance

hydraulic support

HR: haulage roadway or solid coal roadway; VR: ventilation roadway or gob-side roadway. Data resource:
operating procedures for coal mines in the Shendong mining area.

3.2. Control Analysis of Support Resistance on Surrounding Rock Plastic Zone

Taking the stress state of surrounding rock nearly 3 m in front of the working face of
the Lijiahao 31115 ventilation roadway (see Section 2.5) as an example, the cable structure
element in Flac 3D numerical simulation software is used to simulate the bolt (cable) and
analyze the control effect of the bolt (cable) on the plastic zone of the roadway roof. The
scheme is shown in Table 4. The anchor bolt (cable) parameters are assigned according to
the actual values on site. The anchor bolt (cable) has an anchorage length of 1 m (2 m) and a
prestress of 120 kN (300 kN), which are arranged perpendicular to the roadway roof. There
are three bolts for each roadway side. The shape and extent of the surrounding rock plastic
zone under different support schemes are shown in Figure 12. It can be seen that with
the increase in the number of anchor cables, the shape and extent of the surrounding rock
plastic zone of the roadway have hardly changed significantly. In order to quantitatively
analyze the control effect of the support resistance on the plastic zone, the relationship
between the support resistance and the plastic zone volume of the surrounding rock is
calculated, as shown in Figure 13. When there is no support, the plastic zone volume of
surrounding rock is about 88.1 m3. When the number of anchor cables increases from
two to four sets, that is, the support resistance increases from 0.26 MPa to 0.38 MPa, the
plastic zone volume decreases from 88.1 m3 to about 80 m3. If the support resistance
continues to increase, the plastic zone volume of surrounding rock hardly changes. The
volume control rate of support to the surrounding rock plastic zone is about 9%. The above
analysis shows that bolt (cable) support has a limited effect on controlling the plastic zone
of surrounding rock, and the existing bolt (cable) support technology cannot effectively
reduce the plastic zone.

Table 4. Support scheme.

Support Scheme Group Number of Bolts/Piece Density of Anchor Cable/
(Piece m−1) Support Resistance/MPa

1 6 2 0.26
2 6 4 0.38
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Table 4. Cont.

Support Scheme Group Number of Bolts/Piece Density of Anchor Cable/
(Piece m−1) Support Resistance/MPa

3 6 6 0.50
4 6 8 0.62
5 6 10 0.74
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3.3. Advance Support Principle of Mining Face 
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technology has very limited control over the plastic zone, so the support design should 
mainly adapt to the surrounding rock deformation and prevent roof falls. The elongation 
of commonly used bolts (cables) in coal mines is 17% (3.5%), that is, the maximum defor-
mation of a 2 m bolt is about 300 mm, and the maximum deformation of a 6.5 m anchor 
cable is about 220 mm. For the surrounding rock of the roadway roof at ASSoMF, the bolt 
often fails because the length is not big enough to be anchored in the stable rock stratum. 
Although the anchor cable can be anchored in the stable rock stratum, its low elongation 
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3.3. Advance Support Principle of Mining Face

Under economic conditions, the support resistance provided by the existing support
technology has very limited control over the plastic zone, so the support design should
mainly adapt to the surrounding rock deformation and prevent roof falls. The elongation of
commonly used bolts (cables) in coal mines is 17% (3.5%), that is, the maximum deformation
of a 2 m bolt is about 300 mm, and the maximum deformation of a 6.5 m anchor cable is
about 220 mm. For the surrounding rock of the roadway roof at ASSoMF, the bolt often fails
because the length is not big enough to be anchored in the stable rock stratum. Although
the anchor cable can be anchored in the stable rock stratum, its low elongation cannot adapt
to the large deformation of the surrounding rock. The active support such as a bolt (cable)
may find it difficult to adapt to the large deformation of roadway-surrounding rock due to
its material property limitations. Therefore, for the advance support of a large deformation
roadway, passive support technology should be considered in order to give full function to
the ability of passive support to adapt to the large deformation of the roadway. In addition,
the soft roof is repeatedly supported by advance hydraulic support, which may collapse
easily. Compared with the larger labor intensity of single pillar, the mechanized movement
of support equipment also needs to be considered. The key purpose of passive support
shall be to ensure that the support body has sufficient strength and stiffness, can bear the
load of broken roof, and avoids repeated support to the roof.

4. Advance Support Equipment without Repeated Support for Mechanized Movement
4.1. Characteristics of the Equipment

Based on the above research, this paper proposes advance support equipment without
repeated support for mechanized movement, as shown in Figure 14. The equipment is
mainly composed of three parts: (1) foldable support units; (2) an intelligent removal and
support platform; and (3) a support traction system. The equipment can mechanically fold
support units at the rear through the intelligent operation platform, and then transfer it
to the front through the traction system for re-erection so that the support units can avoid
repeatedly supporting the roadway roof.
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The top beam of the support unit can be folded horizontally, which is conducive to
movement automation; The beam can be retracted, which is more applicable to the roadway
with serious deformation on both sides. The beam is a double-plane independent support
structure which can adapt to various changes in coal seam dip and is more suitable for a
broken roof with asymmetric deformation, as shown in Figure 15.
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Figure 15. Structure of support unit.

The main technical parameters of the advance support equipment are shown in Table 5.
The height of the support is 2500–4200 mm, which means that the support can adapt to the
deformation of a roadway roof of about 1700 mm, which is far greater than the extension of
the bolt (cable) support, indicating that the equipment can adapt to the large deformation
characteristics of the roadway roof.

Table 5. Main technical parameters.

Category Parameter

Passage width ≥3000 mm
Passage height ≥2500 mm
Working height 2500~4200 mm

Working resistance >5000 KN
Support strength >0.7 MPa

4.2. Analysis of Support Opportunity

Assuming that the support is fully coupled with the surrounding rock roof of the road-
way, the coupling model of the surrounding rock may be established and and supported
using flac3d software [33], as shown in Figure 16. The stress of support top beam under
different roof subsidence is shown in Table 6. It can be seen that with the increase in the
roof subsidence before the support (from 0 to 45 mm), the pressure on the support top
beam decreases first, and then increases after the support is balanced (2.5~0.3~0.4 MPa);
therefore, there is an optimal support opportunity. When the roof subsidence before the
support is 35 mm, the load on the support top beam is the smallest, at about 0.3 MPa.

Table 6. Load on support under different roof subsidence.

Subsidence of Roof before
Support/mm

Load on Support Top Beam after
Support Balance/MPa

0 2.50
10 0.50
15 0.45
20 0.43
25 0.41
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Table 6. Cont.

Subsidence of Roof before
Support/mm

Load on Support Top Beam after
Support Balance/MPa

30 0.37
35 0.30
40 0.35
45 0.40
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5. Conclusions 
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field; the maximum confining pressure ratio can reach 7, and the direction of the maxi-
mum principal stress also deflects (the angle with vertical direction is about 10–25°). This 

Figure 16. Coupling model of surrounding rock and support.

4.3. Stability Analysis the Equipment

According to the above analysis, the maximum load on the top beam of the support is
about 2.5 MPa. The overall material of the support is Q235 steel (elastic modulus: 210 GPa,
Poisson’s ratio: 0.28), that is, the yield strength is 235 MPa. In order to check the strength
of the support, the support model is established, and some details that do not affect the
results are simply processed.

A total of 1.5 times the maximum load (3.75 MPa) is used to load the top beam of the
support. The overall stress diagram of the support is shown in Figure 17. It can be seen
from the figure that the stress on the top beam of the support is about 43 MPa, and the
stress on the support column is the maximum, about 229 MPa. The stress on the support is
within the range of material strength, indicating that the support can well bear the load of
the roof and maintain the stability of the roadway roof.

Minerals 2023, 13, 178 15 of 17 
 

 

35 0.30 
40 0.35 
45 0.40 

 
Figure 16. Coupling model of surrounding rock and support. 

4.3. Stability Analysis the Equipment 
According to the above analysis, the maximum load on the top beam of the support 

is about 2.5 MPa. The overall material of the support is Q235 steel (elastic modulus: 210 
GPa, Poisson’s ratio: 0.28), that is, the yield strength is 235 MPa. In order to check the 
strength of the support, the support model is established, and some details that do not 
affect the results are simply processed. 

A total of 1.5 times the maximum load (3.75 MPa) is used to load the top beam of the 
support. The overall stress diagram of the support is shown in Figure 17. It can be seen 
from the figure that the stress on the top beam of the support is about 43 MPa, and the 
stress on the support column is the maximum, about 229 MPa. The stress on the support 
is within the range of material strength, indicating that the support can well bear the load 
of the roof and maintain the stability of the roadway roof. 

 
Figure 17. Stress diagram of the support. 

5. Conclusions 
(1) Due to the influence of mining, the roadway at ASSoMF is in a non-uniform stress 

field; the maximum confining pressure ratio can reach 7, and the direction of the maxi-
mum principal stress also deflects (the angle with vertical direction is about 10–25°). This 

Figure 17. Stress diagram of the support.



Minerals 2023, 13, 178 16 of 17

5. Conclusions

(1) Due to the influence of mining, the roadway at ASSoMF is in a non-uniform stress
field; the maximum confining pressure ratio can reach 7, and the direction of the maximum
principal stress also deflects (the angle with vertical direction is about 10–25◦). This makes
the roof of the roadway produce butterfly asymmetric damage, and the roadway along the
goaf side is more damaged than the roadway along the solid coal side.

(2) The support resistance provided by the existing support technology is much
smaller than the original rock stress, and the control rate of the plastic zone is only about
9%, which is characterized by “low resistance and small effect”. The advance support
should mainly adapt to the surrounding rock deformation of the roadway. Passive support
has large adaptability to surrounding rock deformation, and it should be ensured that it
has sufficient strength to bear the load of the broken roof.

(3) The advance support equipment without repeated support for mechanized movement
is proposed. The strength check results of the support show that the load borne by the support
is within the range of material strength. There are inevitable errors between the theoretical
analysis and the actual engineering conditions, so this support equipment only provides a
reference for roadway support under similar geological and geotechnical circumstances.
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