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Abstract: There are many celestine deposits and mineralization points in the Huayingshan ore district
which form the largest strontium resource base in China. Among these celestine deposits, the Yuxia
and Xinglong are two of the larger deposits. Previous studies have displayed different views on
the genesis of the celestine deposit in the Huayingshan ore district. In this study, we conducted
field obversions, geochemistry, and fluid inclusion studies to investigate the sources of ore-forming
matters and the metallogenic mechanism of the celestine deposit. Four types of fluid inclusion (FI),
namely PL (pure liquid FI), PV (pure vapor FI), L-V (liquid-vapor two-phase FI), and L-V-S (liquid-
vapor-solid three-phase FI) have been identified in celestine from different types of ore in the Xishan
anticline. The ore-forming fluids belong to the NaCl-H2 O system with moderate to low temperature
(190–220 ◦C) and moderate salinity (5–9 wt%, NaCl equiv.). Different types of ores were formed by
the same period of hydrothermal activity, which is supported by the results of the microthermometer
study. Geological, thermometric data, and published hydrogen and oxygen isotope results indicate
that the hot brines associated with mineralization mainly originated from meteoric water and some
of diagenetic fluid. The Sr (87Sr/86Sr = 0.7076–0.7078) and S (δ34S = 36.4–39.0) isotope values of
celestine are consistent with those of the Jialingjiang Formation, indicating that ore metals in hot
brines were predominantly derived from that formation. In situ analysis of celestine shows that there
is a strong negative correlation between Sr and CaO (R2 = 0.95) and combined with mineralogical
and isotope geochemical evidence, we concluded that the precipitation mechanism of celestine is the
replacement of gypsum with Sr-rich hot brines. Based on the above research and the classification of
celestine deposit type, we classified the celestine deposits in Huayingshan as being of hydrothermal
type. The formation of celestine deposits can be divided into three periods: (1) evaporation period,
forming the source bed; (2) hydrothermal activity period, forming celestine by replacement of
gypsum with Sr-rich hot brines; (3) supergene period, where meteoric water dissolves orebodies and
strontianization occurs.

Keywords: celestine deposit; strontium isotope; sulfur isotope; fluid inclusion; Triassic; Huayingshan;
Sichuan Basin

1. Introduction

The average concentration of Sr in the Earth’s crust is 0.04%, making it the 15th most
abundant element in the crust [1]. Celestine (SrSO4) and strontianite (SrCO3) are the only
two valuable minerals rich in Sr [2–4]. However, celestine deposits are the main exploitable
Sr deposits in the world [5,6]. Celestine ore bodies usually occur in marine carbonates
and evaporites from the Silurian to the Pliocene in layers [7–10]. Based on the geologi-
cal and geochemical characteristics of the celestine deposits, two principal metallogenic
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mechanisms have been proposed: (1) celestine formed by syngenetic precipitation during
the evaporation of seawater, and (2) the epigenetic replacement of marine carbonates and
sulfates by celestine [10–12].

Huayingshan is located in the southeast of the Sichuan Basin. There are many super-
large to large-scale celestine deposits in the Huayingshan, making it the largest strontium
resource base in China [13–17]. These celestine deposits share similar geological charac-
teristics, and the orebodies are mainly hosted by marine sedimentary rocks of the Triassic
Jialingjiang Formation (T1j) in layers. Many geological characteristics of these deposits are
similar to those of many large celestine deposits in the world (Table 1).

Table 1. Properties of some celestine deposits in the world.

Deposit/Mining
Area Location

Coastal
Carbonates and

Evaporites

Age of
Host Rock

Hydrothermal
Activity Fluid Properties Celestine

87Sr/86Sr

Coeval
Seawater
87Sr/86Sr

Interpreted
Sr Source Reference

Montevive Spain yes Miocene yes basinal brines and
meteoric water

0.7089–
0.7086

basinal
brines [18]

Igualada Spain yes Eocene yes basinal brines and
meteoric water 0.7078 0.7078 evaporites [19]

Paila Mexico yes Cretaceous minor groundwater 0.7077 0.7072 limestones [20]
Karstryggen Greenland yes Permian minor basinal brines 0.7134 0.7068 redbeds [21]

Ain Allega Tunisia yes Triassic yes
basinal brined and
magmatic-meteoric

fluid
carbonates [22]

Jebel Doghra Tunisia yes Triassic yes basinal brines
feldspar-

rich
series

[5]

Neuquen Argentina yes Cretaceous yes 0.7072 0.7072 seawater [23]
Yate Great Britain yes Triassic no 0.7105 0.7076 limestones [24]

Ohio basin United
States yes Silurian some basinal brines evaporites [25]

Sivas basin Turkey yes Miocene yes

magmatic–
hydrothermal

fluids and meteoric
water

0.7078 0.7083–
0.7087 evaporites [26]

Abolfares Iran yes Oligo-
Miocene yes diagenetic brines carbonates [3]

Likak Iran yes Miocene yes basinal brines 0.7087–
0.7088

0.7083–
0.7090 evaporites [2]

Cyprus Cyprus yes Miocene yes basinal brines 0.7089 carbonates [27]

Huyingshan China yes Triassic yes basinal brines 0.7076–
0.7078

0.7073–
0.7080

carbonates
and

evaporites

this
study

Dafengshan China no Pliocene no granite [28]

Numerous articles on the geological, geochemical characteristics and genesis of the
celestine deposit in the Huayingshan have been published [13,15,29–40], but the view-
points on the genesis of the deposits are inconsistent and can be summarized as follows:
(1) Sedimentary deposits related to seawater evaporation [31,40], (2) hydrothermal deposits
related to hot brines [13,15,41,42], (3) both sedimentary and hot brine types exist [35].

In this study, we conducted field geological investigation and sampling of the celestite
deposits in Huayingshan, and systematically studied the ore-forming fluid characteristics
and geochemistry characteristics, including the fluid inclusion of petrography, microther-
mometry, laser Raman spectroscopy, in situ analysis, and stable isotope measurements (Sr,
S) of celestine and country rocks. These new data allow us to better limit the genesis of Sr
mineralization in the Huayingshan ore district.

2. Regional Geology

The Huayingshan Sr metallogenic belt is located in the Huayingshan anticlinorium in
the SE of the Sichuan foreland basin (Figure 1a). Detailed studies of the geological settings
of the Sichuan Basin have been published previously [43–49]. In the study area, tectonic
evolution can be divided into two stages: (1) Indosinian, affected by tectonic movements,
the study area transformed marine facies to continental facies, and (2) the Yanshanian–
Himalayan, affected by tectonic movements, the study area is characterized by intensive
lateral compression, forming the Sichuan foreland basin [50–53].
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Xishan, (3)—Libixia, (4)—Guanyinxia. (c) DEM of the fold belt in the east of the Sichuan Basin, 
showing the geomorphic features of the fold belt. (d) Geological section through the fold belt in the 
east of the Sichuan Basin, showing the fault distribution (modified from [55]). 

The regional stratigraphic succession comprises the Paleozoic, Triassic, Jurassic, and 
Quaternary (Figure 1b). The first of these is less exposed in the study area, which is dom-
inated by shale. The second is widely distributed and includes the Feixianugan Formation 
(T1f), Jialiangjiang Formation (T1j), Leikoupo Formation (T2l), and Xujiahe Formation (T3xj). 

Figure 1. (a) Simplified tectonic map of part of China and the Sichuan basin (modified from [46,54]),
showing the location of the study area. (b) Regional geological map of the Chongqing Sr metallogenic
province, showing the distribution of the Sr deposits and mineralized spot (modified from [13]);
1—Yuxia, 2—Chenjiapo, 3—Xinglong, 4—Gangou, 5—Yangtianwo, (1)—Huayingshan, (2)—Xishan,
(3)—Libixia, (4)—Guanyinxia. (c) DEM of the fold belt in the east of the Sichuan Basin, showing the
geomorphic features of the fold belt. (d) Geological section through the fold belt in the east of the
Sichuan Basin, showing the fault distribution (modified from [55]).

The regional stratigraphic succession comprises the Paleozoic, Triassic, Jurassic, and
Quaternary (Figure 1b). The first of these is less exposed in the study area, which is
dominated by shale. The second is widely distributed and includes the Feixianugan
Formation (T1f ), Jialiangjiang Formation (T1j), Leikoupo Formation (T2l), and Xujiahe
Formation (T3xj). The Feixianguan Fm and Xujiahe Fm are dominated by clastic rock, of
which the Xujiahe Fm is the main coal-bearing stratum [56,57]. The other two formations
are dominated by dolomite and limestone, of which the Jialingjiang Formation is the
main reservoir for celestite deposits, natural gas, and geothermal energy [13,58–61]. The
Jurassic strata are widely distributed in the study area and are dominated by clastic rocks.
Quaternary strata are mainly distributed in low-lying areas, mostly as loose sediments. No
magmatic rocks are found in the study area.

The Huayingshan fault is the main fault in this area, with a total length of approxi-
mately 500 km (Figure 1b). It plays an important role in controlling the tectonic evolution
on both of its sides [53,62,63]. In addition, there are some faults along the fold axis and some
buried faults discovered by geophysical methods (Figure 1d) [64]. Affected by Yanshanian–
Himalayan tectonic movement, the strata on the southeastern side of the Huayingshan fault



Minerals 2023, 13, 279 4 of 26

folded and formed many tight anticlines and open synclines, including Xishan anticline,
Libixia anticline, Tongluoxia anticline, and Guanyinxia anticline [60]. The anticlines and
synclines are alternately distributed, forming a broom-like fold belt [65]. Within this area,
the anticlines formed mountains and the synclines formed valleys, forming the geomor-
phological characteristics of one mountain with two valleys and three ridges (Figure 1c).
Celestine deposits are distributed on the southeast side of the Huayingshan fault, mainly
in the Xishan anticline (Figure 1b). In addition to celestine deposits, it is also rich in coal,
oil, potash, hot spring, natural gas, etc. [13,56,60,61].

3. Deposit Geology

The celestine deposits in the Huayingshan Sr metallogenic belt are mainly distributed
in the northern part of the Xishan anticline (Figure 1b), and these deposits have similar
metallogenic backgrounds and geological characteristics.

The exposed strata are Triassic and Quaternary (Figure 2). The Quaternary comprises
some loose sediments, distributed in low-lying areas. The Triassic includes the Jialingjiang
Formation (T1j), Leikoupo formation (T2l), and Xujiahe formation(T3xj) (Figure 3). The T1j
is typically exposed at the axis of the anticline, where the thickness is greater than 500 m
thick [66]. It can be divided into four sections (Figure 4): the first member of Jialingjiang Fm
(T1j1) is dominated by limestone, the upper part of the second member (T1j2) is gypsum–
salt karst breccia and the lower part is dolomite with interbedded limestone. The third
member of Jialingjiang Fm (T1j3) is dominated by limestone and the bottom is claystone,
and the fourth (T1j4) is similar to the second. Regionally, the second (T1j2) and fourth (T1j4)
members of Jialingjiang Fm are characterized by higher Sr content and higher porosity and
are the main reservoir of celestine deposits. The T2l and T3xj are exposed on both flanks of
the anticline. The T2l is dominated by dolomite, which can be up to 260 m thick, whereas
the T3xj is dominated by clastic rock.
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Figure 5. Photographs showing the characteristics of the ore bodies in the underground mine taken at
a depth of 305 m and hand specimens collected from underground and drilling. (a) Banded celestine
in the Jialingjiang Formation. (b) Partially enlarged photograph of banded ore, showing that the ore
is composed of a dark microcrystalline carbonate band and a white tabular crystalline celestine band.
(c) Flexure structure in country rock, with red arrows indicating the direction of strata movement.
The ore body is not significantly deformed, indicating that it was formed after the tectonic movement.
(d) Photograph of vein ore and banded ore, showing that they were formed during the same period of
hydrothermal activity. (e) Reticulate ore. (f) Breccia ore; breccia is carbonate, and cement is celestine.
(g) Photograph of celestine geode, showing celestincrystals as light blue columnar. (h) Banded ore.
(i) White and light-blue celestine clusters. (j) Vein ore. (k) Disseminated ore. (l) Organic vein in
dolomite. (m) Massive ore. (n) Plate-column celestine aggregate.

The ore bodies mainly host in the T1j2 and T1j4 (Figure 3). Affected by faults and
groundwater, the orebody is divided into multiple sections [14], most of which are strat-
iform (Figure 5a) and stratoid, with some lenticular, veined (Figure 5d), and reticulated
(Figure 5e) sections. The structure of ores is common in banded (Figure 4h), massive
(Figure 5m), and veined (Figure 5j), followed by brecciated (Figure 5f) and disseminated
(Figures 5k and 6d) ores. Some celestine is filled in the vugs (Figure 5g). Ore minerals are
mainly composed of celestine, followed by strontianite and barium celestine (Figure 6a).
Gangue minerals mainly comprise calcite, dolomite, barite, and gypsum (Figure 6b,c). Ce-
lestine is well crystallized, mainly plate-like, granular, and lath-like in shape (Figure 5m,i).
The color of celestine crystals is changeable, including colorless, milky white, sometimes
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sky blue or light yellow, and it could be light grey. Nevertheless, colorless and milky
white crystals are more common. The alteration types mainly include strontianitzation
(Figure 6g,h,i) and carbonatization (Figure 6j).
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Figure 6. Photomicrographs of ore and gangue minerals in the Yuxia and Xinglong celestine deposits.
(a) Euhedral–hypidiomorphic tabular celestine. (b) Celestine coexists with calcite. (c) Dolomite and
muddy dolomite exist in the gap of the celestine. (d) Veined and disseminated celestine. (e) Veined
celestine; the wall rock is bioclastic limestone. (f). Oolitic limestone was filled and replaced by later
celestine. (g–i) Different degrees of strontianitzation. (j) Carbonatization. Clt = celestine; Cal = calcite;
Dol = dolomite; Str = strontianite.

4. Sampling and Analytical Methods
4.1. Sampling

The locations of the samples are shown in Figure 2. Samples named YX- and YX305
were collected from the Yuxia deposit, and those named ZK231-, SJW-, and SZL- were
collected from the Xinglong deposit. These samples contain the main types of deposits
(Figure 5). In addition to the ore, we also collected the host rocks.

4.2. Fluid Inclusion Study

Twenty-four samples from the main types of ores were used in the fluid inclusion study.
The morphological characteristics of fluid inclusions on double-polished thick sections
were observed, with a polarized light microscope.
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Microthermometry was performed at the Institute of Mineral Resources, Chinese
Academy of Geological Sciences, using a Linkam MDS-600 heating–freezing stage attached
to a Zeiss microscope. The temperature calibration of the heating–freezing stage was
carried out by analyzing standard samples of synthetic fluid inclusions supplied by Fluid
Inc. (Oakland, CA, USA). The accuracy of the measurements of the freezing–heating stage
from 196 to 25 ◦C is ±0.1 ◦C, from 25 to 400 ◦C is ±1 ◦C, and from 400 to 600 is ±2 ◦C. The
rate of freezing–heating generally ranged from 1 to 5 ◦C/min, but when the temperature
was close to the homogenization temperature and freezing point of aqueous inclusions,
the rate was reduced to 0.2 ◦C/min. The salinities of fluid inclusions were approximately
calculated using the formula for the NaCl–H2 O system [68].

Laser Raman spectroscopic analyses of fluid inclusions were performed on a LABHR–
VIS Jobin Yvon LabRam HR800 Raman microspectrometer at the Analytical Department of
Beijing Institute of Geology, China Nuclear Industry Group, using a 532 nm Torus laser as the
excitation source and a power of 44 mW. The recording time of the spectrum is 30 s, the size of
the spot is 1 µm, ranging from 10 to 4000 cm−1, and the spectral resolution was 1 to 2 cm−1.

4.3. Strontium and Sulfur Isotope

Five celestine samples and seven host rock samples were used for the study of stron-
tium isotopes. Selecting celestine single mineral samples required the use of physical
binoculars; the separated samples were washed with diluted HCl and diluted water and
dried in an oven, then ground with an agate mortar to 200 mesh, while the rock was directly
selected from fresh samples and broken to 200 mesh.

The determination of strontium isotope was completed at the Analytical Department
of Beijing Institute of Geology, China Nuclear Industry Group. The strontium isotope
determination process is mainly divided into two steps: first, preparation of test solution,
and second, determination of strontium isotope ratio. The whole process is completed in the
isotope chemistry ultra-clean laboratory and the main instruments used in the experiment
are cation exchange column (ϕ 0.5 cm × 15 cm, AG50 W × 8 (H +) 100–200 mesh) and a
high-precision solid thermal ionization mass spectrometer (IsoProbe-T). NBS987 was used
as a standard reference and the precision for strontium isotope measurement is ±0.00003.
The detailed test procedure is described in Ref. [69].

Sulfur isotopic analyses of celestine from the study area were carried out at the Institute
of Mineral Resources, Chinese Academy of Geological Sciences. The analyses were carried
out using 200 mesh pure separates of celestine, which was combusted with Cu2 O in an
oven at 1000 ◦C and under vacuum conditions. Liberated SO2 gas was frozen in a liquid
nitrogen trap. After cryogenic separation from other gases, the sulfur isotopic compositions
were measured with the Canyon Diablo Troilite (CDT) standard on a Thermo–Scientific
MAT-253 mass spectrometer with an analytical precision of ±0.2‰. The routine analytical
precision for the standard material was ±0.2‰. The results were then calibrated against
the standard with a routine analytical precision of ±0.2‰.

4.4. LA–ICP–MS

LA–ICP–MS analysis was performed at The National Research Center for Geoanalysis,
Chinese Academy of Geological Sciences, Beijing, China. These analyses used LA–ICP–
MS, employing an ELEMENT 2 ICP–MS instrument coupled to a UP-213 laser with a
213 nm wavelength, energy of 2 mJ, pulse frequency of 10 Hz, and beam diameter of 40 µm.
NIST610 and KL2-G glass standards were used for internal and external standardization.
Each LA–ICP–MS analysis incorporated a ~15 s background acquisition (gas blank) and a
40 s data acquisition from the sample. Every nine-spot analysis was followed by one NIST
SRM 610 analysis to correct the time-dependent drift of sensitivity and mass discrimination
of the ICP-MS. Reference glasses (NIST610, KL2-G) were analyzed before and after taking
the sample measurements. The NIST SRM 610 was used as the external standard, and data
reduction was performed using the ICPMSDataCal software (Version 9.0) [70].
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5. Analytical Results
5.1. Fluid Inclusion
5.1.1. Fluid Inclusion Petrography

According to the composition of inclusions in the celestine and the proportion of gas
phase and liquid phase, four types of fluid inclusions were identified at ambient temperature.

(1). Pure liquid inclusions (PL-type) exist in different types of ores. They are mainly
spherical ellipsoids in shape, with a small degree of irregularity, and their long axis diam-
eters are generally from around 2 µm to 10 µm (Figure 7a,b,g). These inclusions are less
numerous (approximately 5%) and often occur in association with other types of inclusions.
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(3). Two-phase (liquid + vapor) inclusions are the main types of inclusions. They are 
mainly elliptical and spherical, with partial irregularity, and generally range from 13 μm 
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Figure 7. Photomicrographs of fluid inclusions in the celestine deposit in the study area showing
representative primary, two-phase (liquid + vapor) fluid inclusions, and three-phase (liquid + vapor +
solid) fluid inclusions in the celestine. (a) Primary two-phase fluid inclusions and secondary gaseous
inclusions, with the latter showing directional orientation. (b) Fluid inclusions group. (c) Isolated
fluid inclusions. (d) Isolated primary fluid inclusions and bead-like secondary inclusions. (e) and
(f) are primary two-phase fluid inclusions and pure liquid inclusions. (g) Primary two-phase fluid
inclusions and pure vapor inclusions. (h) Suborbicular fluid inclusion. (i) and (j) are primary three-
phase fluid inclusion, showing that the daughter minerals are rectangular. (k) Irregular three-phase
fluid inclusion, showing that the daughter mineral is square. (l) Oval fluid inclusion.

(2). Pure vapor fluid inclusions (PV-type) are found in various ores. These inclusions
are mainly composed of gases and the diameter is generally 3 µm to 5 µm and are mainly
spherical and elliptical. They are gray or black under the polarizing microscope (Figure 7f),
and there are no phase transitions in the process of heating and cooling.

(3). Two-phase (liquid + vapor) inclusions are the main types of inclusions. They
are mainly elliptical and spherical, with partial irregularity, and generally range from
13 µm to 20 µm (few reaching 30 µm) in diameter (Figure 7d). According to the ra-
tios of vapor/liquid, two-phase inclusions can be divided into liquid-rich inclusions
(liquid/vapor > 1) (Figure 7a,b,d) and vapor-rich inclusions (liquid/vapor < 1) (Figure 7c).
The former is the main type, often appearing in groups with pure vapor fluid inclusions
and pure liquid inclusions, which homogenize with the liquid phase after heating.
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(4). Three-phase (liquid + vapor + solid) inclusions are rare and can only be seen
occasionally. The morphology of three-phase inclusions is various and mainly irregular
(Figure 7i,j,k). The shape of daughter minerals in inclusions is rectangular or nearly
rectangular, and the length is generally bewteen 3 µm and 6 µm.

Among the four kinds of celestine ore samples, the fluid inclusions in the banded ore
and vein ore are abundant and larger, and they are distributed in groups.

5.1.2. Microthermometry

Only two-phase liquid-rich fluid inclusions were used to measure ice-melting and
homogenization temperatures, and they were randomly selected from primary inclusions
in the good crystal of the celestine. The homogenization temperature and salinity of
796 fluid inclusions are shown in Table 2 (the salinity of some inclusions has not been tested
successfully). Fluid inclusions in ZK231- samples have a wide range of homogenization
temperatures, ranging from 173 ◦C to 330 ◦C, with most numbers clustered from around
200 ◦C to 220 ◦C, and ice-melting temperatures ranging from –2.6 ◦C to –8.8 ◦C, correspond-
ing to 3.6 wt% to 12.6 wt% NaCl equiv., with most numbers clustered from 7 wt% to 8 wt%
and from 10 wt% to 12 wt% NaCl equiv. (Figure 8a,b).

Table 2. Summary of the microthermometric data of fluid inclusions in the celestine from the celestine
deposits in the Xishan anticline. (Numbers in parentheses represent the number of measurements,
and Th represents homogenization temperature.)

Sample No. Type
Characteristics of Inclusions

Salinity (wt% NaCl Equiv.) Th (◦C)
Size (µm) Vapor Volume (%)

ZK231-444.75 vein 3–24 5–15 5.6–11.7 (26) 190–330 (27)
ZK231-452.45 vein 3–27 5–20 4.3–12.6 (34) 173–345 (37)
ZK231-458.15 vein 2–15 5–20 5.3–11.1 (26) 192–221 (38)
ZK231-460.45 massive 5–17 10–20 10.2–12.0 (35) 211–232 (43)
ZK231-465.05 striped 4–19 5–20 3.6–11.6 (34) 181–229 (40)

YX305 S2 massive 3–21 5–25 0.9–4.8 (48) 157–278 (55)
YX305II3 striped 5–18 5–20 2.1–5.4 (34) 148–276 (44)

YX305 S3 3© vein 3–15 5–15 5.9–8.1 (22) 192–242 (26)
YX305 S3 2© vein 3–17 5–15 2.6–9.1 (26) 177–258 (26)
YX305 S3 1© vein 4–20 5–15 0.7–11.7 (32) 165–277 (34)

YX305II1 striped 3–16 5–15 3.7–8.0 (45) 167–283 (45)
YX305II-2 striped 3–19 5–20 2.9–5.9 (39) 182–224 (45)

YX-H2 striped 7–23 5–15 1.6–9.7 (33) 152–315 (35)
YX-H3 striped 5–20 5–20 2.7–6.7 (46) 172–297 (44)
YX-H5 striped 6–22 10–20 2.6–10.5 (33) 106–300 (31)
YX-H6 striped 3–23 5–15 4.0–11.9 (30) 180–297 (32)
SJW-H9 striped 5–21 5–20 5.1–10.0 (32) 169–263 (33)
SJW-H8 striped 3–25 5–20 1.4–8.3 (32) 173–262 (32)
SJW-H5 striped 3–20 5–20 4.7–13.5 (31) 174–313 (31)
SJW-H4 striped 3–15 5–25 7.9–11.7 (28) 147–221 (28)
SJW-H1 massive 3–10 10–25 5.3–9.0 (10) 199–262 (10)
SZL-H1 massive 4–14 10–20 5.7–13.4 (20) 195–300 (20)
SZL-H2 striped 3–17 5–25 5.7–11.6 (20) 140–271 (20)
SZL-H3 striped 5–15 5–20 6.9–10.9 (20) 166–222 (20)
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The homogenization temperature of fluid inclusions in YX305- samples, at a range of
148 ◦C to 283 ◦C with maximum frequency from 200 ◦C to 220 ◦C, at an ice-melting temperature
between −0.5 ◦C and −11.3 ◦C, corresponding to 0.9 wt% to 11.7 wt% NaCl equiv.

With most numbers clustered around 5 wt% to 6 wt% NaCl equiv. (Figure 8c,d). The
microthermometry results of fluid inclusions in YX- samples are similar to those of fluid
inclusions in YX305- samples (Figure 8e,f).

The homogenization temperatures of fluid inclusions in SJW- samples range from
147 ◦C to 313 ◦C, and their ice-melting temperatures range from −0.8 ◦C to −9.6 ◦C,
corresponding to 1.4 wt% to 13.5 wt% NaCl equiv., with most numbers clustered around
6 wt% to 7 wt% NaCl equiv. and 9 wt% to 10 wt% NaCl equiv. (Figure 8g,h).

The homogenization temperatures of the fluid inclusions in the SZL- samples, ranging
from 140 ◦C to 300 ◦C, mostly clustered around 180 ◦C to 200 ◦C and 220 ◦C to 240 ◦C, with
their ice melting temperatures ranging from −3.5 ◦C to −9.5 ◦C, corresponding to 5.7 wt%
to 13.4 wt% NaCl equiv. (Figure 8i,j). The distribution of their salinity is not obvious, partly
concentrated in the 6 wt% to 8 wt% NaCl equiv., whereas the other part is distributed
between 9 wt% and 11 wt% NaCl equiv. A possible reason for this phenomenon is that
some of the inclusions are affected by cracks or cleavage.

The statistics of all the test results show that the homogeneous temperature of fluid
inclusions is concentrated between 200 ◦C and 220 ◦C (Figure 8k), and the salinity of fluid
inclusions is concentrated between 6 wt% and 8 wt% NaCl equiv. (Figure 8l). The ore-
forming fluid has the characteristics of medium temperature and high salinity (Figure 9).

Minerals 2023, 13, x FOR PEER REVIEW 13 of 27 
 

 

with most numbers clustered around 5 wt% to 6 wt% NaCl equiv. (Figure 8c,d). The 
microthermometry results of fluid inclusions in YX- samples are similar to those of fluid 
inclusions in YX305- samples (Figure 8e,f). 

The homogenization temperatures of fluid inclusions in SJW- samples range from 
147 °C to 313 °C, and their ice-melting temperatures range from −0.8 °C to −9.6 °C, corre-
sponding to 1.4 wt% to 13.5 wt% NaCl equiv., with most numbers clustered around 6 wt% 
to 7 wt% NaCl equiv. and 9 wt% to 10 wt% NaCl equiv. (Figure 8g,h). 

The homogenization temperatures of the fluid inclusions in the SZL- samples, rang-
ing from 140 °C to 300 °C, mostly clustered around 180 °C to 200 °C and 220 °C to 240 °C, 
with their ice melting temperatures ranging from −3.5 °C to −9.5 °C, corresponding to 5.7 
wt% to 13.4 wt% NaCl equiv. (Figure 8i,j). The distribution of their salinity is not obvious, 
partly concentrated in the 6 wt% to 8 wt% NaCl equiv., whereas the other part is distrib-
uted between 9 wt% and 11 wt% NaCl equiv. A possible reason for this phenomenon is 
that some of the inclusions are affected by cracks or cleavage.  

The statistics of all the test results show that the homogeneous temperature of fluid 
inclusions is concentrated between 200 °C and 220 °C (Figure 8k), and the salinity of fluid 
inclusions is concentrated between 6 wt% and 8 wt% NaCl equiv. (Figure 8l). The ore-
forming fluid has the characteristics of medium temperature and high salinity (Figure 9). 

 
Figure 9. Summary plot of homogenization temperatures and salinities of fluid inclusions. 

5.1.3. Laser Raman Spectroscopy 
Laser Raman (LR) microspectroscopy analysis was performed on different types of 

fluid inclusions. The LR results of individual fluid inclusions indicated that H2O domi-
nated the liquid phase of the fluid inclusions in different types of ores, and the vapor 
phase component is CH4 (Figure 10). Unfortunately, the composition of neutron crystals 
in the fluid inclusions was not detected in this study. 

Figure 9. Summary plot of homogenization temperatures and salinities of fluid inclusions.

5.1.3. Laser Raman Spectroscopy

Laser Raman (LR) microspectroscopy analysis was performed on different types of
fluid inclusions. The LR results of individual fluid inclusions indicated that H2O dominated
the liquid phase of the fluid inclusions in different types of ores, and the vapor phase
component is CH4 (Figure 10). Unfortunately, the composition of neutron crystals in the
fluid inclusions was not detected in this study.
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5.2. Sr-S Isotopes

The Sr isotope ratios of celestine and host rocks are listed in Table 3. Five samples of
celestine have 87Sr/86Sr ratios from 0.7076 to 0.7078, and seven host rocks have 87Sr/86Sr
ratios from 0.7077 to 0.7080 (Figure 11).

Table 3. Sulfur isotopic and strontium isotope composition of celestine and country rocks from the
Huayingshan area.

Deposit Sample No. Type
Sr

δ34S (‰) Comment87Sr/86Sr 2σ

Yuxia YX305 S3 dolomite 0.7078 0.000011 this study
YX305 S1 dolomite 0.7077 0.000012
YX305II1 dolomite 0.7078 0.000011
YX305II2 dolomite 0.7077 0.00001

TL-3 massive celestine 0.7078 0.000011 36.9
TL-5 massive celestine 0.7077 0.000014 36.8
TE-1 celestine 0.7087 [34]
TE-2 celestine 0.7089
TT-4 dolomite 0.7088
TT-9 dolomite 0.7089

Xinglong ZK231-444.75 dolomite 0.7080 0.000017 this study
ZK231-455.75 dolomite 0.7077 0.000016
ZK231-471.25 dolomite 0.7077 0.000011

YX305 S1 banded celestine 0.7078 0.000013 39.0
YX305II3 banded celestine 0.7076 0.000011 36.8

ZK231-455.75 celestine vein 0.7078 0.000009 36.4
ZK231-452.45 celestine 36.9

Hechuan HC-S27 banded celestine 0.7078 [71]
HC-S2 banded celestine 0.7085 34.5

HC-S18 massive celestine 0.7078 37.6
HC-S24 brecciated celestine 0.7094 32.5
HC-S22 massive celestine 0.7072

HC-1 reticulate celestine 0.7068 35.3
Gongqiaoba A2-1 celestine 0.7105 35.92 [34]

A3-1 celestine 0.7098 36.12
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Six samples of celestine were selected for the sulfur isotope test, and the data are listed
in Table 3. Except for the δ34S value of YX305 S1, which is 39.0 ‰, the δ34S values of other
samples are in a narrow range, ranging from 36.4 ‰ to 36.9 ‰ (Figure 12).
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5.3. Major and Trace Elements

Many elements (including major elements and trace elements) are below the detection
limit, especially rare earth elements, which are similar to other celestine deposits around
the world. In this study, only the test results of CaO and Sr were selected. The results are
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shown in Table 4. There was a negative correlation between CaO and Sr content (R2 = 0.95)
(Figure 13).

Table 4. Sr and CaO content of in situ analysis of celestine.

Spot CaO (wt. %) Sr (ppm)

yx305 s-2_1 32.4 226,725
yx305 s-2_2 40.7 145,667
yx305 s-2_3 32.3 227,958
zk231-465-1 30.9 249,758
zk231-465-2 43.6 107,998
zk231-465-3 30.1 249,852
zk231-465-4 29.0 265,361
zk231-465-5 29.6 262,730
zk231-465-6 30.0 254,193
zk231-465-7 31.3 242,441
zk231-465-8 29.4 258,119
zk231-458-1 30.9 250,319
zk231-458-2 30.2 257,271
zk231-458-3 30.6 253,011
zk231-458-4 30.2 256,737
zk231-468-2 25.1 284,900
zk231-468-3 31.3 247,194
zk231-468-4 29.3 261,366
yx305 II1-1 30.4 251,458
yx305 II1-2 29.5 263,088
yx305 II3-1 28.8 270,634
yx305 II3-2 27.4 255,012
yx305 II3-3 28.7 249,488
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6. Discussion
6.1. Nature of the Mineralizing Fluid

In this study, the fluid inclusions in celestine were homogenized at temperatures
ranging from 100 ◦C to 340 ◦C, mostly between 200 ◦C and 220 ◦C, indicating that the
mineralization of celestine is related to hydrothermal activity, and other evidence for coeval
hydrothermal activity has been detected in the study area [75,76]. The formation of many
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large celestine deposits in the world is related to hydrothermal activities, which are mainly
basinal brine [2,3,5,19,20,25,77–79], some of which are related to magmatic–hydrothermal
activities [22,80]. The source of basinal brines is complex. Paleoseawater, meteoric water,
and diagenetic fluid (pore water and crystal water) are all important sources of basinal
brines [81,82]. The ore-forming fluids of most celestine deposits related to the hydrothermal
activity are characterized by meso-low temperature and high salinity [5,10,79,80].

No obvious evidence of magmatic activity has been detected in Huayingshan since
the Permian, and most of the previous research suggests that the mineralization of celestine
deposits in Huayingshan is closely related to the activity of basinal brines, but not related
to the magmatic activity. From the Triassic to the Himalayan [13,17], the Sichuan Basin
experienced a complicated geological evolution. Similarly, the brines in the basin also
experienced a complex evolutionary process, and their composition should be complex in
result [83].

Based on the study of H-O isotopes of celestine in the Huayingshan Sr metallogenic
belt, Zhu et al. [34,41] concluded that the basinal brines were formed by the mixture of
formation water and meteoric water. Li [29,30] believed that the fluid mainly derived from
pore water, crystal water, or structural water discharged during diagenesis and compaction
of carbonate and evaporite. Huang et al. [37,84] believed that a large amount of freshwater
formed by thermochemical sulfate reduction (TSR) is a significant component of the basinal
brines. Zhou determined that the brines originated from Paleoseawater by studying the
H-O isotopes of the Triassic formation brines in the east of the Sichuan Basin [85]. The
microthermometry results show that the ore-forming fluid is characterized by meso-low
temperature and low salinity. Combined with the regional geological background and
published H-O isotope results [41], we believe that large meteoric water is the main source
of basinal brines, and the rapid supply of a large amount of meteoric water along the
faults (mainly Huayingshan fault) is the main factor causing the low salinity of ore-forming
fluid. In addition, the TSR process widely exists in the Triassic strata in the east of the
Sichuan Basin [86–88], and the water formed in this process also reduces the salinity of the
fluid. The results of LR microspectroscopy analysis show that the gas phase composition
of inclusions in various types of celestine is mainly CH4, and there is no similar study on
other celestine deposits around the world. We inferred that the CH4 in the fluid inclusions
derives from the paleo-gas reservoir. The eastern Sichuan Basin is rich in gas, which will
destroy some gas reservoirs in the process of tectonic movement, resulting in the release of
CH4 dissolved in the fluid. The existence of organic matter in the fractures of the host rock
supports this view.

There are several previous studies on the characteristics of ore-forming fluids of ce-
lestine deposits in the Huayingshan Sr metallogenic belt [15,29,41], but the results and
conclusions are inconsistent. Most suggested that there are three stages of hydrothermal
activity during the formation of the deposit: in the first stage, brine activity (220–300 ◦C)
forms banded ore; in the second stage, brine (150–220 ◦C) fills the host rock fissures to
form massive and vein ore; and in the third stage, brine (<150 ◦C) fills along the faults to
form celestine and barite veins [15,16,33,89]. It is also believed that the low homogeniza-
tion temperature (60–70 ◦C) of inclusions in banded ore is due to deposition, while the
relatively high homogenization temperature (160–170 ◦C) of inclusions in massive ore is
related to hot brine activity [39]. One of the important reasons for the difference in the
microthermometry results and conclusions of the fluid inclusions in the celestine is that the
temperature measurement data are limited. In this study, 796 tests were carried out on the
homogenization temperature of fluid inclusions in different types of celestine from different
mining areas. The results show that the homogenization temperature of fluid inclusions in
different types of celestine has no obvious difference, and the peak value of homogenization
temperature has a good consistency, indicating that different types of ores in the study
area may be formed by the same phase of the fluid. Different spaces lead to different types
of ores. Because of the lack of magmatic activity, the heat of ore-forming fluid should
originate from geothermal heating; however, the maximum burial depth of Triassic strata
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is seven kilometers, and the maximum temperature is 200 ◦C [61], which is smaller than
the homogenization temperature of the fluid inclusions in celestine [76], which indicates
that ore-forming fluid has experienced a deeper cycle. Through geophysical exploration,
it was determined that the Huayingshan fault is a deep fault, along which basic rocks are
found. The celestine deposits and modern hot springs are mainly distributed along the
Huayingshan fault [60,90], indicating that it is the main channel for fluid migration.

6.2. Sources of Ore-Forming Matter
6.2.1. Source of Strontium

Sr is the main element of the celestine, and Sr isotope analysis is widely used to identify
the sources of Sr in the celestine [1,18,23,91]. Most of the celestine deposits located around
the world are mainly hosted in marine carbonates and evaporites [92,93], and the Sr isotope
value of celestine is consistent with/or slightly different from that of coeval seawater [10],
indicating that the formation of celestine deposits is closely related to seawater, and some
authors state that the mineralization age of the deposit by comparing the Sr isotope ratio of
celestine with that of seawater [2,27].

The Sr isotope ratios of celestine and host rock measured in this study are 0.7076–0.7078
and 0.7077–0.7080, respectively, which shows good consistency, and these values are within
the Sr isotope values of the Jialingjiang Formation and contemporaneous seawater [73,94–98],
indicating that the formation of celestine deposits is closely related to pale seawater. The
formation of celestine deposits in the Huayingshan strontium metallogenic belt is related to
brine activity, and the metallogenic age is later than the diagenetic age. The characteristics of
many large celestine deposits around the world are similar to those in the Huayingshan [10], and
the formation of these deposits has undergone the following two stages: (1) preconcentration
of Sr in formation during evaporation; and (2) dissolution of Sr in formation during brines
circulation. We believe that the formation of celestine deposits in the Huayingshan area also
includes the above two stages. The first stage is related to the lithofacies paleogeography of the
Early Triassic in the study area. Influenced by the Indosinian Movement, the Sichuan Basin
gradually evolved from an “ocean basin” to a “solitary basin”, and the study area in Sabkha
during the Early Triassic formed the gypsum salt layer [99,100]. Some researchers suggest that
celestine ore bodies can be formed during seawater evaporation [23,40], while some others
disagree and believe that during the process of seawater evaporation, Sr is mainly concentrated
in aragonite and biological carbonate [101,102], and celestine ore bodies cannot be formed. Some
clastic and carbonate rocks formed in Sabkha have high strontium content, which proves that Sr
can be enriched during evaporation [103], but determination of whether it can form celestine
ore bodies requires further research. The second stage, in which there is more Sr enriched in
the brines, is important for the formation of celestine deposits, and many celestine deposits
around the world have experienced the process of Sr re-enrichment [2,3,20,24,25]. The methods
for enriching Sr into brines include the following: (1) Aragonite-calcite conversion: the Triassic
sedimentary environment is favorable for aragonite precipitation. Due to the geochemical
behavior of Sr, aragonite generally contains abundant Sr (up to 10,000 ppm) [104]. During
the diagenetic process, aragonite turns into calcite, releasing a large amount of Sr2+ to pore
water [84,105,106], which converge into brines under compaction. (2) Dolomitization: compared
with dolomite, limestone is rich in Sr, indicating that a large amount of Sr2+ may be released
during dolomitization [107], and this Sr2+ will eventually enter the brines. Due to the high
solubility of the celestine [108], it is impossible to enrich a lot of SO4

2− and Sr2+ together
in solution, and high salinity fluid is beneficial to increase Sr concentration. The salinity of
ore-forming fluids in many celestine deposits is high, but the salinity of ore-forming fluids in
the Huayingshan Sr metallogenic belt is low. Therefore, only reducing the concentration of
sulfate in the fluid can increase the concentration of Sr in the fluid. TSR and bacterial sulfate
reduction (BSR) can consume sulfate in the fluid, resulting in higher Sr concentration in the fluid.
Moreover, in Fe-deficient sediments, the activity of bacteria will reduce the pH and promote the
dissolution of biogenic carbonate [101,109], releasing Sr2+ into the pore water [19].
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Some published Sr isotope values are higher than the Sr isotope values obtained in
this study and higher than the Sr isotope values of the Jialingjiang Formation. Previous
studies have pointed out thatthat the brines have dissolved the strontium of other strata in
the process of circulation [30,34]. However, we concluded that the strontium dominantly
derives from the Jialingjiang Formation. The reasons are as follows: First, the Jialingjiang
Formation has a high strontium content, and the ore-bearing stratum is also the Jialingjiang
Formation. Second, as with the aquiclude, the mudstone and shale interlayer with low
permeability in the formation can restrict the material exchange between the strata, and the
material exchange between the formations mainly passes through the fracture, with low
efficiency. Third, most of the Sr isotopic values of the celestine are consistent with those of
the Jialingjiang Formation.

6.2.2. Source of Sulfur

The δ34S values of most samples are in a narrow range, ranging from 36.4‰ to
36.9‰, which is close to Hechuan and Gongqiaoba celestine deposits [30,34], indicating
that the celestine deposits in the Huayingshan Sr metallogenic belt have the same sulfur
source. In the Early Triassic, the δ34S values of strata in the east of the Sichuan Basin were
significantly higher than those of seawater [110–112], and the δ34S values of the celestine in
the Huayingshan Sr metallogenic belt were higher than those of coeval seawater. However,
the range of sulfur isotope values of the Jialingjiang Formation [74,110] indicates that the S
may derive from the Jialingjiang formation.

The δ34S values of many celestine deposits are higher than that of coeval seawater [18,19,27],
and other deposits associated with marine carbonates and evaporites, such as Au, Pb, and Zn,
also have this characteristic [113–116]. The reason for that is complex; it can be caused by S
fractionation or by the mixing of sulfur from different sources. TSR and BSR are two significant
processes of S fractionation in celestine deposits [92,117]. BSR usually occurs during diagenesis
at 0 to 80 ◦C [109], while the lowest temperature of TSR is 127 ◦C [118,119]. During Indosinian
period, the study area was an evaporation environment, and BSR may be the main factor leading
to the abnormally high δ34S values of the Jialingjiang Formation. The study shows that BSR
can produce from 30‰ to 40‰ high fractionation [109], and the δ34S values of the Jialingjiang
Formation conform to this feature. During the diagenesis, sulfate reduction widely existed in
the lower Triassic in the east of the Sichuan Basin [120], and the sulfur fractionation by the TSR
process is generally less than 20‰ [121,122]. After the BSR process, the δ34S values of diagenetic
fluid and brines increased, and the fractionation by the TSR process in high δ34S values fluid
needs further study.

There are two types of precipitation mechanisms of epigenetic celestine: (1) the mixture
of Sr2+-rich fluid and SO4

2−-rich fluid, which causes the precipitation of celestine [21,27]
and (2) the Sr2+-rich fluid replaces gypsum or carbonate, forming celestine or strontian-
ite [10]. Microthermometer studies of fluid inclusions in the celestine have not determined a
fluid-mixing phenomenon. We conclude that the precipitation of celestine in Huayingshan
is mainly related to the replacement of gypsum by Sr2+-rich fluid, and the S of celestine
dominantly derives from gypsum in the Jialingjiang Formation. The evidence supporting
the above viewpoint is as follows: (1) the δ34S values of celestine and gypsum from the
Jialingjiang Formation are consistent in Huayingshan; (2) in situ analysis of celestine shows
that there is a strong negative correlation between Sr and CaO (R2 = 0.95), which may be the
result of Sr replacing Ca in gypsum; (3) microscopic characteristics show clear evidence of
epigenetic replacement of gypsum by celestine; (4) celestine orebodies occur in gypsum-rich
members of the Jialingjiang Formation. The brines and hot springs in the eastern Sichuan
Basin are rich with SO4

2−, and evidence of δ34S values indicates that these SO4
2− originate

from dissolved gypsum in the Jialingjiang Formation, suggesting that no obvious sulfur
isotope fractionation occurred during the process of dissolving sulfate, which is the reason
why the δ34S values of celestine are consistent with that of gypsum.
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6.3. Mechanism of Mineralization

Two hypotheses have been proposed for the genesis of celestine deposits: (1) celestine
was formed during the evaporation of seawater [123,124] and (2) celestine was formed
during the replacement of carbonates and gypsum by ore-forming fluid [3,21]. Moreover, it
is also believed that some epigenetic celestine deposits are formed by fluid mixing, which
refers to Sr2+-rich fluid and SO4

2−-rich fluid [22,93]. Zherebtsova et al. [103] questioned
the hypothesis of the genesis of syngenetic precipitation through experiments; however,
some viewpoints considered that certain celestine deposits were formed by syngenetic
precipitation, such as the celestine deposit in the Arabian Gulf [27,124]. The carbonate,
evaporite, and clastic rocks formed in an evaporation environment generally contain high
strontium content, indicating that Sr can be enriched in the process of syngenetic deposition.
Numerous large-scale celestine deposits are associated with hydrothermal activity [10],
and the absence of hydrothermal activity is not conducive to the formation of industrial
orebodies. The celestine deposit in Dafengshan, another extra-large celestine deposit in
Qinghai Province, China, and the Arabian Gulf accord with the above viewpoint [27,28,125].

The genesis of the celestine deposit in Huayingshan has been discussed in many pub-
lished papers, but the viewpoints are inconsistent. Three principal viewpoints have been
proposed: (1) the celestine that forms the orebody is formed by syngenetic precipitation
and epigenetic replacement [35]; (2) the celestine deposits in Huayingshan are formed by
the evaporation of seawater [40]; and (3) the celestine orebodies are mainly formed by
replacement gypsum with Sr-rich basinal brines [126]. The results of microthermometry
and the published H-O isotopes values indicate that the formation of celestine deposits
in Huayingshan is related to hot brine activity, and the structure of the ore supports this
conclusion, especially the existence of the vein-like ore, which proves that the formation of
the orebody is related to hydrothermal activity, and some structural features also support
this view.

Based on the analysis of typical celestine deposits in the world in the present work,
we conclude that the metallogenic model of the celestine deposits in Huayingshan is as
follows: (1) in the Early Triassic, the eastern part of the Sichuan Basin was in the Sabkha
environment. During the process of seawater evaporation, Sr was concentrated in biological
carbonate rocks and aragonite, forming the source bed (Figure 14a). (2) The epigenetic
replacement of gypsum by celestine. Aragonite–calcite conversion, dolomitization, and
brine circulation concentrate the strontium in the formation of brines, forming Sr-rich fluid.
Under the action of structural stress, the ore-forming fluid migrated along the faults and
intraformational faulted zones and replaced gypsum to form Celestine (Figure 14b). The
microthermometer results indicate that different types of ore are formed by the same fluid
action, and that the type of ore is determined by the channel of fluid. The tectonic stress
of ore-forming fluid migration is related to regional folding, and the mechanism is the
same as that of the celestine deposits in Abolfares and Likak, Iran [2,3]. (3) The supergene
period is characterized by the dissolution of the orebody by meteoric water, especially
at the turning point of the anticline, resulting in the discontinuity of the orebody [14]
(Figure 14c). In addition to dissolution, strontianitzation occurs in the shallow part of the
ore body under the effect of meteoric water [127]. The celestine deposits and occurrences
in the Huayingshan Sr metallogenic belt have a similar geological background, so the
celestine deposits in the metallogenic belt should have a similar metallogenic model, and
the characteristics of different celestine deposits may have little difference.
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Figure 14. Metallogenic model for the celestine deposits in the Huayingshan area. (a) sr is enriched
in carbonate rocks during the evaporation of seawater. (b) the brine in the basin replaced gypsum to
form celestine during the migration process. (c) in the supergene stage, meteoric water dissolved
part of the celestine ore bodies. The detailed description of subfigures (a–c) in the Section 6.3.
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7. Conclusions

(1). Fluid inclusions of celestine in Huayingshan are mainly liquid-rich fluid inclusions,
and the ore-forming fluids belong to the NaCl-H2O system with medium–low temperature
(190–220 ◦C) and low salinity (5–9 wt%, NaCl equiv.). The ore-forming fluids mainly drive
from basinal brine, with the addition of a large amount of meteoric water. Different types
of ore are formed by the same period of hydrothermal activity.

(2). The gas phase composition of the inclusions in the celestine is mainly CH4, and
these gases should drive from the destroyed paleo-hydrocarbon reservoirs within the
Huayingshan ore district, which is different from other celestine deposits in the world.

(3). Strontium has many sources, but it predominantly derives from the Jialingjiang
Formation, while the Sr in the Jialingjiang Formation derives from ancient seawater. The S
in the celestine derives from gypsum in the Jialingjiang Formation. Sr and CaO showed a
clear negative correlation, indicating that the precipitation of the celestine is caused by the
replacement of gypsum with Sr-rich fluid.

(4). The genesis of the deposit belongs to the hydrothermal type related to basinal
brines, and the ore-forming process is divided into the evaporation period, hydrothermal
period, and supergene period.
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