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Abstract: This study explores the possibility of investigating operator fatigue via the use of off-
the-shelf wearable devices and custom applications. Fatigue is a complex biological phenomenon,
and both subjective and objective data are needed to assess it properly. The development of any
application and the assessments of fatigue should be guided by psychological insights. The methods
used to conceptualize and develop a fatigue-tracking application on a wearable device are presented.
Subjective fatigue data are collected using the Karolinska Sleepiness Scale, while the objective data
are collected using reaction time measurements. The development and testing of the application are
presented in this paper. Data collected with the system suggest that such a system can potentially
replace other, more expensive and intrusive approaches to measure fatigue. Future work on IoT
applications will need to examine organizational culture and support to assess the effectiveness of
such an approach.
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1. Introduction

Over the past couple of decades, new fatigue monitoring technology has been devel-
oped and deployed. Typically, these technologies use measurements such as the PERCLOS
(Percentage of Eyelid Closure) and sleep measures, among others [1]. These technologies
demonstrate the ability to assess the fatigue states of operators. However, these systems
lack the ability to assess performance measures (reaction time) and subjective fatigue expe-
riences of operators. Another issue of these systems is that they allow for tracking during
the productive truck time while often neglecting personal time (see Figure 1).

To systematically assess factors that affect operator fatigue, there is a need for compre-
hensive tools that go beyond the measurement of outcomes of fatigue state, such as eye
closure. Wearable devices provide an opportunity to address this issue by providing more
comprehensive measures of operator fatigue. This methods paper provides an overview
of the introduction of wearable tools and custom applications as a means to assess and
manage operator fatigue.

Smartwatches have built-in functionality, such as sleep and activity tracking, which
are constantly improving in accuracy. Moreover, many of these devices provide coding
platforms to create third-party custom applications. In the context of this study, an applica-
tion was developed that allowed repeated measurement of reaction time and subjective
ratings of fatigue states.

The benefit of this approach is that it provides a simplified performance measurement
that reflects individual operators’ fatigue levels by linking subjective and objective measure-
ments. This functionality will provide an opportunity to gain access to the fatigue levels
of operators with the potential to make a determination of fitness for duty. While other
fatigue management tools exist, issues related to user acceptance hinder their adoption and
use, resulting in low levels of engagement. This is unlike wearable devices, which have
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the potential to increase the engagement levels of operators since these devices provide
additional functionality that benefits users beyond the job-specific context.

Figure 1. Shift cycle for haul truck drivers [2].

This paper provides an overview of the methods used to create an assessment tool,
using an off-the-shelf wearable watch to assess reaction time and subjective measures of
fatigue. The watch was used at various mine sites, and initial results are shown. This
paper provides important lessons learned and the next steps needed to fully develop these
toolkits. The goal of the paper is not to compare systems, but to evaluate the feasibility of
off-the-shelf technologies to assess fatigue. The following sections provide background
on available tools and current approaches for fatigue management. A gap analysis is
provided, as well as the fundamental science behind reaction times and subjective fatigue
measures. A key element of the background is a matrix of needs for reaction time and a
subjective measure of fatigue. Next, various tools are considered, and the background of
the application development process is provided. Then, the methods of developing an
application, its testing, and the unique challenges of deploying wearables at a mine site are
provided. Finally, the paper concludes with the next steps and important findings.

2. Background

For the purpose of this paper, a brief review of operator fatigue is provided here. A
more thorough review of fatigue in mining can be found in Drews et al., 2020 [1], or in
Talebi et al., 2021 [3]. After providing a review of operator fatigue in mining, we give
an overview of reaction times, signal detection theory, and common subjective measures
of fatigue. This background gives a conceptual theory and requirements for application
development and assessment thresholds of functionality. Finally, the wearable technology
and application development process are reviewed, and methods are presented.

2.1. Overview of Fatigue Causes and Effects

Several studies provide insight into and an understanding of what causes fatigue.
One of these studies divides the origin of fatigue into lack of sleep and/or long work
hours (LWHs) and boredom [4]. A broader categorization of causes of fatigue divides them
into individual-based and work-based causes [5]. Of importance here is that the actions
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of both organizations and workers influence fatigue and that responsibility for fatigue
management rests on both.

Organizational contributors to fatigue include time on shift, number of breaks, shift
type, shift pattern, total work time and recovery, and type of work [5]. At the individual
level, pre-existing medical conditions and age-related challenges are some of the major
contributors [5]. While the above categorization focuses on organizational and individual
contributors, another way to categorize them is into general, mental, and muscular [6],
which relates to the definition of fatigue proposed by Frone and Tidwell, 2015 [7].

Table 1 summarizes the factors, definitions, and impact of fatigue contributors [6].
Considering mining operations’ nature, contributors such as shift work, LWHs, repetitive
work, and others tend to cause fatigue in operators. Therefore, it is clear that the mining
industry has factors that increase the risk of fatigue and make it quite difficult to manage.
Mabbott and Lloyd, 2005, show how important it is to explore and understand the variables
related to fatigue in mining in general and what its influences are on organizations more
specifically [8].

Table 1. General, mental, and muscular contributors to fatigue [6].

Factor Definition Impact

Sleep deprivation Sleep deprivation refers to a loss in the number of consecutive hours of sleep. General
Mental exertion Sustained cognitive activity that requires extraordinary mental effort. Mental

Muscular exertion Exhaustion of the muscle due to an extended period of sustained tension or
repetitive activity. Muscular

Workload High physical or mental demands at work. Mental, General

Overtime and LWHs “Overtime” is the amount of time worked that exceeds 40 h of work a week.
LWHs are defined as working more than 8 h on a single shift. Mental, General

Incomplete recovery Recovery is the process of reverting or reversing the negative effects of job
demand to return to a pre-work state. Mental

Work environment Noise, light intensity, vibration, and temperature are all environmental factors
linked to fatigue. Mental, General

Social environment The quality and characteristics of worker relationships with peers and
supervisors, as well as the perceived freedom at work. Mental

Emotional predisposition Emotional disposition pertains to the level of fear, stress, or overall attitude a
worker has toward a certain task or job. Mental

After identifying the causes of fatigue, we established one fundamental question
that needs an answer: what are the effects of fatigue? A common understanding is that
fatigue is considered an organizational threat that could lead to accidents and incidents in
an industrial environment. Consequentially, organizations dedicate themselves to better
controlling fatigue due to its organizational impact.

Fatigue impacts that are demonstrated at the individual level include [4]:

• Reduced decision-making ability;
• Reduced ability to do complex planning;
• Reduced communication skills;
• Reduced productivity or performance;
• Reduced attention and vigilance;
• Reduced ability to handle stress on the job;
• Increased reaction time in speed and thought;
• Loss of memory or the ability to recall details;
• Failure to respond to changes in surroundings or information provided;
• Inability to stay awake (e.g., falling asleep while operating machinery or driving vehicles);
• Increased tendency for risk taking;
• Increased forgetfulness;
• Increased errors in judgment.
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Drews et al., 2020, provide a case study that explores the effect of fatigue in a mining
environment [1]. Among their findings, they report similar effects of fatigue, but also iden-
tify the importance of operators’ awareness when experiencing fatigue. Finally, Dawson
and McCulloch, 2005, explore at the organizational level how fatigue relates to incidents [9].
They present an error trajectory, which includes several layers that contribute to an inci-
dent. It is important to understand the presented layers in order to prevent fatigue-related
incidents from happening. An important aspect of fatigue and incidents is that they are
present in many industries and tend to follow a similar error trajectory [9].

2.2. Assessing Fatigue

Recent history has seen a growth in the number of available fatigue monitoring systems
based on newly developed technologies. Each of these systems tries to address fatigue
using different combinations of sensors, measurements, and techniques [4]. Measurements
among those systems are accomplished using cognitive tests, EEG, pupillometry, fitness for
duty tests, and others [1,8,10,11].

Even though several technologies have been developed, there is a necessity to inves-
tigate fatigue from a socio-technical systems perspective [1,12]. Most tools utilize sensor
data and tend not to consider individual operators’ experiences. Therefore, considering the
nature of fatigue, there is an additional benefit from assessing subjective measurements,
which could be included in the development of predictive models of fatigue.

Another important consideration in the context of the different systems is the degree
to which they are experienced as invasive and potentially a distraction. Drews et al., 2020,
exemplify in their study how technologies can have low acceptance and can be considered
a distraction to operations [1]. As an example, EEG caps and camera-based systems have
faced resistance from operators due to the feeling of “having their privacy invaded”.

One final problem that persists when analyzing fatigue monitoring systems is related
to their validation. Validating fatigue-monitoring technologies continues to be a challenge
even though technologies have evolved and health and safety standards have improved [13].
Ultimately, it is a challenge to provide an optimal technological solution that is well accepted
by its users, provides real-time or predictive information, and can be enforced throughout
mining operations [13]. With this in mind, any auxiliary development towards this optimal
technological solution is of value.

Talebi, E. et al., 2021 and 2022, used existing operational data and fatigue monitoring
system data to model fatigue in the mining industry [3,14]. They showed that existing
technologies do not sufficiently explain the fatigue variance across many dimensions,
suggesting there is a gap in the available data. IoT technology has been shown in other
fields to be a proven method and tool to potentially fill data gaps. Therefore, more detailed
data are needed to properly model and predict fatigue.

2.3. Psychological Assessments of Fatigue

Psychological assessments of fatigue have been used in investigating fatigue in a wide
range of contexts. To provide an overview of the methods and paradigms used to study
fatigue, we will discuss the following three approaches in more detail [15,16]: psychomotor
vigilance tasks (PVTs); signal detection theory (SDT); Karolinska Sleepiness Scale (KSS).

SDT is a theoretical paradigm that was first studied in the early 1950s with a focus on
human performance in the context of radar detection. At the core of SDT is the assumption
that any type of signal needs to be identified in the context of noise [17]. SDT is applied
when an operator needs to distinguish signal from noise, and it has been utilized in several
fields [18].

2.3.1. Psychomotor Vigilance Tasks

A PVT is a simple reaction time task, where a participant is presented with a stimulus
and instructed to respond to the presence of the stimulus [19]. For example, one test
involves presenting light on a screen, with the participant being required to respond by
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pressing a key on a keyboard. Measures of reaction times provide a metric to assess
vigilance or fatigue.

Basner et al., 2011, demonstrate that the PVT is sensitive to sleep deprivation, making
it a potential indicator of fatigue. One advantage of the PVT is that it is possible to perform
the assessments outside of the laboratory [20]. The tests were originally performed on
the PVT-192 (Ambulatory Monitoring Inc., Ardsley, NY, USA), a handheld device built
specifically for the test and considered to be its gold standard [20]. Other studies, such
as Matsangas and Shattuck, 2018, explore the use of a wrist-worn device to execute the
PVT test and support its use for short PVT tests [21]. Kay et al., 2013, and Matsangas and
Shattuck, 2018, verify the possibility of using a touch screen to execute the test and conclude
that it is feasible, especially when the gesture used to record the RT is a finger tap on the
screen [21,22].

One of the limitations of the PVT is that its traditional version requires 10 min of
data collection, making it difficult to use in an environment where the available time for
data collection is limited. Fortunately, the brief psychomotor vigilance test (PVT-B), which
lasts 3 min, provides good evidence that the test duration can be reduced to achieve an
equilibrium between the test reliability and its operational feasibility [20,23].

Because the PVT measures the reaction times of participants, it is informative to assess
the sensitivity of this measure to fatigue. The literature suggests that reaction times become
slower when participants are fatigued [24,25]. This trend is even more pronounced when
the reaction time task is more complex (e.g., when participants need to distinguish between
executing a response to a green stimulus while inhibiting a response to a red stimulus) [26].
In addition, mental fatigue, especially sleepiness, has the greatest effect, while muscular
fatigue does not lead to changes in reaction times [27].

2.3.2. Signal Detection Theory

To provide an example of the application of SDT, consider an experiment in which
participants are exposed to visual stimuli and need to respond if the stimulus is green
(yes), while they are instructed not to respond when it is red. Conceptually, there are four
combinations between stimuli (green and red) and responses (yes, green stimulus, no red
stimulus) (see Figure 2). The combinations between stimuli and responses can be labeled
as in Figure 2, with, for example, the presence of a green stimulus resulting in a positive
response, referred to as a Hit.

Figure 2. SDT answer classification.

Both hit and correct rejections are the expected answers; on the other hand, misses and
false alarms are incorrect answers. These categories are important for statistical analysis
and a better understanding of a person’s behavior [28]. Of particular interest here are
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changes in response behavior (reduction in hits and increase in misses) when examining
the fatigue levels of an operator.

2.3.3. Karolinska Sleepiness Scale (KSS)

To explore the subjective experience of fatigue, beyond the use of objective measures
such as reaction times, a number of scales have been developed. Here, we discuss the KSS,
which was developed by Åkerstedt and Gillberg, 1990, to assess the subjective level of
sleepiness at a certain time of the day [29]. It instructs participants to describe the level of
sleepiness they experienced in the last 10 min. The scale has been validated in a number of
contexts, such as shift work, jetlag, driving abilities, and others [30]. Table 2 provides the
labels and ratings of this scale.

Table 2. Karolinska Sleepiness Scale [29].

Karolinska Sleepiness Scale (KSS)

Extremely alert 1
Very alert 2
Alert 3
Rather alert 4
Neither alert nor sleepy 5
Some signs of sleepiness 6
Sleepy, but no effort to keep awake 7
Sleepy, but some effort to keep awake 8
Very sleepy, great effort to keep awake, fighting sleep 9
Extremely sleepy, cannot keep awake 10

Overall, the combination of the use of a reaction time measure with the assessment
of subjective levels of fatigue provides a method to assess the fatigue of operators in their
operational environment.

2.4. Fatigue Assessment Tool Selection Decision-Making Approach

A variety of approaches could be used to develop an application and select the tools
to assess fatigue in the operational environment. A key consideration in technology
development and assessment considers the technical factors of sensors and data collection,
as well as human factors such as user acceptance and motivations. There are minimum
technological thresholds on reaction time tests that must be considered. User adoption is a
critical metric. Each of these factors was integrated into the team’s development approaches
to create the application and select the tool. In addition, we identified a number of gaps in
existing monitoring technology:

• Limited/no feedback to users;
• Low adoption rates;
• Lagging indicators of fatigue.

Smartwatches are a good candidate technology for this research due to the equilibrium
between economic investment, sensors, on-the-shelf availability, and customization.

When focusing on wrist-wearable devices, there are additional opportunities for in-
tegration that are associated with this technology. Table 3 shows the summary of open
research topics/applications of wrist-wearable devices for the mining industry [31]. Mar-
donova and Choi, 2018, consider that smartwatches do not have health and safety capaci-
ties, but the most recent smartwatches act both as a traditional smartwatch and a fitness
tracker [31].
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Table 3. Wrist-wearable devices and their relative application capacities [31].

Device Application

Fitness tracker
Occupational health monitoring
Occupational disease prevention

Smartwatches
Mining equipment management
Process monitoring and logistics management
Communication and data management

Medical wearable devices
Occupational health monitoring
Occupational disease prevention
Operational safety

Ultimately, Fitbit technology was chosen for this study due to the wide adoption of
Fitbits and their established versatility. This tool is widely adopted by users. Fitbit also
has platforms that allow for application development and API (Application Programming
Interface) integration with other systems.

3. Method

This section will cover a methodological approach to developing and testing a wear-
able device and custom application for assessing fatigue called Real-Time Fatigue
Monitoring (RTFM).

3.1. Scope Definition

The system was designed to create a tool capable of executing fatigue assessments
throughout an operational shift. For that matter, the number of interactions with operators
with the application was kept to a minimum. The application, when running on the
smartwatch, only shows the time of day in its default state to avoid distracting operators
or causing them to want to interact with it. The final interface is presented in Figure 3
and consists of the application icon on the smartwatch (1), default screen (2), assessment
question screen (3), KSS assessment screen (4), confirmation screen (5), and RT assessment
screen (6, 7, and 8).

1 
 

 

Figure 3. Final system interface.
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Figure 4 demonstrates the logic behind the RTFM application and how the operator
should interact with it. It is also part of the support and training material that was provided
to operators and managers to guarantee a standard operational procedure (SOP).

Figure 4. RTFM usability and logic instruction.

3.2. System Architecture

As the Fitbit (Versa 2 devices) hardware lacked unique identifiers available for use,
a tool was developed to uniquely identify each device and to ensure the middleware’s
security. Uniquely identifying each device allows for aggregating data at an individ-
ual level. In order to do so, the Fitbit user id, which is a unique user identifier com-
posed of six alphanumeric characters available in the Fitbit system, is extracted via an
authentication process.

The authentication process takes place on a webpage designed exclusively for that
reason, and it also helps to explore data available from third-party applications, such as the
sleep data collected by Fitbit, if there is a need for it. The webpage guides users through
the authentication process and was developed using HTML, CSS, Kotlin, and JavaScript.

The authentication front-end process is straightforward. First, users navigate to a URL
provided to them.

The application server, developed in Kotlin, and utilizing the Spring Boot frame-
work, was responsible for managing all the business rules and communication with the
database. The server was hosted on Amazon Web Services (AWS), to ensure availability
and scalability.

The middleware layer provides endpoints that receive information from the RTFM
app in the form of an API. An endpoint is a communication channel that expects a certain
type of information; when the information is received, it executes pre-designed commands
and finishes by sending a response back. The communication channels follow the HTTP
protocol [32] and expect structured data. Alongside being the standard communication
protocol, HTTP protocols also provide developers with a variety of established response
codes that can be easily understood.

3.3. System Data Handling and Analysis

The database system chosen for the study was PostgreSQL. PostgreSQL is a powerful,
open-source object-relational database system with over 30 years of active development that
has earned it a strong reputation for reliability, feature robustness, and performance [33].

The database fields, their descriptions, and variable types are shown in Table 4. The
table lists important variables and data captured from the application. Some of the data
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are created as an identifier of each user and for connecting tables, and some are the ones
measured by the application. Fatigue level is measured using the KSS. After that, the RT
test exposes operators to visual stimuli 20 times, measuring response times in milliseconds
and assessing the response as correct or incorrect.

Table 4. Database fields, variables, and descriptions.

Database Field Variable Variable Description

Public Identifier

ID
Access Token
Research ID
Company

Fitbit user identifier
The user access token that grants access to their Fitbit data
Custom research ID to link data from Fitbit with the study
The company that the user belongs to

Public Question

ID
Date
Fatigue Level
Fitbit ID

Random ID assigned to each row of data
Date and time of the assessment
Measured fatigue level
ID assigned for each Fitbit

Public Reaction

ID
Click
Date
Reaction Time
State
—
Fitbit ID

Fitbit user identifier
Boolean showing if the screen was clicked or not (False or True)
Date and time of the reaction assessment
Measured reaction time in milliseconds
Represents the color of the screen in the moment of the assessment as an
integer (1—green, 2—red)
ID associated with each Fitbit

3.4. Case Study

Using this Fitbit app, we collected data on reaction times and subjective experiences
of fatigue for a total of 85 operators. For this study, no criteria were used to select the
operators, and we only had access to the data of the individuals that companies selected.
Data collection began in October 2020 and ended in March 2022. The initial data set was
analyzed to eliminate incorrectly collected data or data that consisted of implausibly fast
(RT < 250) or slow (RT > 1250) response times. In addition, participants were eliminated
from the data set who displayed stereotypical response patterns of incorrect trials. A total
number of 56,587 observations remained for complete analysis.

4. Results

The results of the study are shown in the upcoming section. Reaction time statistics,
subjective measures, and signal detection results are shown to assess the effectiveness of
the application and wearable device.

4.1. Reaction Times (RTs)

Overall, the mean reaction time was 540 ms with a minimum of 256 and a maximum
of 1250 ms, and an SD of 131.4 ms.

To analyze the RTs across all 24 h of the day for valid trials (i.e., a green screen is
presented with an RT > 250 ms and RT < 1250 ms is produced), all other types of trials were
filtered from the data set (i.e., no response to green screen, response to red screen, and no
response to red screen). Figure 5 shows the RTs during the two different shift periods based
on the hour of the day. Note that the y axis is not included in the scale section from 0 to
399 ms to illustrate the overall pattern of the data better. Overall, comparing the response
times at night (highlighted area) and daytime, it is clear that drivers had slower reaction
times during the night shift. In addition, the fastest reaction times were measured between
1 am and 4 am.
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Figure 5. Aggregated RT across the hours of the day, including 95% error bars (Highlighted area
shows night shift, the rest is for day shift).

Reaction Times during Day and Night Shifts

The next analysis focused on a comparison between the RTs during the night shift
and day shift. Overall RTs during the day shift were expected to be lower than during the
night shift, leading to this comparison. For the purpose of this analysis, the RT data were
aggregated based on the hour of the day to minimize issues related to statistical testing due
to inflated degrees of freedom. An Analysis of Variance (ANOVA) revealed a significant
effect of shift (F(1,72) = 4.2; p < 0.05) (RT night = 555 ms vs. day = 543) and site (F(2,72) = 5.8;
p < 0.005). Table 5 summarizes the descriptive statistics of this analysis.

Table 5. Descriptive results of the RTs (dependent variable: mean RT).

Shift Mean RT Std. Deviation

Night 554.7677 46.03994
Day 534.1128 44.03260

4.2. Subjective Measures of Fatigue

The subjective ratings of the KSS were analyzed using an ANOVA identical to the
analytical approach described above for the RTs.

We hypothesized that the overall KSS score during the day shift would be lower than
during the night shift. For the purpose of this analysis, the KSS score was aggregated
based on the hour of the day (see Table 6). An ANOVA revealed a significant effect of shift
(F(1,72) = 94.8; p < 0.001), (KSS night = 3.5 ms vs. day = 2.8).

Table 6. Descriptive results of the KSS scores (dependent variable: Mean fatigue level).

Shift Mean Fatigue Level Std. Deviation

Night 3.5421 0.60622
Day 2.8198 0.21942

Total 3.1810 0.58067
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An additional analysis was performed to explore the relationship between the KSS
scores and the RT data since the effects of the above analysis appear to be not quite aligned.
The Pearson correlation coefficient was r = 0.134 and not significant (p = 0.262), suggesting
that the two measures assess different aspects of fatigue.

4.3. Signal Detection Theory-Based Analyses

The precision of the responses was analyzed using the theoretical framework of signal
detection theory. Shown below are the results of the analyses. The most important cells are
shown in green (see Figure 2), showing the number of hits and correct rejections.

The statistical test to analyze for differences between day and night shifts revealed
that there was a difference in terms of accuracy of responses (Pearson Chi-Square Tests
(df = 3, Chi2 = 15.720, p = 0.001), suggesting a lower accuracy of responses during the night
shift compared to the day shift (see Table 7).

Table 7. Results of the SDT Analyses.

Shift
Signal

Total
Response Green Red

Day/Night Yes 41,173 (98.07%) 816 (5.88%)
55,854No 809 (1.93%) 13,056 (94.11%)

Day Yes 15,424 (97.37%) 313 (6.02%)
21,276No 415 (2.62%) 4878 (93.97%)

Night Yes 25,749 (98.49%) 503 (5.8%)
35,311No 394 (1.5%) 8178 (94.2%)

5. Discussion

The analyses described above indicate strongly that the use of objective reaction time
measurements appears to be a valid approach to assessing fatigue of the operators. As
shown in Figure 5, the aggregated response times slow significantly during the night shift
compared to the day shift. The analysis of the subjective ratings of operator fatigue using
the KSS indicates similar effects of shift as indicated by the RTs. The analysis of RTs using a
signal detection paradigm suggests that there are differences between night and day shifts
in terms of accuracy and signal detection performance.

Comparing the RTs and the KSS scores revealed a non-significant correlation between
these measures, suggesting that there is a potential dissociation between these measures.
Each of the measures appears to be tracking something different from the users. Future
research is required to identify the reasons for this lack of a relationship.

The results of this study help to manage the workforce in the mining industry with
respect to fatigue. Using a wearable device has advantages over other available fatigue
management systems, such as cost, ease of use, and more secondary uses. In addition,
mean reaction times can be used to predict the level of fatigue of the individual throughout
the shift. Therefore, health and safety managers can monitor and manage the fatigue of
the operators.

6. Conclusions

The reliability of using wearable watches to assess performative and subjective mea-
sures of fatigue was demonstrated using off-the-shelf wearable watches and custom ap-
plications. A system such as this will complement the mature fatigue monitoring systems
currently on the market. Existing systems lack the ability to assess performance measures
and subjective measures in real-time. Additionally, many of these systems are shown to not
consider many human factors in their implementation, limiting their operational usefulness
and adoption. Wearable devices allow a wide range of data points, such as activity and
sleep, and have constantly improving base technology. There are other secondary uses of a
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wearable device that help improve a user’s perception of the device, improving adoption
and user acceptance.

The results of this methods study show that the device adequately measures reaction
time with the same precision shown in the literature. The ability to link RT and subjective
fatigue measures highlights the importance of both measures as a comprehensive approach
to monitor fatigue. Future development efforts will focus on utilizing the data from the
app to provide feedback at the individual and organizational levels. This should allow
operators and the organization to monitor fatigue more effectively.

Mine sites need these complementary tools for a robust and sustainable measure of
fatigue. Wearable devices are more likely to create engagement and provide feedback over
time. All the analyses in this study show that objective reaction time measurements are a
promising approach to assessing operator fatigue. A comparison of the RTs and the KSS
scores revealed that these measures appear to assess different aspects of fatigue. Future
research is required to identify the reasons for this lack of a relationship.

For the next step of this research, it is recommended the sleep data captured from
Fitbit be used in conjunction with the data described above. In addition, other individual
data, such as activity level, age, food intake, diet, etc., can be used to make a comprehensive
model for predicting fatigue. The research would also benefit from a comparative analysis
of other fatigue-tracking systems. In order to ensure that the tools for performing the
fatigue assessment are effective and reliable, more work is needed. For that, it is necessary
to further establish the number of tests needed to properly assess the mean reaction time
for each individual. So, for the next step of this research, we propose a model that can
use the reaction time data to find the mean RT for each individual to assess their fatigue
level. Thus, IoT, as exemplified by Fitbit, will provide advancements in collecting more
comprehensive data that could improve operator fatigue management in the future.
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