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Abstract: During in situ leaching of ionic rare earth ore, the pore structure of the orebody changes due
to the chemical replacement reaction between the leaching agent and the rare earth ore. To explore the
influence of leaching agents on the pore structure of ionic rare earth ore during the leaching process,
magnesium sulfate solutions with different concentrations and pH are used as leaching agents in this
paper. An experimental method of indoor simulated column leaching, a Zetaprobe potential analyzer,
and an NM-60 rock microstructure analyzer to measure parameters, including surface zeta potential,
T2 map, and the pore structure of rare-earth ore particles, were used to analyze the influence law
of magnesium sulfate solution on the pore structure of ionic rare earth ore. The result proves that
pure H2O leaching has little effect on the surface Zeta potential and the internal pore structure of the
ore particles. In the leaching process of magnesium sulfate solutions with different concentrations,
the absolute value of Zeta potential decreases, and the internal pore structure evolves from medium,
large, and extra-large to small pores. In the leaching process of magnesium sulfate solutions with
different pH, the absolute value of Zeta potential decreases and then increases slightly with the end
of the ion exchange reaction. The internal pore structure generally shows a decrease in the number of
small and extra-large pores and an increase in the number of medium and large pores. According
to the analysis, the concentration and pH of the leaching agent cause the change of thickness of the
electric double layer of the fine particles in the orebody, break the balance of interaction force between
soil particles, and result in the evolution of a micropore structure of orebody during leaching.

Keywords: ionic rare earth; leaching agent concentration and pH; electric double layer; pore structure

1. Introduction

Ionic rare earth ore, also known as ion-absorbed rare earth ore or weathered crust
elution-deposited rare earth ore [1], is widely distributed in the Jiangxi, Fujian, Guangdong,
Hunan, Guangxi, and other provinces in China. Rare earth elements are mainly adsorbed on
the surface of clay minerals in the forms of hydrated cation(H3O+) and hydroxyl hydrated
cation(−OH). Rare earth elements are divided into light rare earth elements and medium-
heavy rare earth elements. The latter are extensively used to manufacture permanent
magnet materials, laser materials, superconducting materials, and electron devices [2–4].
After years of theoretical research and practical exploration, rare earth mining technology
has developed from pond leaching to heap leaching to in situ leaching, which has the
highest recovery rate of rare earth resources and mature technology [5]. The recovery rate
and mining period of rare earth resources vary due to the different electrolyte type [6],
concentration, pH [7], flow velocity of leaching agents, and liquid injection intensity [8,9]
during in situ leaching. Meanwhile, solution permeability is affected by these factors as
well. The pore structure of the orebody is changed and continuously evolves under the
seepage effect. In the process of leaching, the structural stability of the orebody is constantly
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changing, leading to slope instability, landslides, and other problems. Thus, studying the
evolution of pore structure in the leaching process has great practical engineering guiding
significance regarding the leaching effect of ionic rare earth ore and solutions for slope
instability and landslides.

With the progress of technology [10,11], computed tomography (CT) has been applied
to study the distribution characteristics of the micropore structure in particles. Many scien-
tific researchers have conducted relevant theoretical research on the change in micropore
structure [12,13]. Bezaatpour et al. [14] used the RCP algorithm to model porous media.
The results showed that the predictive porosity is only 10% consistent with the observed
measurements and that the consistency between pressure drop and permeability is good
(up to 95%). Zhou et al. [1] studied the evolution features of pore structure in the leaching
process with column leaching with different cationic leaching agents of NH4

+, Mg2+, and
Al3+. The study indicated that the evolution of the pore structure of rare earth ore bodies
induced by different valent cation leaching solutions is nearly similar. Wang et al. [15]
analyzed the changing rules of the internal pore structure of rare earth during the leaching
process of pure H2O and (NH4)2SO4 solutions with different concentrations. Experiments
showed that during effective leaching time, compared with pure H2O, the porosity and
pore radius of orebody samples increase significantly in the leaching process of (NH4)2SO4
solutions and become more obvious with the increase of solution concentration. Ion ex-
change causes the movement and recombination of particles and, thus, pore change [16].
Throughout the leaching process, ion exchange develops in layers along the direction of
seepage. The microstructure of the orebody is affected alternately by physical seepage and
ion exchange. Zhao et al. [17] proved that particle aggregation occurs when an NH4Cl
solution is used as a leaching agent. Under strong chemical reaction, soil microparticles
separate from large particles and enter the solution, increasing porosity. The changing
ionic strength changes the interaction force between soil particles (electrostatic repulsion,
hydration repulsion, and van der Waals force) [18]. The blocked pore network slows the
water entering the aggregate, thus changing the seepage direction. During the leaching
process, rare earth particles disperse or condensate in different degrees due to different
properties of Ca2+ or Mg2+ [19]. The dissolution of calcareous cement and the formation of
clay minerals are inhibited by the cementation of Ca2+ [20]. The increase of electric potential
on the surface of colloids and the decrease of electrostatic repulsion between particles make
the soil structure stable. During the formation of clay particles [21], a diffused double layer
with an electric field effect is formed on the particle surface [22], which effectively explains
the interaction between clay compressibility and particle-water-cation [23]. The effect of the
leaching agent cannot be ignored during the leaching process. Characteristic parameters
like porosity, the torsion of capillary, and pore size distribution greatly influence orebody
particles [24,25]. Crystal particles affect the pore size and pore throats and impact the pore
structure of rare earth orebodies [26].

Most scholars have studied the evolution laws of internal seepage and pore structure
of the orebody after leaching with different concentrations of ammonium sulfate solution.
In this paper, magnesium sulfate solutions with different concentrations and pH are used
as leaching agents. The chemical displacement reaction between Mg2+ and RE3+ in rare
earth ore samples results in the breaking of the steady state of the interaction force between
particles [27,28]. Then the change of electronic double layer thickness and pore structure of
ionic rare earth orebody in the leaching process and the influence of magnesium sulfate
solutions with different concentrations and pH on them are studied. The combination of
microanalysis and macroanalysis provides a theoretical basis for further research and a
solution for the evolution of pore structure in the leaching process.

2. Materials and Methods
2.1. Materials

The rare earth samples used in this paper were taken from Zudong rare earth deposit
in Longnan County, Jiangxi province. The X-ray diffraction (XRD) patterns can be seen in
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Figure 1. The oxides contained in the rare earth ore samples were Al2O3 (34.975%), SiO2
(48.251%), Rb2O (0.041%), Y2O3 (0.097%), Nd2O3 (0.031%), Yb2O3 (0.014%), and others
(4.479%). The collected undisturbed soil was tested for particle gradation in the lab with
screened particle sizes of 5, 2.5, 1, 0.5, and 0.075 mm in sequence. The screened soil particles
were dried and weighed to calculate the mass fraction of each particle grade, as shown in
Table 1. Magnesium sulfate solution was taken as the leaching agent in this experiment to
conduct column leaching; six groups of magnesium sulfate solutions with different mass
concentrations of 0.0%, 2.5%, 3.0%, 3.5%, 4.0%, and 4.5% were prepared; and 2.0% dilute
sulfuric acid was used to prepare five groups of 3.5% magnesium sulfate solutions with
different pHs of 2, 3, 4, 5, and 6. The magnesium sulfate particles used in this experiment
were purchased from local chemical plants.
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Figure 1. XRD pattern of run-of-mine ore sample.

Table 1. Particle gradation of undisturbed rare earth.

Particle Diameter (mm) >5 2.5–5 1–2.5 0.5–1 0.075–0.5 <0.075

Percentage of interval (%) 12.8 28.9 7.3 8.4 28.7 13.9
percentage (%) 12.8 41.7 49.0 57.4 86.1 100

2.2. Experimental Method and Process

In this paper, the indoor simulated column leaching method of ionic rare earth ore
was adopted and strictly implemented according to the standard of remolded soil samples.
The device used for the indoor simulated column leaching test was an acrylic tube with
an inner diameter of 44 mm and a wall thickness of 2 mm (Figure 2a). According to
the effective range of the rock microstructure analyzer, the diameter–height ratio of the
remolded soil sample was 44:60. During remolding, the soil samples were compacted in
three layers. To avoid obvious stratification, each layer was roughened after compacting
when preparing the samples. With the method of immersion saturation for initial saturation,
the samples, completing 72 h of free water absorption in water, were taken out, and the
surface was toweled off. A group of samples with little difference in initial porosity and
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saturation greater than 95% were selected to perform indoor column leaching. The effect
of magnesium sulfate solutions with different concentrations and pH on the evolution of
the pore structure of the orebody during leaching was studied using the indoor simulated
column leaching method.
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Figure 2. (a) Schematic diagram of experimental setup; (b) Rare earth leaching schematic.

In column leaching, the chemical reaction inside ionic rare earth is a dynamic desorp-
tion process, during which the Mg2+ in the solution and the RE3+ in the sample exchange
ions (Figure 2b). The leaching mother liquor after leaching was collected and tested. Ac-
cording to the diffuse double layer theory, a Zetaprobe potential analyzer from Colloidal
Dynamics, USA, was adopted to measure the Zeta potential of colloidal particles reflecting
the adsorbed state of colloids and ions. An NM-60 magnetic resonance rock microstructure
analyzer (Suzhou Niumag Analytical Instrument Corporation) was used to test the pore
structure of the leaching samples. Before the experiment, the temperature of the permanent
magnet inside the experimental instrument was adjusted and stabilized at 32 ◦C ± 0.1 ◦C.
Using nuclear magnetic resonance analysis software Ver. 1.0 to test the micropore structure
of the samples every 1h to quickly and precisely obtain porosity data, T2 map, pore size
distribution, etc.

3. Results and Discussion
3.1. Effect of Concentration and pH of Leaching Agent on Zeta Potential of Rare Earth Ore
Particles in Leaching Process

The surface of clay minerals, which is negatively charged, can adsorb the positively
charged ions when contacting the solutions to maintain a stable state of electrical neutral-
ity [29]. Thus, the concentration of positive charge on the clay mineral surface is higher than
the bulk solution. Due to the cation concentration gradient, cations diffuse from the surface
of clay minerals into the solution until the equilibrium between diffusion and attraction is
reached, as shown in Figure 3.

Six groups of magnesium sulfate solutions with different mass percent concentrations
of 0.0%, 2.5%, 3.0%, 3.5%, 4.0%, and 4.5% were prepared for the indoor column leaching
test to measure the Zeta potential on the surface of rare earth particles and systematically
analyze the influence of magnesium sulfate solutions with different concentrations on
them. As shown in Figure 4, the rare earth sample leached with pure H2O is relatively
gentle in the value curve of Zeta potential, which is nearly a straight line, indicating that
pure H2O doesn’t react with rare earth minerals in the leaching process and that RE3+

cannot be desorbed and thus has no influence on Zeta potential. When leaching with
magnesium sulfate solutions with different concentrations, the absolute value of Zeta
potential on the surface of rare earth particles decreased with the leaching time. The change
of Zeta potential reached the maximum when the concentration of magnesium sulfate
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solution was 4.0%, reduced by 53.60%. In the early leaching stage, the absolute value of
Zeta potential on the particle surface tended to decrease. In the middle stage, the absolute
value increased first and then decreased rapidly. After 3 h of leaching, the Zeta potential
reached the maximum value. In 3–4 h, the value dropped sharply. In the later stage of
leaching, the absolute value of samples leached with low concentrations of magnesium
sulfate solutions decreased gradually, while the value of samples with high-concentration
solutions presented an upward trend, and the overall change was relatively gentle. In
the leaching process, the Zeta potential curve of the samples with high concentrations of
magnesium sulfate solutions fluctuated greatly, while the change of samples with low-
concentration solutions was relatively gentle. Since the surface of rare earth ore has strong
hydrophobicity, the ore particles in the solution agglomerate and wrap the clay particles
inside. This hinders the hydration of clay particles, resulting in a thinner electric double
layer on the surface of particles. The absolute value of Zeta potential on the particle surface
decreased in the early leaching stage. In the middle leaching stage, as the samples had
gone through the preparing stage and initial reaction stage, the leaching agent had more
time to react with the samples. The Mg2+ in the leaching agent reacted with the RE3+ in
rare earth ore quickly to desorb it. In a certain period, this process caused surface sliming
of the samples with more negative Si-O bonds, Al-O broken bonds, and amphoteric Al-OH
bonds occurring on the surface, thus increasing its negative electricity and leading to an
increase in the absolute value of the Zeta potential of the sample surface. As the leaching
time proceeded, more Mg2+ entered the particle surface. Rare earth ore particles were
slimed into fine particles, accelerating the dissolution of inorganic salts inside the solution
and ionizing Ca2+ and other impurity cations. However, these cations had sufficient time
to adsorb on the particle surface over time to compress the double surface layer and reduce
the absolute value of the Zeta potential on the surface of rare earth particles. This was why
the absolute value of Zeta potential on the particle surface of rare earth samples increased
first and then decreased with time in the middle leaching stage. The value of samples in the
high-concentration magnesium sulfate solutions had an upward trend in the later leaching
stage. It may be that the presence of more cations leads to the reverse adsorption of RE3+,
the increase of electrostatic repulsion between particles and double layer thickness, and
then the increasing trend of the absolute value curve of Zeta potential.
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Figure 4. Effect of the concentration of leaching agent on Zeta potential of rare earth particles during
the leaching process.

Preparing magnesium sulfate solutions with pH 2, 3, 4, 5, 6 and mass concentration of
3.5% for column leaching experiment. As presented in Figure 5, when magnesium sulfate
solutions with different pH are used for leaching, the absolute value of Zeta potential on
the surface of rare earth particles decreases with the leaching time going on. When the
pH of the solution is 3, the change of Zeta potential reaches the maximum, decreasing
by 41.04%. In the early leaching stage, the absolute value of Zeta potential tended to
decrease. In the middle stage, the overall change increased and then dropped sharply. In
the third hour, the absolute value appeared at a peak. During 3–4 h, the value declined
sharply. In the later stage, the value increased gradually, and the overall change was
relatively gentle. Due to the strong hydrophobicity of the surface of rare earth ore, the
ore particles in solution agglomerate and wrap the clay particles inside, which hinders
the hydration of clay particles, resulting in a thinner electric double layer on the surface
of particles. The absolute value of Zeta potential on the particle surface decreased in the
early leaching stage. There were abundant negative silicon-oxygen bonds and aluminum–
oxygen broken bonds, as well as amphoteric Al-OH bonds on the surface and end faces
of rare earth ore particles, forming vast amounts of Al-OH, Si-OH, H+, and OH− as their
positioning ions and determining the surface charge of rare earth ore particles. In the
middle leaching stage, the reason that Zeta potential increased and then decreased was
that the number of negative silicon-oxygen bonds and aluminum-oxygen broken bonds
increased, increasing the negative charge on the particle surface, i.e., increasing the absolute
value of Zeta potential. In an acid medium, H+ neutralized with OH− on the surface of
particles, compressing the electric double layer on the surface of rare earth ore particles so
that its Zeta potential decreased. In the later stage of leaching, the electrostatic repulsion
between particles and the thickness of the double layer increased, leading to an increasing
trend of the absolute value curve of Zeta potential.

3.2. Effect of Leaching Agent Concentration on Pore Structure of Orebody

During the leaching process of ionic rare earth ore, ion exchange reaction, and seepage
occur inside the ore sample, resulting in a change of internal micropore structure and pore
size. Nuclear magnetic resonance imaging technology was used to test and analyze the
change in the micropore structure. As Figure 6 shows, the porosity of samples leached in
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pure H2O agent changes slightly within the range of 0.8%. The main cause of such change
came from the permeation effect of the leaching process. The particles inside the samples
caused local pore fluctuations under the effect of seepage. As the seepage continued,
the particles, driven by the fluid, were separated from the parent body, resulting in the
continuous development of pore structure and, thus, a slight increase in overall porosity.
From Figure 7, it can be seen that the T2 map change curve of pure H2O coincides during
leaching, and the change trend is consistent. The overall performance was to rise first
and then decrease in area A, rise to the peak in area B, and gradually decrease and finally
approach zero in area C. Therefore, it can be concluded that the pore proportion of area A
was relatively small, area B was the largest, and area C was second.
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Figure 7. Evolution curve of T2 map in pure H2O leaching process.

As shown in Figure 6, the effect of magnesium sulfate solution as a leaching agent
on the pore structure of the orebody is greater than that of pure H2O. The porosity of
samples leached with different concentrations of magnesium sulfate solution increased
first, decreased during the leaching time, and finally increased slowly, though the increase
varied. During the leaching process, the porosity of the samples in 4.5% magnesium sulfate
solution was the largest. Its porosity increased by 14.57% and reached the maximum
of 52.725% after 3 h of column leaching. The increase was followed by the samples in
the 3.5% magnesium sulfate solution, which had an 8.64% increase in porosity with a
maximum of 50.000% after 8 h of leaching. The porosity of the remaining test groups
of magnesium sulfate solutions showed little change. The porosity of samples increased
during the leaching process, mainly because the previously unconnected pores in the
samples were interconnected by the deionized water-saturated sample in the early stage.
When the magnesium sulfate solution was used for leaching, the Mg2+ in the leaching
agent exchanged ions with RE3+ on the surface of clay minerals. In this reaction, a large
amount of Mg2+ was adsorbed to the diffusion electric double layer under the electrostatic
interaction, breaking the balance of the double layer. At the same time, the physical seepage
in the solution changed the pore structure.

According to the range of pore radius, the pores are divided into 4 categories: pores
with a size range of 0–0.24 µm are called small pores, 0.24–0.65 µm as medium pores,
0.65–10 µm as large pores, and greater than 10 µm as extra-large pores.

Figure 8 shows the pore distribution of samples leached with magnesium sulfate
solutions of different concentrations during the leaching process. The pore radius of the
sample leached with pure H2O changed little throughout the process. In 0–8 h, the size of
small pores increased by 7.11%, large pores decreased by 13.29%, while that of other groups
was basically unchanged. The result implicated that the seepage effect had the greatest
influence on the large pores with a size between 0.65–10 µm and that the large pores can be
transformed into small pores with a size of 0–0.24 µm. The change of pore size in 3.5% and
4.5% magnesium sulfate solutions was nearly the same. The overall performance showed
that the small pores decreased and the large pores increased during the leaching time. The
change in the 3.5% magnesium sulfate solution was particularly obvious. In 0–8 h, the size
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of small pores decreased by 43.87%, large pores increased by 55.40%, and the medium pores
increased first and then decreased. Meanwhile, the thickness of the electronic double layer
and the diffusion layer of clay minerals increased, and the small pores evolved towards the
large and extra-large pores. The evolution inside the samples affected the physical seepage
of the leaching agent. The characteristics of the remaining magnesium sulfate solutions
were similar. When a strong ion exchange reaction occurred, the internal pores inside the
samples were mainly small and medium, and the former increased rapidly. The proportion
of large and extra-large pores was small, and their number decreased. This was because the
electrostatic repulsion between particles was reduced, and the van der Waals force played
a leading role, under which the particles were adsorbed on the surface of pores inside the
orebody, resulting in the evolution of large pores into small ones.
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By comparing the pore proportion distribution of the six groups of samples in the
leaching process, the sample with 3.0% magnesium sulfate solution was taken as a reference.
The pore proportions of the other five groups were subtracted from that of the reference
group to determine the difference in pore numbers in the leaching process with different
concentrations of magnesium sulfate solutions, as shown in Figure 9. It can be seen from
Figure 9a that there are more large and extra-large pores inside the orebody in the pure H2O
leaching group, and more small pores in the 3.0% magnesium sulfate solution sample. As
shown in Figure 9b,d, the internal pore proportion of 2.5% and 4.0% magnesium sulfate so-
lutions is roughly the same as that of the 3.0% solution sample, with a difference fluctuation
range from −4.365%–+3.927%. Compared with samples leached with 3.0% solution, the
number of medium pores increased while large pores decreased at the 4th hour in the 2.5%
and 4.0% groups. Combined with Figure 4, it can be seen that the absolute value of Zeta
potential was the smallest at the 4th hour when the electrostatic repulsion between particles
was reduced. The orebody particles were adsorbed on the surface of coarse particles or
pores inside the orebody under the van der Waals force, causing an increase in the number
of medium pores and a decrease in the large pores. As seen in Figure 9c,e, there are more
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large pores inside the samples leached with 3.5% and 4.5% magnesium sulfate solutions
and more small pores in the 3.0% solution sample. According to the comparative analysis
of the 6 groups of samples, the small and extra-large pores accounted for the majority of
the samples leached with a 3.0% magnesium sulfate solution, while the medium and large
pores were relatively small.
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3.3. Effect of pH of Leaching Agent on Pore Structure of Orebody

Figure 10 shows the porosity change of samples of magnesium sulfate solutions with
different pH in the leaching process. During the leaching process of magnesium sulfate
solutions with different pHs, the porosity increased and then decreased during the leaching
time and finally increased gradually, though the increase varied. Throughout the process,
the porosity of magnesium sulfate solution with pH = 6 was the largest, changing by
3.978% and increasing by 8.64%. The increase of the solution with pH = 5 was the smallest
at 6.09%, and the change of porosity was 2.271%. After 2h of leaching, the sample of
magnesium sulfate solution with pH = 2 reached the maximum value of 50.348%, with
an increase of 9.38%, the largest increase in porosity. The porosity of samples increased
during the leaching process, mainly because the previously unconnected pores in the
samples were interconnected by the deionized water-saturated sample in the early stage.
When the magnesium sulfate solution was used for leaching, the Mg2+ in the leaching
agent exchanged ions with RE3+ on the surface of clay minerals. In this reaction, a large
amount of Mg2+ was adsorbed to the diffusion electric double layer under the electrostatic
interaction, breaking the balance of the double layer. At the same time, the physical seepage
in the solution changed the pore structure. As the acidity of the magnesium sulfate solution
increased, the −OH group in some mineral components of the samples dissolved, resulting
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in the deposition of fine particles and slowing down of the porosity change. Meantime,
the increase of hydrogen ions in the leaching solution thickened the double layer of clay
minerals, leading to the change of internal pores of samples and a gradual increase of the
number of large pores with the leaching time going on.
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Figure 10. Curve of porosity of samples with pH of different leaching agents.

Figure 11 shows the pore distribution of samples leached with magnesium sulfate
solutions with different pHs during the leaching process. The overall performance indicated
that the number of small and extra-large pores decreased while the number of medium and
large pores increased. As seen in the pore distribution of samples with pH = 2, pH = 4, and
pH = 6, the evolution characteristics of the three samples were consistent, showing that
the small and medium pores accounted for the majority and that the number of internal
pores with sizes of less than 0.24 µm decreased, while medium and large pores with sizes
between 0.24–10 µm increased. According to the pore distribution of the sample with
pH = 3 and pH = 5, in 0–2 h, the number of small pores increased and medium and large
pores decreased, while in 3–8h, the small pores decreased and medium and large pores
increased. By comparing the pore distribution of the five sample groups, taking the sample
of magnesium sulfate solution with pH = 3 as the contrast reference, and subtracting the
pore proportion of the reference group from that of the other four groups, the difference in
pore content of the magnesium sulfate solutions with different pHs in the leaching process
was determined, as shown in Figure 12. In Figure 12a,b,d, during the leaching process of
magnesium sulfate solutions with pH = 2, pH = 4, and pH = 6, there are more medium,
large, and extra-large pores. In the solution with pH = 3, there are more small pores. It
can be seen in Figure 12c that the pore proportion of a solution with pH = 5 is roughly the
same as that of pH = 3, fluctuating from −1.845%–+2.604%, and that the small and medium
pores are relatively few. According to Figure 5, the absolute values of the Zeta potential are
nearly the same, with similar curves. Meanwhile, the interaction force between particles
had the same effect on the sample interiors.
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4. Conclusions

Using the method of indoor simulated column leaching of ionic rare earth ores, the
influence of magnesium sulfate solutions with different concentrations and pHs on the
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evolution of the pore structure of the orebody during the leaching process is systematically
studied. The overall process of leaching is a process of seepage, ion exchange, ion migration,
and pore structure evolution. The main conclusions are as follows:

1. In the leaching process of rare earth samples with pure H2O, the curve of the change
of Zeta potential on the surface of rare earth ore particles is nearly a straight line. The
particles inside the sample cause local pore fluctuation under the effect of seepage. The
porosity changes slightly within 0.80%, which has little impact on the pore structure
of the orebody;

2. In the leaching process of magnesium sulfate solution with different mass percent
concentrations, the absolute value of Zeta potential on the surface of rare earth
ore particles decreases with the leaching time going on. When the solution with a
concentration of 4.0% is used as a leaching agent, the change of the Zeta potential
reaches the maximum, reducing by 53.60%. The curve of the Zeta potential change of
samples leached with high concentrations of magnesium sulfate solutions fluctuates
greatly, while that of low-concentration solutions is relatively gentle. The porosity
increases first, then decreases, and finally slowly increases during the leaching time.
The internal pores are mainly small and medium. During the leaching time, the
number of small and large pores increases in the samples with 3.5% and 4.5% solutions.
In the samples with the other concentrations, the number of small pores increases
rapidly while the number of large and extra-large pores is small and decreases;

3. In the leaching process of magnesium sulfate solutions with different pH, the absolute
value of Zeta potential on the surface of rare earth ore particles decreases during the
leaching time. In the later stage of the process, the value shows a slightly increasing
trend. When the magnesium sulfate solution with pH = 3 is used as a leaching agent,
the change of Zeta potential reaches the maximum, reducing by 41.04%. The porosity
increases first and then decreases, and finally slowly increases with time. The internal
pore structure of the samples generally shows that the number of small and extra-large
pores decreases while the number of medium and large pores increases;

4. When magnesium sulfate solutions with different concentrations and pH are used for
leaching, a chemical replacement reaction occurs between Mg2+ and RE3+, resulting in
a change in the thickness of the electric double layer and the breaking of the balance
between the van der Waals force and electric double layer repulsion of fine particles
and soil surface. The reaction also causes the agglomeration, dispersion, and dynamic
desorption transformation of fine particles, leading to the evolution of the microscopic
pore structure of the orebody during the leaching process.
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