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Abstract: In an attempt to solve the problems of the low intelligent distribution degree and high
working intensity of auxiliary transportation systems in underground coal mines, an intelligent
distribution strategy of materials in the whole mine is put forward. Firstly, combined with the
characteristics of materials and standard containers, a three-dimensional loading model is established
with the goal of maximizing the space utilization of standard containers, and a three-dimensional
space segmentation heuristic algorithm is used to solve the material loading scheme. Then, the
multi-objective optimization model of distribution parameters is established with the goal of the
shortest delivery distance, the shortest delay time, and the fewest number of delivery vehicles, and
the dual-layer genetic algorithm is used to solve the distribution scheme. Finally, the spatiotemporal
conversion coefficient is designed to solve the task list by hierarchical clustering, and the solution
time is reduced by 30%. The results show that the dual-layer genetic algorithm based on hierarchical
clustering has good adaptability in complex material scheduling scenarios.

Keywords: three-dimensional loading; auxiliary transport robots; path optimization; dual-layer
genetic algorithm; spatiotemporal cluster

1. Introduction

As an important part of the mine production, the auxiliary transportation system of
the coal mine undertakes important transportation tasks such as pulling gangue, feeding,
coal transportation, and transporting people. In recent years, with the rapid development
of technology, China’s open-pit coal mines have significantly increased the level of informa-
tization, intelligence, and automation in the transportation link. However, most complex
geological underground coal mine enterprises still use manual scheduling methods for
transportation scheduling. The development of intelligent and less humanized levels is rela-
tively flat, which has become a key link limiting the intelligent construction of underground
coal mines. In 2019, the State Administration of Coal Mine Safety included handling robots
and underground unmanned transport vehicles in the ‘Key R & D Catalogue for Coal
Mine Robots’, rapidly promoting the intelligent construction of mine transport robots. The
research and development of the unmanned underground transportation robot provide a
guarantee for the intelligent development of the auxiliary transportation of underground
mining. Studying the intelligent scheduling technology of the whole mine material, taking
the demand as the guide, scientifically organizing the transportation activities, optimizing
the material loading strategy, and arranging the distribution robot reasonably can reduce
the waste of resources, improve labor productivity, increase income, and accelerate the
transformation of mining enterprises.

At present, the material loading method and loading sequence are mainly obtained
by manual experience. This manual loading is often loaded one by one according to the
materials on the loading list. The operation workload is large, the loading efficiency is
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low, the safety is low, and the space utilization rate of the standard container is low. Since
the emergence of the cutting inventory problem in the 1960s, the solution to the three-
dimensional loading problem has developed rapidly. Many researchers have proved that
the hybrid genetic algorithm, heuristic method, and differential evolution (DE) algorithm
can solve the heterogeneous material loading problem [1-3]. To increase the practicability of
the loading algorithm, some scholars have studied the relationship between the constraints
related to the box direction, load stability, and box separation, which greatly reduces the
variables and constraints contained in the mathematical model and increases the solution
efficiency [4-6]. Jamrus et al. [7] developed an extended priority-based hybrid genetic
algorithm (EP-HGA) to determine the loading mode for the problem of transporting a
small number of items that cannot fully utilize the container space. At present, most of
the three-dimensional loading problems use heuristic algorithms to provide solutions, but
most of the research focuses on single-container loading of strong heterogeneous items or
multi-container loading of large-scale weak heterogeneous items, and there are few studies
on three-dimensional loading algorithms for large-scale heterogeneous items.

Vehicle scheduling usually plays an important role in intelligent transportation and
vehicle route planning [8,9]. In the distribution process, first of all, ensuring that vehicles
operate without conflict [10] and the realization of transport equipment sharing can greatly
improve the efficiency of distribution and the scheduling cost savings [11]. Vehicle route
planning usually solves the shortest distance to reduce time and fuel costs, but the increase
in the number of vehicles on demand will greatly increase the total cost. The schedul-
ing optimization based on unmanned transport robots needs to optimize two objectives,
namely, the shortest distance and the minimum number of vehicles. This can be considered
a multi-objective programming model. The key to solving such problems is to find Pareto
optimality [12]. Wang Yd’s hybrid NSGA-II, Wang Y’s IR-NSGA-III, Deng S’s AGPSO,
and E. Jiang’s decomposition-based multi-objective evolutionary algorithm are more effi-
cient than general optimization algorithms [13-16]. Hybrid particle swarm optimization
and NSGAZ2 algorithms are effective methods for solving multi-objective programming
problems [17]. Zhang [18] introduced a replication strategy based on immune density in
the DPSO algorithm, which avoided the premature convergence problem and improved
the ability to search for the global optimal solution. Gao [19] integrated the strategy of
an artificial fish swarm algorithm into the position update process of particle swarm op-
timization (PSO), which reduced the total execution time of the application. Kang [20]
integrated weight aggregation into MOPSO, which improved the efficiency of generating
the Pareto frontier. Z. Yuming [21] combined a fast non-dominated genetic algorithm
and time-varying multi-objective particle swarm optimization for global optimization and
discussed the influence of particle numbers on optimization results by changing the popu-
lation size. S. Nguyen [22] introduced the idea of multivariate multi-objective co-evolution
on the basis of multi-objective genetic programming to deal with multiple scheduling
decisions at the same time. X. Liang [23] used the weight aggregation method to constrain
the multi-objective mathematical model on the basis of the NSGA-II algorithm to obtain the
Pareto optimal solution set faster. W. Wenjing [24] used the k-nearest neighbor algorithm
to improve the genetic algorithm to achieve dynamic multi-objective programming. G.
Wang [25] proposed a hybrid multi-objective genetic algorithm based on a two-generation
and elite strategy to improve computational efficiency.

Scheduling is the process of adding start and finish information to the job order speci-
fied by the order [26]. An intelligent scheduling system usually includes three-dimensional
loading and path planning. It is usually identified as a three-dimensional loading capacity
vehicle routing problem, which is a kind of high complexity and difficult problem to solve.
Scholars have used numerical experiments to prove that the hybrid method of genetic
algorithm and tabu search, the adaptive large neighborhood search of routing and the
different packing heuristic algorithms for the loading part, the tabu search algorithm and
the tree search algorithm for loading, the improved minimum waste heuristic algorithm, the
improved genetic algorithm, ant colony optimization algorithm, branch cutting algorithm,
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tabu search, and multi-starting point evolution strategy can give a feasible solution to the
three-dimensional loading capacity vehicle routing problem [27-35]. Most of the data used
in most studies are benchmark instances in daily life. Since the benchmark instances mostly
conform to the law of open-air loading and distribution, it is still unknown whether the
method in the study is feasible for underground material scheduling in coal mines.

Aiming at the problems being multipoint and having long length, low intelligent
distribution, high working intensity, and high risk of underground coal mine auxiliary
transportation system, an intelligent scheduling strategy for whole mine materials is pro-
posed. Based on the demand information, auxiliary transportation equipment, and line
status, a multi-objective and multi-object scheduling optimization model is established.
With the help of dynamic topology technology, the intelligent distribution and auxiliary
transportation path optimization of the whole mine materials are realized. Firstly, com-
bined with the characteristics of materials and standard containers, a three-dimensional
loading model is established with the goal of maximizing the space utilization of standard
containers, and a three-dimensional space segmentation heuristic algorithm is used to solve
the material loading scheme. Then, the multi-objective optimization model of distribution
parameters is established with the goal of the shortest delivery distance, the shortest delay
time, and the fewest number of delivery vehicles, and the dual-layer genetic algorithm is
used to solve the distribution scheme. Finally, the solution time of the dual-layer genetic
algorithm is optimized. Based on the task list attribute, the spatiotemporal conversion
coefficient is designed to solve the task list by hierarchical clustering.

2. Description of Mine Material Scheduling Problem

Coal mine material inventory management is generally divided into three levels, the
first level of inventory for the coal mine group, the group according to the production plan
to the supply section distribution of materials, the second level of inventory for the mining
area supply section, the supply section according to the production plan to the mining
area distribution of materials, the supply section distribution of materials stored in the
mining area industrial square, the third level of inventory for the mining area, the mining
area according to the production plan to the working face distribution of materials, this is
the planned distribution. The planned distribution of materials can meet the production
needs of most working faces. It is often difficult to take into account the materials needed
for special working conditions. The mining captain’s working face must propose material
requirements such as demand distribution.

The material delivery process is shown in Figure 1. Working face to fill in the required
material information submitted to take the mining captain for approval. Approval by the
demand can be directly collated, approval does not pass the need to fill out the reasons for
rejection. The working face checked the reasons for rejection and modified the material
application form. After the modification was completed, the material application form
was submitted to the mining captain for approval. Take the mining captain to audit all
requirements after the formation of the task list and signed. The mining captain confirms
whether the materials of the industrial square meet the requirements of the task list. When
the materials in the industrial square meet the requirements of the task list, the distribution
plan is formulated, and the working face waits for the delivery. The square personnel loads
the materials into the standard container according to the Ex-warehouse order. After the
loading is completed, the transport team transports according to the working schedule.
When the material in the industrial square does not meet the requirements of the task list,
the mining captain sends a material shortage notice to the working face, and the working
face accepts the material shortage notice and modifies the application.

The material loading takes the intelligent loading vehicle of the industrial square as
the starting point. The equipment layout of the industrial square is shown in Figure 2.
In order to facilitate the loading and unloading of materials and standard containers, the
transportation track is designed as a double track, with platform vehicles consisting of
two platform vehicles. First of all, the square personnel puts the materials to be delivered
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according to the task list in advance, then the intelligent loading vehicle puts the materials
into the empty standard container, and finally, the intelligent loading vehicle grabs the full
standard container and fixes it on the empty platform vehicles after loading is completed
by the transport robot in accordance with the planned route distribution. When the robot
carries the empty standard container platform vehicles back, the intelligent loading vehicle
grabs the empty standard container and puts it in the specified position.
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Figure 2. Material and standard container loading and unloading diagram.

For the coal mine auxiliary transportation system, the types of distribution materi-
als are complicated, as shown in Figure 3. These types of distribution materials include
mechanical and electrical products (including wire and cable, high and low voltage electri-
cal appliances, instruments and meters, lighting appliances, electronic components, etc.),
metal materials (including ferrous metal materials, metal processing parts, non-ferrous
metal materials, etc.), non-metallic materials (including wood, sand, asbestos products,
refractory materials, glass, bricks and tiles, rubber and plastic products, etc.), labor protec-
tion products (including labor protection protective clothing, head protective equipment,
labor toolkit, respiratory protective equipment, hand protective equipment, etc.), chemical
products (including ultra-high molecular weight polyethylene, polyvinyl chloride pipe,
polyethylene pipe, grease, coolant, etc.), coal washing accessories (including screening
machinery, sorting machinery, dehydration machinery, etc.), fully mechanized mining ac-
cessories (including shearer, hydraulic support, winch, etc.), and fully mechanized mining
equipment (including coal mining machine, coal mining machine, etc.). These materials
(some up to a few meters and some only a few centimeters) have size differences. Some are
solid, some are liquid, and some have different forms. Measuring units have weight units,
length units, and quantity units, which are difficult to unify. In different types of work,
the district team received materials may vary, the district team received a large number of
personnel materials.
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Figure 3. Coal mine auxiliary transport materials.

3. Establishment of Coal Mine Material Multi-Objective Scheduling Mathematical Model
3.1. Symbol Definition

The working face puts forward the material application according to the production
demand, and forms i task list. The task list contains the basic characteristics of the material,
and the material is loaded into the standard container according to the material charac-
teristics. A three-dimensional rectangular coordinate system is established with the left,
back, and bottom vertices of the standard container as the origin. The position decision
variables X;c, ¥, Zick represent the coordinate values of the left, rear, and lower vertices
of the material c in the standard container k in the X, Y, and Z directions, respectively. Let
(Xicks Yickr Zick) be the coordinates of another vertex of the body diagonal connected to the
vertex, then the values can be calculated by the position decision variable and the relative
length, width, and height, respectively. The materials are arranged in standard containers
according to their length, width, and height {l;;, w;., h;.}. There are six orthogonal place-
ments, represented by the direction number p;., as shown in Figure 4. The side of the
material box parallel to the X-axis is relatively long, represented by I; correspondingly,
the material box is parallel to the edges of the Y and Z axes, which are relatively wide h.

and relatively high wZ, respectively, as shown in Table 1.

Figure 4. Material orthogonal placement posture.

Table 1. Number of directions of material placement.

Pic lfg h,{ wi
1 lic hie Wic
2 lic Wic hic
3 Wic lic hic
4 Wic hy lic
5 hic lic Wic
6 hic Wic lic
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After the materials are loaded, the delivery process is described as a graph G(O, E),
where O = {0;]i =0,1,2,---,n} is the set of industrial squares and n working faces,
E={v; = v]i,j =0,1,2,---,nNi# j} is the set of all edges between the working faces.
The distance between vertices 0;,0; is represented by d;;. The robot carries a standard
container from the industrial square to distribute materials to all working faces and returns
to the industrial square after distribution. In the process of distribution, in order to improve
the utilization rate of distribution resources and help the green development of coal mine
transportation, it is necessary to minimize the use of robots and optimize the distribution
path reasonably. The model involves mathematical parameter definitions as shown in
Table 2.

Table 2. Parameter definition of mathematical model.

Parameter Meaning
N={0,1,2,...n} Working face and industrial square set, 0 for industrial square
N ={1,2,...n} Working face set
E = {(i,j)|ieN, jeN,i # j} Robots run from i to j
d;j = (ieN, jeN) Distance from i to j
tij = (ieN, jeN) Time it takes for a robot to run fromi to j
s;(ieN) Requested arrival time for i
M={0,1,2,...m} Robot set, where m is the number of robots used
Gy (meM) Rated load weight of robot
tyi = (meM, ieN) Time robot m reaches i

Standard container set, where k is the number of standard

K=1{0,12,...k} containers used

Ly, Wy, Hy (keK) Length, width, and height of standard container k
Gy (keK) Maximum load weight of standard container
Vi (keK) Volume of standard container

Working face i demand material collection, C is the amount of

R . !
Ci= {1’2’ : ..C}zeN } material required for i

Lic, wic, hic (ieN/, ceC;) Length, width, and height of medium material c in working face i
Xk, Yi, Zi (keK) Lk, Wy, Hy direction coordinates of the standard container
The material c of the working face i is placed after the standard
Xick: Y ickr Zick (1€N', ceCj, keK) container k, and the coordinate of the lower left corner of the

material is
The material ¢ of the working face 7 is placed after the standard
Xickr Yier Zick (1€N', ceC;) container k, and the coordinate of the upper right corner of the
material is
p.. (ieN’, ceC;) The placement direction Io)f t?[e1 rr61]ater1al c of working face i,
m 4

g (ieN’, ceC;) The weight of the material ¢ of the working face i

3.2. Model Construction
For ease of calculation, the following assumptions are made:

All materials are packed in a cuboid box, called a material box.
Single material does not exceed the standard container-rated load and volume.
The material box must be placed inside the standard container (that is, in the three-
dimensional coordinate system established in this paper, the coordinates of the upper
right front corner of the material box cannot exceed the three-dimensional properties
of the standard container).
The two material boxes in the standard container cannot be spatially overlapped.
The material box placed in the standard container needs to be placed parallel to the
standard container, which is reflected in the three-dimensional coordinate system.

e  Weight constraint: the total required weight of all working faces on one path cannot
exceed the rated vehicle loading weight Gy;,.

e  Direction constraint: some types of material boxes placed in the standard container
direction cannot be arbitrarily rotated, only by some fixed edge as a high attribute.
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e  Support constraints: All bins placed need to have a support area. All the bottom areas
of the bins need to be other bins or need to have a standard container bottom support.

e  All the materials required for the working face are in the industrial square; that is, all
the robots are hoisted from the industrial square.

All robot types are consistent.

Each working face can only be distributed by one robot; that is, the demand is inseparable.
The number of robots is related to the number of paths. A robot distributes a working
face on a path, and it cannot be sent or leaked.

e  The ‘first in and then out’ constraint. In the same path, the materials that serve the
working face first need to be unloaded first, and the unloading process cannot be
hindered by the materials of other working faces.

e  Priority sorting. The working face requires urgent priority delivery.

Three two-valued variables a € {0,1}, By € {0,1}, 7ijm € {0, 1} are defined. If the
material c is completed by the standard container k, then a4 = 1, otherwise, a = 0; if the
material of the standard container k is completed by the robot m, then B, = 1, otherwise,
Brm = 0; if the robot m runs from i to j, then ;j,, = 1, otherwise, 7y;j, = 0.

In this paper, the robot path optimization model with the highest three-dimensional
loading rate of standard containers is established with the minimum number of delivery
vehicles and the shortest delivery path as the research objectives.

Objective function:

N G
minZ; = Y Y K 1)
i=0c=0
N N M
minZ; = Z Z Z dijYijm 2)
i=0 j=0 m=0
N M
minZz = Z Yojm (©)
j=0m=0
N M
minZ, = Z Z twi — Si (4)
i=0 m=0

In Formula (1), K denotes the number of standard containers. In Formula (2),
Zf\io Z]'I\Lo Z%:o djj7vijm denotes the total distance from all materials to the working face. In

Formula (3), Z]-I\LO Z,,ALO Yojm denotes the total number of robots starting from the industrial

square. In Formula (4), t,,; —s; denotes the delayed delivery time of the robot.
Constraint conditions:

C C C
Y lie <L Y Wie < Wi, Y_hie < HgVi € N, VeeC;, Vk € K (5)
c=0 c=0 c=0
C
Y gicter < GyVi € N, Vk € K 6)
c=0
C
Zlicwichic“ck <V, Vie N,Vk e K (7)

c=0
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liCpic = 1,2
1X = { wip;, = 3,4Vi € N,VceC;
hiCpiC - 5, 6
liCPic = 3/5
lzlg = § WicP;c = 1,4Vi € N,VceC; (8)
hiCpiC - 2,6
liCpic = 4, 6
1Z = ¢ Wicp;. = 2,3Vi € N, VeeC;
hiCpic = 1/5

Xick = Xick + lngi € N, VceC;
w = VYick + l}gVZ € N, VCGCi (9)
Zick = Zik + 12Vi € N, VceC;

max{ max (X Xiak) MX(Yick: Yige) MaX(Zicks Ziak) } > 1¥i € N, Ve, deC,, ¥k € K (10)
min(Xick, Xigk) " min (¥, Vigr) - min(Zick, Zidk)

when a;; = 1and z; > 0, Xjek < X < Xk, Yiox < Y < ¥, for Vi € N, VeeC;, Vx, y, z, there
exists deC; such that the following conditions are satisfied:

Xige < x < Xigk

Yiak =Y = Viak (11)
Zick = Zidk
dij = i’i]'Vi,j eEN (12)
two =50 =0Vme M (13)
N M
Yo ) vim=1VieN (14)
j=0 m=0
K
Y GiBim < G, Vm € M (15)
k=0
M
Y Yo =1,¥m e M (16)
m=0
N N
Y Vi — Y Yajm = O0Vz € N,¥m € M (17)
i=0 j=0
N
Zr)/iom =1,VmeM (18)
=0

The Formula (5) represents the length-width-height constraint; that is, the three-
dimensional size of the container for a single material is smaller than that of the standard
container. The Formula (6) represents the load constraint, the container weight of a sin-
gle material is less than the maximum load-bearing weight of the standard container.
Equation (7) represents the volume constraint, the container volume of a single material is
less than the standard container volume. The Formula (8) represents the value of the rela-
tive length, width, and height of the material container in different directions. Equation (9)
represents the calculation method of the upper right corner of the material container and
also suggests that the container must be placed parallel to the standard container. The
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Formula (10) denotes the non-overlapping constraints of c and d in the container space.
Equation (11) represents the support constraint, ¢ material container must have a standard
container bottom or material container d support. Equation (12) indicates that the robot’s
running speed is 1 m/s; that is, the spatiotemporal conversion coefficient is 1, and the space
and time values are equal. Equation (13) represents the data initialization of the industrial
square. The time at which the robot first reaches the industrial square and the working
time in the industrial square are both 0. Equation (14) indicates that each working face
is accessed and only accessed once. Equation (15) means that the weight of the standard
container carried by the robot does not exceed its rated load. Equations (16)—(18) indicate
that all robots start from the industrial square and return to the industrial square after
several non-repetitive working faces.

4. Coal Mine Material Multi-Objective Scheduling Mathematical Model Solution
4.1. Coal Mine Material Multi-Objective Scheduling Mathematical Model Solution

Three-dimensional loading is a typical NP-hard problem, and the heuristic algorithm
has a good solution to this kind of problem. The realization of the whole loading process is
to show the placement order and placement position of the material box, and the influence
on the spatial layout of the standard container. In this paper, the heuristic algorithm
of three-dimensional space segmentation is used to solve the loading scheme. For the
heterogeneity of materials, the corresponding loading strategy is formulated as follows.

4.1.1. Determine the Loading Sequence

Material box size and different loading sequences produce different standard container
space layouts, at the beginning of loading, need to determine the material box loading
sequences, and generally adopt the method of decreasing volume, length, weight, etc.
Taking the volume decreasing rule of the material box as an example, the volume of the
material box is sorted. If the volume is equal, the length, width, and high attributes are
considered in turn. If the length, width, and high attributes of the material are the same,
the weight of the material is considered. For the same specifications of the material, the
placement order can be regardless of the order.

4.1.2. Determine the Material Placement Position

After the material loading sequence is clarified, rules need to be formulated to deter-
mine its relative placement position. To make the remaining space of the standard container
larger and more regular, the first material is placed in a corner of the standard container,
and then loaded one by one along the edge.

4.1.3. Three-Dimensional Space Segmentation Method

After placing a material container c of size (Xjck, ¥;q Zick) into a standard container
k of size (Lg, Wy, Hy), the available space of the standard container has three parts, front,
right and top, as shown in Figure 5. The space coordinate of the kth standard container is
setas R = (k,0,0,0, Ly, Wy, Hy), where (0,0,0) is the coordinate of the placement point, and
(L, Wi, Hy) is the space length, width, and height coordinates. After being placed in the
container ¢, the three newly generated space coordinates are as follows:

R1 = (k, Xicks O, O, Lk/ Wk/ Hk)

Ry = (k,,0,Yick, 0, Xick, Wi, Hy) (19)
Rz = (k,0,0,, Zick, Xick, Yick, H)
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Figure 5. Diagram of space division.

4.1.4. Space Merge Method

When a standard container is placed in a material box, three free spaces are generated.
When a free space is selected to be placed in the second material box, three free spaces are
generated again in the free space. With the addition of the material box one by one, the free
space presents many small characteristics. These free spaces are too small to accommodate
the material box, which reduces the space utilization of the standard container. In order to
increase the utilization rate of free space, the free space is merged in the following ways:
First, the left and right are merged. When the two adjacent free spaces X and Z are the
same, they can be merged into a larger free space. The second is to merge before and after.
When the two adjacent free spaces have the same Y and Z coordinates, they can be merged
into a larger free space. The third is to merge up and down. When two adjacent free space
Xand Y coordinates are the same, they can be merged into a larger free space.

4.1.5. Same Material Box Merging Rules

According to the rules of space division and merger, it is found that the generation of
small free space is related to the number of material boxes. The more material boxes, the
more the small free space. In order to reduce the number of small free spaces, the number
of material boxes can be reduced, that is, the combination of the same specifications and
models in the task list to piece together a larger ‘material box’. The combination of material
boxes refers to the combination of the same material boxes according to the same placement
posture. The material boxes have six placement postures, and the placement posture is
selected with the maximum space utilization rate as the goal. The three-dimensional size of
the combined large ‘material box” is smaller than the three-dimensional size of the standard
container, and the weight does not exceed the maximum weight limit of the standard
container.

The specific steps of the three-dimensional space heuristic algorithm are shown in
Figure 6:

e Input standard container size and quantity, material box three-dimensional size,
and weight.

e  Call the material box merging algorithm to merge the same specification material
boxes into new material boxes and arrange the material boxes according to the load-
ing sequence.

e Initialize the standard container space, search the free space, determine whether the
material box can be placed in the free space, and assess whether the material box can
be placed; if the material box cannot be placed, traverse the remaining material box. If
all the material boxes cannot be placed, select the next standard container.
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o  Determine the location of the material box and divide the three-dimensional space of
the standard container.

e  (Call space merging algorithm to generate new free space and delete the corresponding
free space before merging.

e  Repeat the above steps until the goods are loaded.

( Start )
Input container and
material parameters

Merge material boxes with
the same specifications

Whether the
materials are
finished?

of material boxes

v

( Initialize the space )

)

Arrange the loading order)

( Search space

Place the material

JIUTR)UOD JXOU A [,

Y

Figure 6. Three-dimensional space segmentation heuristic algorithm flow.

4.2. Dual-Layer Genetic Algorithm to Optimize Multi-Objective

The dimensional loading constraints (3L-VRPTW) studied in this paper are a typical
multi-objective optimization problem. When solving multi-objective decision making,
there are two main methods, one is the composite type, multi-objective decision making
into single-objective decision making; the other is hierarchical. In the case of ensuring
the first goal, trying to optimize the second and third goals is necessary. In order to solve
the non-inferior solution of the multi-objective programming problem, the multi-objective
programming problem is often transformed into a single-objective programming problem.
The methods to achieve the transformation are as follows: the evaluation function method,
goal programming method, hierarchical sequence method, and intelligent optimization
algorithm, such as NSGA-IL In this paper, the number of optimization standard containers
in the four optimization objectives is relatively independent compared to the optimization
of distribution path parameters. The solution process has been introduced previously. The
remaining three optimization objectives are related to the number of distribution times. The
more the number of distribution times, the longer the total distribution distance, and the
more the number of robots needed, but the delay distribution time will be reduced. Each
working face is distributed separately, with the shortest delay time and the highest cost. In
order to balance the three optimization objectives, firstly, the standard genetic algorithm is
used to solve the shortest distance, then the NSGA-II algorithm structure is used to solve
the Pareto optimal solution set of the number of robots and the delay time, and finally, the
optimal distribution parameters are output through the elite selection mechanism.

4.2.1. Coding Method

The coding method is integer coding. Assume that the industrial square has four
working faces for material delivery, and the initial delivery path code can be [0, 1, 3,
0, 2, 4, 0], as shown in Figure 7. Among them, 0 represents the industrial square, and
other numbers represent each working face. According to the constraints of the standard
container grouping of the auxiliary transportation robot and the maximum load capacity of
the robot, the chromosome is decoded with the natural number 0 to form the corresponding
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sub-path. It can be seen from Figure 7 that the chromosome can be decoded into two
sub-paths of [0, 1, 3, 0] and [0, 2, 4, 0]; that is, the distribution path of robot M1 is as
follows: industrial square 0 — working face 1 — working face 3 — industrial square 0.
The distribution path of robot M2 is as follows: industrial square 0 — working face 2 —
working face 4 — industrial square 0.

7,

M1 M2

Figure 7. Coding method.

4.2.2. Crossover Operation

The cross-operation mode is 2-opt*, that is, the random algorithm, as shown in
Figure 8. The specific implementation method involves assuming the working surface
ieN’,je N, and the distribution route R; = [0, ...,i+1,i+2,...,0], the distribution route
R; =[0,...,j+1,j+2,...,0]. Using 2-opt * crossover to generate a new delivery route
R; =100,...,j+1,j+2,...,0], R]’. =10,...,i+1,i+2,...,0]. After the crossover operation,
the distribution scheme corresponding to the robot path should meet the relevant con-
straints. If not, the crossover operation should be re-performed. The objective function
value and crowding degree of individuals after the exchange are calculated and arranged
in descending order. The parent population is generated by the elite strategy.

7 4
207 g2

213

Figure 8. Crossover operation.

4.2.3. Variation Operation

In order to increase the global search ability of the algorithm, the mutation operation
is adopted, as shown in Figure 9. The specific implementation method is as follows:
according to the mutation probability value Pm, two genes in one chromosome of the parent
generation are randomly selected for exchange to generate a new offspring chromosome.
After the mutation operation, the distribution scheme corresponding to the robot path
should meet the relevant constraints. If not, the mutation operation should be carried
out again.
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Figure 9. Variation operation.

5. Application Analysis

Twelve task orders in the third mining area were randomly selected for research, and
the reloading yard was used as the origin to measure the task list destination coordinates.
The specific working face distribution is shown in Figure 10. Table 3 shows the task list
parameter information of a specific working face, including the task list code, the ideal
delivery time of the material, and the coordinates of the working face. The ideal delivery
time of the material is determined when the working face applies to the material. The
materials and related information required in the task list are shown in Table 4. The material
coding column in Table 4 contains information about the number of materials and the
number of omitted individual materials. The parameter unit of material length, width, and
height is a millimeter, and the parameter unit of weight is the kilogram. It can be seen from
the table that material types are quite different and heterogeneous. Now it is necessary to
load the materials in the task list into standard containers with a length of 3 m, a width of
1 m, and a height of 1 m, and calculate the number of standard containers required.

E Reloading

yard

Figure 10. The destination distribution of twelve task lists.

Table 3. Parameters of working face.

Task List Code 1 2 3 4 5 6 7 8 9 10 11 12
Ideal time 8:32 8:44 8:36 15:00 14:54 10:25 16:50 9:20 10:30 16:00 14:00 16:15
horizontal scale 275 200 116 1532 1599 1550 1510 1488 1555 1490 1400 1450

vertical scale 819 870 490 648 677 572 388 304 325 148 130 60
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Table 4. Task list of material parameters.

code
013
007
012

009*2
014
010
015
011
003
002
004
001
005
006
008

code
070
065

068*4
067
066
064
061
063
071
069

code
093
083
088
092
090
085
084
086
089
091
087

code
020*2
023*10
030
017*2

Task List 1
length width height weight
542 321 339 1669
2498 771 423 1528
915 979 62 178
2453 646 750 3803
850 262 180 128
194 411 909 232
533 717 18 22
367 836 156 153
478 415 964 612
2371 612 329 1528
1794 202 995 1154
1429 852 425 1669
2720 675 84 494
1859 26 879 136
1385 142 12 8
Task List 4
length width height weight
1793 988 589 4598
461 39 115 065
971 41 187 1754
1026 916 994 385
2785 708 204 1287
525 254 902 385
2399 785 763 4598
1690 412 787 1754
782 465 952 1108
2578 940 311 2412
Task List 7
length width height weight
357 30 828 28
795 831 713 1507
1163 609 732 1659
1327 729 65 201
2809 930 325 2717
1774 465 948 2502
2139 988 27 183
2248 303 206 449
1587 474 244 587
2807 394 84 297
2153 56 348 134
Task List 10
length width height weight
91 938 941 257
775 598 523 776
1394 383 345 589
2330 472 153 538

code
019
025
016
030
026
029
022

028*2
027
023
020
018
024
021

code

045*2
049
050
048
047
042

046*3
051
041
044
043

code
097
102
099
100
094
095
101
096
098

code
009

013*15

015*60

Task List 2
length width height
941 938
1087 379
615 662
1394 383
823 998
360 558
751 396
76 508
1825 758
598 523
1204 624
2835 585
2197 864
1859 26
Task List 5
length width height
2770 873
55 828
1288 96
597 91
760 711
587 518
938 849
2672 787
2874 553
2271 101
2187 360
Task List 8
length width height
1748 290
649 643
359 561
2956 436
266 44
420 808
1486 64
2688 149
2451 106
Task List 11
length width height
2453 750
339 321
533 18

91
816
242
345
358
287
346
656
607
775
866

67

4
879

675
407
629
200
215
804
947
16
396
562
775

53
728
884
757
234
602

57
661
595

646
542
717

weight

257
1076
315
589
941
184
329
81
2687
776
2082
356
24
136

weight

5223
59
249
35
372
782
2413
108
2014
413
1953

weight

86
972
570

3122
495
570

3122
847
495

weight

3803
189
22

code
031*50
037*70

code
078
079
073
076
075
077
080
082
072
081

code
046

108*8
065
103
106
105
109
104

code
047*8
071%*2
023*2
011*2
028*10

Task List 3
length  width height
449 100
400 123
Task List 6
length width height
73 729
1228 30
859 56
2366 930
2162 474
1627 396
2751 708
2128 614
2860 303
1196 907
Task List 9
length width height
938 849
490 538
461 39
642 708
913 822
1939 515
1658 951
1685 225
Task List 12
length width height
760 711
782 465
775 598
367 836
76 656

314
169

101
596
623
614
907
831
110
648
91
233

947
785
115
968
112
437
360
259

215
952
523
156
508

weight
45
27

weight
17
70
96
4323
2974
1713
686
2709
252
809

weight
2413
662
7
1408
269
1396
1816
314

weight
372
1108
776
153
81

The three-dimensional space segmentation heuristic algorithm is used to solve the
12 task list loading schemes, and the number of standard containers required for each
task list and the space utilization rate of each standard container in a single task list are
calculated. The number of standard containers and the maximum space utilization rate
of standard containers in a single task list are shown in Table 5. It can be seen from the
intelligent loading results in Table 5 that when there are few materials on the task list, only
a standard container is needed, which can be called a single-container task list. The loading
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rate of a single-container task list container is the sum of the volume of all materials in the
task list and the volume of the standard container. When there are many materials on the
task list, two or more standard containers are needed to complete the material, which can
be called a multi-container task list. The maximum space utilization rate of the standard
container in the multi-container task list is smaller than that of the single-container task list.
The difference is mainly caused by the strength of the material heterogeneity. The stronger
the material heterogeneity, the lower the maximum space utilization rate of the standard
container.

Table 5. Intelligent loading result.

Task List Code

1

2 3 4 5 6 7 8 9 10 11 12

Number of containers
loading rate

3
81%

2 1 3 4 3 3 2 2 3 1 1
71% 47% 77% 82% 63% 76% 60% 79% 65% 83% 82%

Statistical manual loading results are shown in Table 6. The performance diagrams of
different loading modes are drawn according to the loading results, as shown in Figure 11.
The manual loading results of a single-container task list are less, the multi-container task
list standard container maximum space utilization difference is small, and, overall, they
are full of subjectivity. Comparing the two loading methods, from the perspective of the
maximum space utilization rate of the standard container, the average space utilization
rate of the maximum space utilization rate of the manual loading standard container
is 59%, the average space utilization rate of the maximum space utilization rate of the
intelligent loading standard container is 72%, and the intelligent loading is 18% higher than
the average space utilization rate of the manual loading. From the number of standard
containers, 12 task lists are manually loaded using 35 standard containers, and 12 task lists
are intelligently loaded using 28 standard containers. Intelligent loading reduces the use of
standard containers by 20% compared with manual loading. In general, intelligent loading
has better performance than manual loading.

Table 6. Manual loading result.

Tast List Code

1

2 3 4 5 6 7 8 9 10 11 12

Number of containers
loading rate

4
56%

3 1 3 5 4 3 2 2 4 2 2
65% 47% 70% 55% 57% 53% 54% 62% 61% 64% 62%

Manual loading Intelligent loading
B+ Manual loading+* 4+ Intelligent loading

10 &
S £
< E
) -8
s 3
—
G
o0 o
8 L6 &
3
3 s ]
u e w n L4 Z
. # QU S
* P .“". ..... n -2
v e
T T T T T T T |0
0 2 4 6 8 10 12 14

Task list code

Figure 11. Performance comparison of different loading modes.
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The electric locomotive robot is grouped into 4 groups with a maximum load of 20 t.
The electric locomotive is manually scheduled to be loaded and dispatched according to
the task list. If the task list material is within the carrying range of the electric locomotive,
the task list is distributed by an electric locomotive. If the task list material is larger than
the carrying range of the electric locomotive, the electric locomotive will carry out multiple
distributions. The electric locomotive that distributes the task list does not accept the
distribution of other task list materials. Under this delivery rule, the scheduling scheme is
shown in Table 7, and the path planning is shown in Figure 12. The yellow arrows represent
the delivery task list, which is in the task list of (0,1,0), (0,3,0), (0,2,0), (0,8,0), (0,8,0), (0,9,0),
(0,11,0), (0,5,0), (0,4,0), (0,10,0), (0,12,0), (0,7,0). If there is only one electric locomotive robot
on site, the total delivery distance under manual scheduling is 31,178.01 m, regardless of
loading and unloading time. There are five delivery delay task lists (task list two, task list
three, task list eight, task list six, and task list nine), as shown in Figure 13. The delay time
is 15,772 s; if there are two electric locomotive robots available on site, regardless of the
loading and unloading time, the number of delivery delay task lists is two (task list 2 and
task list 8), and the delay time is 2088 s.

The experiment was carried out on a computer with a hardware configuration of
AMD Ryzen 7 5800X 8-Core Processor 3.79 GHz, 32.0 GB, 3.79 GHz frequency, and the
development environment was PyCharm?2020.1 x64. The specific parameters are set as
follows: population size pop size = 100, crossover probability Pc = 0.6, mutation probability
Pm=0.2.

Table 7. Scheduling scheme.

Intelligent

Manual Scheduling A Robot Two Robots . A Robot Two Robots
Scheduling
Task list code Ideal time Actual time Actual time Task list code Ideal time Actual time Actual time
1 8:32 8:25 8:25 1 8:32 8:25 8:25
3 8:36 9:21 8:31 3 8:36 9:21 8:31
2 8:44 10:18 9:17 2 8:44 9:28 8:37
8 9:20 11:05 9:22 8 9:20 10:47 9:12
6 10:25 11:42 9:59 9 10:30 10:48 9:13
9 10:30 12:18 10:03 6 10:25 11:24 9:19
11 14:00 13:02 10:39 11 14:00 12:04 9:57
5 14:54 13:41 10:38 7 16:50 12:09 10:01
4 15:00 14:10 11:07 5 14:54 12:43 9:50
10 16:00 14:48 11:25 4 15:00 13:12 10:19
12 16:15 15:36 11:47 10 16:00 13:50 10:44
7 16:50 16:20 12:08 12 16:15 13:55 10:46

Figure 12. Result of route planning for 12 tasks manually.
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Figure 13. Manual delivery time.

The standard genetic algorithm optimizes the shortest delivery distance of 20,680.63 m,
with a total of 8 deliveries. The NSGA-II algorithm is used to solve the problem. The result
is that 2 transport robots are needed, all task lists are not delayed, and the delay time is
reduced by 100%. When the intelligent algorithm is used for robot scheduling, the path
planning is shown in Figure 14. The yellow arrows represent the delivery task list, which
is (0,1,0), (0,3,2,0), (0,8,9,0), (0,6,0), (0,11,7,0), (0,5,0), (0,4,0), and (0,10,10,12,0) on the task
list. When a single robot performs delivery, as shown in Figure 15, there are 5 delivery
delay task lists (task list 2, task list 3, task list 8, task list 6, task list 9), and the delay time is
15,194 s. Compared with manual scheduling, the delay time is reduced by 3.7%. According
to the calculated data, the relationship between the delay time and the number of robots
under different scheduling modes is drawn (Figure 16). It can be seen from the Figure that
under the same delay condition, more robots are needed to complete the task list manually;
when the number of robots is the same, manual scheduling takes longer to complete the
task list.

In the actual scheduling application, because the task list information is constantly
updated and the real-time performance is strong, the scheduling scheme is also constantly
updated and transformed. In the solution process, the accuracy of the scheduling scheme
is at the expense of the solution time. The solution time is an important index that affects
the engineering application of the algorithm. We hope that the process of obtaining the
scheduling scheme is fast and efficient. Statistics dual-layer genetic algorithm to solve the
time 20 times, draw a scatter diagram as shown in Figure 17, can be seen from the Figure,
the solution time is more evenly distributed in the vicinity of 10 s, take the average of 9.7 s.

Figure 14. Result of route planning for 12 tasks intelligently.
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Figure 15. Intelligent delivery time.
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Figure 16. Relationship between the number of robots and the delay time.
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Figure 17. The dual-layer GA solves the time distribution.
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6. Working Face Spatiotemporal Clustering Based on Hierarchical Clustering

Working face clustering solution can reduce the solution time, to ensure efficient
path planning methods. Hierarchical clustering is a clustering algorithm that creates a
hierarchical nested clustering tree by calculating the similarity between data points in
different categories. In a clustering tree, the original data points of different categories are
the lowest layer of the tree, and the top layer of the tree is a clustering root node. There
are two methods to create clustering trees: bottom-up merging and top-down splitting.
In this paper, a bottom-up merging algorithm is used to cluster the output hierarchical
structure, which is more informative than the unstructured clustering set returned by
planar clustering. The hierarchical clustering algorithm is traditionally based on Single
Linkage, Complete Linkage, and Average Linkage to calculate the similarity of data. The
Single Linkage and Complete Linkage methods are easily affected by extreme values. Based
on the traditional hierarchical clustering algorithm, this paper designs a time-space data
conversion coefficient w based on the coordinates of the working face and the required
delivery time of the working face. The Average Linkage formula is used to cluster the
spatiotemporal data, and the working face is clustered together according to its similarity,
as shown in Figure 18.

Ooo 0 O Ooo0)/o O
oooooﬂ m\oo0/© ©
o o 9 o o ©

Figure 18. Hierarchical clustering principle.
. d;; e . . .
Taking w = 5! = v =1, it is proved that if the robot starts from the industrial square
. . . . . do;
and arrives at the working face i at the required time, then d;; = dy;, s; = to;, t—of = .
Use the Average Linkage formula to calculate the distance from data points (A, F)

to (B, C):
{\/(A—B)2+\/(A—C)2+\/(F—B)2+\/(F—C)2}
4

The overall process of intelligent scheduling strategy based on hierarchical clustering
dual-layer genetic algorithm is shown in Figure 19. First, input the initial parameters of the
distribution, including the distribution center coordinates, working face coordinates, ex-
pected delivery time, and spatiotemporal conversion coefficient; then, the data are normal-
ized by using the spatiotemporal conversion coefficient, and the spatial two-dimensional
coordinates and the time one-dimensional coordinates are regarded as three-dimensional
data points. Each data point is an independent cluster; finally, the Average Linkage formula
is used to calculate the similarity between clusters, and the clusters with the highest simi-
larity are merged until the cluster category is consistent with the set parameter n, and the
clustering result is output. The distribution parameters are optimized inside the clustering
unit. Firstly, the basic genetic algorithm is used to solve the shortest path inside the unit.
Then, the NSGA-II framework is used to solve the minimum robot and the shortest delay
time dual-objective model, and the population P; is initialized. The selection, crossover,
and mutation operations are performed on P; to generate the offspring population Q;. The
Pi and Qy are merged to generate a new population R;. The non-dominated sorting is
performed on R; to obtain the non-dominated layer F;. The new parent population Py,
containing NN elite individuals is selected to calculate the crowding degree of individuals
in Fi and arrange them in ascending order. Finally, when the number of iterations reaches
the set value, the Pareto optimal solution is selected. Output delivery path parameters.

D=

(20)
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Figure 19. Dual-layer genetic algorithm process based on hierarchical clustering.

Set the number of categories n = 2, and use hierarchical clustering to cluster task lists.
The results are shown in Figure 20. The blue dots represent task list 1, task list 2, task list 3,
task list 6, task list 8, and task list 9 as a group. The green dots represent task list 4, task list
5, task list 7, task list 10, task list 11, and task list 12 as a group. The intelligent scheduling
algorithm is used to solve each group of task lists, respectively. The solution path planning
is shown in Figure 21, and the result is consistent with the result of the non-grouping
solution. The 20 times solution time in the group of dual-layer genetic algorithm based on
hierarchical clustering is counted, and the scatter diagram is drawn as shown in Figure 22.
It can be seen from the diagram that the solution time is evenly distributed in the vicinity of
6.7~6.9 s, with an average value of 6.8 s. Compared with the dual-layer genetic algorithm,
the solution time is reduced by 30%. In the actual distribution, the task list information is
always updated in real time, so each time, one only needs to pay attention to the first set of
results of the delivery time.

Figure 20. Hierarchical clustering results.
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4
A

Figure 21. Path planning result for 12 tasks of dual-layer GA based on hierarchical clustering. In the

(b)

figure, (a) is the path planning result of the blue dot group, and (b) is the path planning result of the
green dot group.

Time (s)

6.6

10
Number of solutions

Figure 22. Dual-layer GA based on hierarchical clustering for solving time.

7. Conclusions

In an attempt to solve the problems of the low intelligent distribution degree and high
working intensity of auxiliary transportation systems, an intelligent distribution strategy
of coal mine auxiliary transportation materials is proposed based on the application of
the unmanned driving technology of auxiliary transportation robots. Firstly, combined
with the characteristics of materials and standard containers, a three-dimensional loading
model is established with the goal of maximizing the space utilization of standard contain-
ers. The three-dimensional space segmentation heuristic algorithm is used to solve the
material loading scheme. Compared with manual random loading, the maximum space
utilization of standard containers increases by 18%, and the standard container occupancy
decreases by 20%. Then, the multi-objective optimization model of distribution parameters
is established with the shortest distribution distance, the shortest delay time, and the least
distribution vehicles as the objectives, and the dual-layer genetic algorithm is used to solve
the distribution scheme. The results show that in the case of having 2 robots available,
compared with manual scheduling, the total distribution distance is reduced by 34% and
the delay time is reduced by 100%, which has better performance. Finally, the spatiotempo-
ral conversion coefficient is designed to solve the task list by hierarchical clustering, and
the solution time is reduced by 30%, which improves the efficiency of real-time task list
dynamic programming.

There are many kinds of materials and different forms in the distribution of auxiliary
transportation systems. This paper mainly takes rectangular materials as the research object,
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and the next step is to study the combination loading method of round materials, such as
oil and air ducts and rectangular materials. In addition, the dual-layer genetic algorithm
based on hierarchical clustering is insufficient for the analysis of engineering applicability,
such as robot failure, traffic congestion, and roof collapse. The decision-making results of
the algorithm are still unknown and still need to be explored.
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