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Abstract: Waste incineration is a widely used treatment method, and sustainable approaches are
required to properly recycle large volumes of incineration ash to reduce environmental impacts and
landfill space consumption. Studies have focused on the potential of recycling incineration ash as
a replacement for natural aggregates in civil engineering applications, such as road construction.
However, industrial waste incineration ash, such as waste tire incineration ash, contains hazardous
heavy metals, such as lead and zinc that pose potential environmental threats. Moreover, few studies
have investigated the leachability of these hazardous metals after long-term natural aging. This
study investigates the long-term evolution of leachate chemistry, mineralogical transformation, and
heavy metal fixation performance of a recycled roadbed material using ash from industrial waste
incineration of waste tires and biomass (SFA). Additionally, field samples from a five-year pilot test
site utilizing SFA were also examined. Regulatory leaching tests showed that the concentrations
of Cd, Pb, As, T-Cr, and Ni were all below permissible limits even after five years of utilization.
Long-term column leaching experiment results indicated that, compared to the total content of the
SFA material, the leaching ratios of Pb, T-Cr, Cu, and Zn were 27%, 12%, 5%, and 0.1%, respectively.
The SFA pH-stat leaching test results demonstrated that the mass release of the total content of heavy
metals was relatively minimal, even under acidic pH conditions (pH < 4). Finally, profiles of pH
and major ions in leachate from the column leaching experiment were simulated using HYDRUS
HP1, implementing a dual-porosity modeling approach. In conclusion, despite containing hazardous
heavy metals, SFA exhibits significantly low leaching rates over a long-term period.

Keywords: cement-solidified fly ash; waste tire; heavy metals; geochemical modeling; column
leaching; HYDRUS-1D

1. Introduction

Generating large amounts of waste presents challenges related to urban public health,
global greenhouse emissions, and soil and groundwater contamination, among others.
Countries must develop environmentally sustainable methods to address the increasingly
complex issues associated with waste generation. In recent years, waste incineration has
become the most common treatment method worldwide, driven not only by limited landfill
space, but also by the goal of energy recovery and reduction in greenhouse gas emissions [1].
Simultaneously, it is crucial to adopt a sustainable approach for properly recycling signifi-
cant quantities of incineration ash, aiming to minimize potential environmental impacts
and utilize landfill space [2]. Significant efforts have been made to establish effective
evaluation methods, including laboratory leaching tests, field tests, life cycle assessments,
and monetary valuation to assess the utilization of incineration ash as a substitute for
natural resources in construction applications and the production of new materials [3–8].
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Moreover, studies have specifically focused on the potential of recycling incineration ash
as a replacement for natural aggregates in civil engineering applications, such as road
construction [7,9–13].

The major concern regarding the application of incineration ashes in the environment
is the potential release of contaminants, including high concentrations of soluble salts
and heavy metals, when recycled materials that incorporate ashes come into contact with
water [14,15]. In order to mitigate the risk of heavy metal release from the use of incineration
ashes in civil engineering applications, cement solidification/stabilization has become a
common pre-treatment method for various types of waste incineration fly ashes, extensively
employed in developed countries [16,17]. Researchers have observed a reduction in the
cumulative release of mobile Pb, Cu, Cr, Zn, and Cd through the fixation of alkaline
mineral phases [18–22]. Several numerical models have been developed and applied to
simulate the processes governing leachate occurrence and behavior in landfill and recycling
applications, aiding in understanding and predicting the behavior of incineration ashes in
the natural environment [23–25]. Although a few researchers have made efforts to describe
the long-term evolution of incineration ashes used as civil engineering materials [12,26], the
understanding of the physicochemical characteristics of cement-solidified and stabilized
ashes after long-term natural aging remains relatively limited [27–30].

In particular, there is a scarcity of studies focusing on the long-term evaluation of
recycled incineration ash derived from various industrial wastes, including waste tires,
when compared to MSW incineration ash and coal ash [31–33]. The disposal of waste
tires is of great concern, as approximately 80% of the world’s rubber waste is generated in
the form of used tires, and it is estimated that approximately one billion tires reach their
end-of-life stage each year [34]. Moreover, improper management of waste tires can pose
environmental hazards due to their physical and chemical characteristics, including the
potential for fire hazards and the propagation of mosquito-borne diseases [35]. Conse-
quently, waste tire incineration has become an attractive fuel source for industries, such
as cogeneration plants, cement kilns, and paper mills [36–40]. However, the presence of
components, such as steel wires in waste tires, has led to the enrichment of zinc (Zn) and
cupper (Cu) in the resulting incineration fly ash, as compared to other types of incinerated
ashes [8,41–46]. Moreover, limited information is available regarding the leaching behavior
of heavy metals from this ash [47,48]. To ensure the safe recycling of ash-containing waste
tires, it is crucial to investigate the behavior of heavy metals in the recycled material.

Given the escalating stringency of environmental regulations and the ongoing energy
crisis, the global pursuit of alternative fuel resources has become paramount. Among the
various available approaches, waste tire incineration has emerged as a highly promising
method for energy recovery, recycling, and mitigation of environmental pollution [46,49].
Consequently, this research endeavor aims to propose a viable solution that tackles the
challenges associated with incineration residues derived from waste tires.

To assess the long-term leachate quality at construction sites where recycled roadbed
material, including ash from industrial waste such as biomass and waste tires, is utilized,
a series of leaching tests and column experiments were conducted. A comprehensive
analysis was performed on samples obtained from a pilot-scale plant and a road test site
to examine changes in the solubility of heavy metals and the chemical composition of the
recycled roadbed material. Additionally, numerical modeling was employed to simulate
the pH profile of the leachate and evaluate the long-term potential for heavy metal leaching.
It is important to note that no previous studies have analyzed cement-solidified boiler
fly ash, incorporating waste tire and biomass incineration fly ashes, and only a limited
number of studies have estimated the mineral phases through geochemical modeling.
Moreover, this study aims to contribute to the validation of leaching prediction models,
specifically focusing on evaluating the long-term environmental impacts associated with
using cement-solidified ashes as recycled materials in the environment.
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2. Research Method
2.1. Solidified Boiler Fly Ash

The original sample of boiler fly ash (BFA) was obtained in 2016 from a paper mill
plant located in Nichinan City, Japan. This plant utilizes a fluidized bed incinerator to
produce energy, burning four different types of waste, including waste tires and woody
biomass. The complete waste composition and the ratios of its sources are described in [50].

Fresh Solidified Boiler Fly Ash (SFA-F) was created as a recycled material by combining
BFA with cement, fine sand, and water. The production of SFA-F was carried out by an
aggregate material-producing company in Miyakonojo City, Japan. The SFA-F sample was
generated by mixing 30% BFA, 40% fine sand, 30% cement, and 49% water in a mixer with
a capacity of 2.217 tons per batch.

To determine the optimal mixing ratio of source materials for effectively reducing
the leaching of Pb from the SFA-F material, a regulatory batch leaching test (JLT-46) was
conducted [51]. This test aimed to evaluate the leachability of Pb for various combinations
of mixing ratios.

2.2. Test Road Pilot Site Samples

The road test site, depicted in Figure 1, was constructed in 2017. The site was divided
into three equal sections, each measuring 5 m in width and 12 m in length. The first section
(SFA-O) and the second section (SFA-D) were covered with a 15 cm layer of SFA-F, followed
by a 5 cm layer of open-graded asphalt and dense-graded asphalt, respectively. In the third
section (SFA-N), the same 15 cm layer of SFA-F was used, but without any asphalt cover
layer, allowing the material to be exposed to the natural environment.
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Samples from the SFA-O and SFA-D sections were obtained by digging a hole to a
depth of approximately 10 cm. On the other hand, samples from the SFA-N section were
taken directly without any digging. All samples were collected, subsequently oven-dried,
and sieved before undergoing their corresponding analysis.

2.3. Chemical and Mineralogical Analysis

The bulk chemical composition and the major mineral phases of BFA, SFA-F, SFA-O,
SFA-D, and SFA-N were analyzed using XRF (EDX-720, Shimadzu, Kyoto, Japan)) and XRD
(X’pert PRO MRD, PANalytical, Almero, Netherlands)), respectively. To determine the total
concentrations of the major elements (Ca, Na, K, Mg, Al, Fe, and Si) and trace heavy metals
(Pb, As, Cu, Cd, T-Cr, Ni, and Zn) in all the sample materials, an acid digestion procedure
was conducted. This procedure followed the methodology outlined in a previous study on
the SFA material [50].

2.4. Batch Leaching Tests

The Japanese batch leaching test method (JLT-46) was conducted on dry samples of all
the materials included in this study [50,51].

The pH-stat leaching test was performed on samples SFA-F, SFA-D, and SFA-N, with
a sample size of 2 mm or less, to evaluate the solubility of major elements and the release
of heavy metals as a function of pH. The method involved using 20 g of sample mixed
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with 200 mL of distilled water. The sample was continuously stirred in open beakers
for 24 h at specific pH values of 2, 4, 6, 8, 10, and 12. To maintain a constant liquid-to-
solid (L/S) ratio of 10, the pH of the solutions was controlled using an automatic titration
system (902 Titrando, Metrohm Japan, Tokyo, Japan). Highly concentrated HNO3 and
NaOH solutions were added to adjust the pH without significantly increasing the liquid
volume. To minimize leaching errors resulting from variations in solution volume, the L/S
ratio increase in samples and solutions was maintained within the range of 10–12 L/S for
all samples.

The batch samples were conducted in triplicate, and at the end of each pH-stat test,
the solutions were filtered through a 0.45-µm membrane filter. The major elements and
trace heavy metals were measured by using ICP-MS (Agilent 7850, Agilent Technologies,
Santa Clara, CA, USA).

2.5. Column Experiments

Column leaching experiments were conducted to assess the release of heavy metals
and major ion components from the SFA-F sample with a particle size smaller than 2 mm
(Figure 2). A detailed description of the construction of the SFA-F columns can be found in
a previous study analyzing the SFA material [50].
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In this experiment, HNO3 acidified water with a pH of 4 was used as the inflowing
solution, pumped in an up-flow direction using a peristaltic pump. The initial outflow
rate was set at 30 mL/h. The leachates from the columns were collected at cumulative
liquid-to-solid (L/S) ratios, starting with an initial L/S ratio of 0.5. Once each L/S ratio was
reached, the pH was measured, and samples were taken and filtered through a 0.45-µm
membrane filter.

The concentrations of major elements (Ca, Na, K, Mg), trace heavy metals (Pb, T-Cr,
As, Cd, Cu, and Zn), and anions (Cl and SO4) in the filtered samples were measured using
ICP-MS (Agilent ICP-MS MassHunter 5.1) and ion chromatography (Thermo Scientific,
Waltham, MA, USA; DIONEX ICS-1100), respectively.

2.6. Reactive Transport Model in Saturated Conditions

This study aimed to numerically simulate the water content and the evolution of
solute concentrations through the column leaching test from start to finish. The calculation
code HP1 v 4.17, developed by Jacques et al. (2008) and Jacques and Šimůnek et al. (2006),
was utilized for this purpose [52,53].

The simulation involved modeling the process of mineral dissolution and the move-
ment of solutes using a dual-porosity approach, which considered both a mobile and
immobile phase. The mobile phase represented the rapid flow of water through the column,
while the immobile phase represented a “stagnant-flow” component, where solute transport
was described using a first-order rate process [54]. Specifically, the mobile phase occu-
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pied 70% of the column’s volume, while the immobile phase accounted for the remaining
30% [23].

The values of mass and water transfer parameters between the immobile and mobile
regions were estimated based on values employed in previous studies [55–59]. By imple-
menting these concepts, the hydraulic parameters were determined, and their values are
summarized in Table 1.

Table 1. Calibrated water flow parameters of the immobile and mobile phase; water and mass
transfer.

Phase

Water Content and Retention
Characteristics

Hydraulic
Conductivity

Water and Mass
Transfer

θr[-]
θs
[-]

α

[1/cm]
n
[-]

Ks
[cm/year]

L
[-]

Omega
[1/year]

Gs
[T1]

Immobile 0 0.162
0.03 2.0563 16,277 1 1 1

Mobile 0 0.378

Potential solubility-controlling minerals and their concentrations (as presented in
Table 2) were selected using the following criteria: (1) previous modeling studies conducted
on raw fly ashes and cement-solidified fly ashes [25,50,60,61]; (2) mineralogical analysis
and concentration data obtained from batch leaching tests; (3) mineral saturation indices
(SI) computed using PHREEQC; and (4) total content concentration of major components.

Table 2. Mineral assemblage, saturation indices (SI), and concentration amount input into HP1.

Mineral Phase Chemical Formula SI Concentration
(mmol/cm3)

Halite NaCl −7.39 2.9 × 10−2

Sylvite KCl −6.21 7.9 × 10−3

Gypsum CaSO4·2H2O −0.91 8.2 × 10−3

Calcite CaCO3 −0.89 1.9 × 10−1

Portlandite Ca(OH)2 −3.34 9.8 × 10−3

Ettringite Ca6Al2(SO4)3(OH)12·26H2O −8.89 1.0
Antarcticite CaCl2:6H2O −11.81 2.2 × 10−6

K-Feldspar KAlSi3O8 1.14 3.3 × 10−1

To determine the specific amounts of minerals to input into HP1, a manual trial-and-
error approach was employed. This involved calibrating the mineral assemblage and
concentration values by simulating the pH evolution of the column leaching test at various
L/S ratios. By iteratively adjusting the mineral parameters, an optimal fit between the
simulated and observed pH was achieved.

3. Results and Discussion
3.1. Characterization of Samples

The total elemental content, determined through acid digestion for BFA, SFA-F, SFA-O,
SFA-D, and SFA-N samples, is presented in Table 3. Generally, the decrease in content
between SFA-F and the road test samples can be attributed to the leaching processes caused
by natural rainfall, which results in the dissolution of readily soluble mineral phases and
soluble chloride [28,62]. Specifically, the road test samples exhibited lower Na content than
the fresh SFA-F sample. Alkaline metals, such as Ca, K, and Mg, did not show a significant
reduction between SFA-F and the road test samples, attributed to their low solubility under
the alkaline conditions of the cement matrix [63].
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Table 3. Total element content (mg/kg) of BFA, SFA-F, SFA-O, SFA-D, and SFA-N.

Element BFA SFA-F SFA-O SFA-D SFA-N

Ca 248,000 160,000 136,000 136,000 158,000

Na 260 98.0 55.0 60.0 60.0

K 4000 2250 2500 1870 1730

Mg 11,000 9300 10,500 9970 10,600

Pb 51.4 40.6 38.1 36.2 35.0

As 7.44 6.43 6.75 6.35 6.33

T-Cr 71.4 51.2 30.1 28.8 26.1

Cd 1.78 2.91 1.41 1.32 1.24

Cu 480 200 190 180 160

Ni 50.0 37.0 34.0 30.0 30.0

Zn 24,900 8320 9980 9000 5500

While there was no significant reduction in the content of heavy metals between SFA-F
and the road test samples, Pb, Cd, and T-Cr levels showed a slight decrease, particularly in
the case of the SFA-N sample. This reduction can be attributed to a “wash-off” mechanism
on the material’s surface, which appears to have had the greatest impact on Cd and T-Cr
levels in the SFA-N sample [64]. Although Sample SFA-F exhibited some inconsistencies
in total content compared to SFA-O and SFA-D, there was no major release of Zn. In the
case of SFA-N, the dissolution of Zn might be due to the carbonation processes affecting
the precipitation and dissolution of silicate hydrate aluminum phases that adsorb Zn in the
field [28].

Based on the mineral phases analysis conducted using XRD (Figure 3), BFA exhibited
higher levels of crystallized minerals, such as gypsum (CaSO4•2H2O), anhydrite (CaSO4),
calcite (CaCO3), and amorphous calcium aluminum silicate phases. Conversely, SFA-F
displayed secondary mineral reactions, including an increase in silicate oxide (SiO2) and
K-mica (KAl2(AlSi3O10)(OH)2), which facilitate the formation of calcium silicate hydrates
(CSH). These CSH structures can immobilize and adsorb significant amounts of Pb onto
their surfaces [27].
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In general, there were only slight discrepancies in identifying mineral phases between
SFA-F and the road test samples, except for an intensified calcite peak intensity in the
SFA-N sample. The heightened presence of calcite in SFA-N is likely to be the initial stage
of maturation, resulting from the carbonation process, which may have been accelerated
by atmospheric carbon dioxide. As described by Li et al. [65], indirect carbonation can
enhance the surface of fly ash matrices by promoting the formation of amorphous or mineral
carbonates. Furthermore, the carbonation reaction in Portland cement-based materials is
primarily driven by the conversion of calcium hydroxide (Ca(OH)2) to calcium carbonate
through the decalcification of CSH minerals [65,66].

3.2. Compliance Batch Leaching Test: JLT-46

A preliminary batch leaching test (JLT-46) was conducted on BFA. In accordance with
Japanese regulations, BFA is classified as industrial waste and can be disposed of in a
specially designed industrial waste landfill. However, the Pb concentration observed in
Table 4 (0.0141 mg/L) exceeded the allowable limit of 0.010 mg/L specified by the Japanese
environmental quality standards for soil pollution [67]. Nevertheless, lower concentrations
were detected in SFA-F and the test road samples.

Table 4. Japanese batch leaching test (JLT-46) results for BFA, SFA-F, SFA-O, SFA-D, and SFA-N.

Sample Pb (mg/L) T-Cr (mg/L) As (mg/L) Cd (mg/L)

BFA 0.0141 0.0311 <0.001 a <0.001 a

SFA-F 0.00304 0.108 <0.001 a <0.001 a

SFA-O <0.001 a 0.0300 <0.001 a <0.001 a

SFA-D <0.001 a 0.0240 <0.001 a <0.001 a

SFA-N <0.001 a 0.0413 <0.001 a <0.001 a

Limit values 0.01 0.05 b 0.01 0.01
a Below limit of determination, <0.001 mg/L, as measured by ICP-MS. b The Japanese environmental quality
standards for soil pollution only considers Cr(VI) and not total Cr (T-Cr).

The total chromium (T-Cr) concentration in SFA-F was measured at 0.108 mg/L,
surpassing the Japanese environmental quality standard value of 0.05 mg/L for Cr (VI).
Nonetheless, the Cr (VI) concentration in SFA-F remains within acceptable regulatory limits
for soil pollution [50]. Conversely, the levels of T-Cr in the road test samples were below
the permissible limits, indicating that the dissolution reactions of organic chlorides and
CaCrO4 may contribute to the removal of Cr(VI) from the cement matrix in these samples.

3.3. Column Leaching Test

Figure 4 illustrates the pH and concentrations of major elements in the leachate
obtained from the column test. High Ca, Na, and K concentrations were observed until
an L/S ratio of 50, indicating a “first flush” phenomenon, similar to the leaching patterns
observed in cement solidified waste incineration ashes [28]. The rapid decrease in SO4
concentration until an L/S ratio of 50 can be attributed to the swift dissolution of gypsum
(CaSO4•2H2O) and anhydrite (CaSO4) phases [20,68].

A decline in pH was noted between L/S ratios of 75 and 150, likely due to the leachate
being sampled after nearly one week of generation, during which the dissolution of carbon
dioxide could have caused a pH reduction. To address this concern, pH measurements
were promptly conducted after an L/S ratio of 150 to prevent carbon dioxide dissolution.
Once the L/S ratio reached 300, the concentration of Ca appeared to stabilize, indicating
that the Ca minerals in the sample had reached an equilibrium state, along with a steady
pH value of 10.0–10.5. The persistent alkalinity of the leachate can be attributed to soluble
Ca minerals that act as pH-buffering agents [25,69–71]. Moreover, ettringite in SFA-F could
serve as a pH buffer mineral, maintaining stable pH values in the range of 10–10.5 after an
L/S ratio of 200 [26,60,61].
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SO4 is a prevalent anion in the cement matrix and a major constituent of its structure
during the hydration and hardening processes [72]. The stable concentrations of SO4
observed from an L/S ratio of 100 to around 400 were due to the dissolution of cement-type
minerals, such as ettringite (Ca6Al2(SO4)3(OH)12•26H2O) [20,73].

A significant initial release of T-Cr was observed, with a concentration of approxi-
mately 1.40 mg/L at an L/S ratio of 0.5. This can be attributed to the rapid dissolution of
soluble salts, such as NaCl, KCl, and CaCl2 during the early stages of leaching [74]. The
dissolution process promotes the decomposition of hydration products, leading to the re-
dissolution of solidified Cr into the leachate, thereby resulting in high initial concentrations
of T-Cr [75].

Figure 4 demonstrates that the release of other heavy metals primarily occurred at the
initial L/S ratios and subsequently decreased to relatively small concentrations, eventually
falling below the limits of detection (0.1µg/L). However, Pb and Zn exhibited intermittent
concentration increases from L/S 100 to L/S 900. Du et al. (2019) [27] suggested that the
elevated leaching of Pb at higher L/S ratios in column tests could be attributed to washing
effects and the dissolution of Pb precipitates.

It is important to consider that, while heavy metal concentrations are released, they
can become diluted in the natural environment during rainfall events, reducing the risk of
groundwater contamination [76–78]. Analyzing the rainfall intensity and the equivalent
water injection rate into the column, it was determined that, at L/S 1000, approximately
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170 years’ worth of water had passed through the column. Based on our experimental
results, the leaching ratios of T-Cr, Pb, Zn, and Cu from the SFA-F material used as
a road base were found to be 12%, 27%, 0.1%, and 5%, respectively. With the SFA-F
material maintaining alkaline conditions as a road base, a significant release of heavy metal
concentrations is not expected, even after 170 years of use. Additionally, as noted by Xu
et. al. (2019) [62], in road construction applications, it is advisable to use low-permeability
asphalt as a cover layer to minimize leachate production from the SFA material in the
natural environment.

3.4. pH-Stat Leaching Test

The release of heavy metals in SFA-F, SFA-D, and SFA-N at various pH values is
depicted in Figure 5. The greatest mass concentration of all heavy metals is observed at
pH 2. Conversely, cement solidification exhibits favorable fixation and effective control
of Pb and Zn at pH 12, with less than 1% release of total Pb and Zn contents in all three
samples. The solubility of Pb in SFA-F, SFA-D, and SFA-N demonstrates an amphoteric
behavior, with a solubility minimum between pH 6 and 8 in SFA-F and at pH 10 in SFA-N.
The lower solubility of Pb at pH levels above 10 may be attributed to the precipitation of
various lead-bearing compounds, such as Pb(OH)2, CaPb(OH)6, and CaPb2(OH), as well
as the adsorption of CSH [20,21,30,66].

Conversely, a higher release of Pb at pH levels below 4 is possible due to the reversal of
lead adsorption and the promotion of solubility on reactive surfaces, such as hydrous ferric
oxides and hydrous aluminum oxides [27]. The leaching behavior of Zn also follows an
amphoteric curve in relation to pH, with lower leaching concentrations at pH 10, followed
by an increase at pH 12. Furthermore, studies have reported that Zn could be immobilized
by its precipitation as carbonate phases [72]. Due to the exposure of SFA-N to atmospheric
carbon dioxide, Zn could be present in carbonate precipitates. This process could be a
factor in the lower Zn concentration release of SFA-N in comparison to those observed in
SFA-F and SFA-D.

The concentrations of Cu and Ni exhibit a cationic leaching behavior, with relatively
low concentrations or no detection in the high alkaline range. Cement solidification
demonstrated a strong stabilizing effect on Ni in the alkaline pH range 10–12 for all three
samples. In SFA-F, no concentration of Cu is detected from pH 8–12, unlike SFA-D and
SFA-N. Potential Cu-controlling phases at pH levels above 8 include Cu(OH)2 and surface
complexation with Fe and Al hydroxides. The cement solidification in the SFA-F material
further enhances the control of solubility within this pH range [25,79,80]. Conversely, in
the pH range of 8–12, Cu shows a weak pH dependency in SFA-D and SFA-N. Studies
examining incineration ashes reveal similar leaching curves for Cu, where carbonation
processes regulate the solubility of Cu-binding phases [81].

The release behavior of Cd exhibits a cationic leaching pattern in samples SFA-F and
SFA-D, resulting in Cd stabilization within the pH range of 10–12. However, sample SFA-N
shows an amphoteric pattern at pH 12, possibly due to the carbonation process weakening
the fixing ability of Ca-carbonated minerals for Cd [65,74]. The release of Cd from SFA-F
and SFA-D ranges from 40% to 46% of the total Cd content, while SFA-N demonstrates a
higher release of 97% at pH 2. The significant release of Cd in an acidic environment may
be attributed to the limited ability of amorphous carbonates to resist acid dissolution [65].
Similarly, T-Cr exhibits a similar trend in the pH range of 8–12, with a mass release of
0.6 mg/kg, accounting for 2% of the leaching ratio of total T-Cr contents in all the samples.
This result indicates an oxyanionic leaching pattern, with the maximum release occurring
at a neutral to mildly alkaline pH [82].
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There is no significant difference in the release of As among all samples. At pH 2, the
highest release ratio accounts for approximately 10% of the total As content in all samples.
The adsorption of arsenic to metal oxide surfaces, such as iron and aluminum oxides, in
the near-neutral pH range, has been extensively studied, establishing an oxyanion leaching
pattern [66]. Studies by Garrabrants et al. [66] suggest that the release of As(V) in fly
ash matrices are associated with adsorption and co-precipitation mechanisms involving
Ca-bearing cement mineral phases, particularly at pH values above 11. Additionally,
incorporating anions, such as AsO4

3−, into ettringite phases helps control the dissolution
of As in the form of “free” ions at high pH levels [25].

The results presented provide valuable information for determining the optimal
utilization environment for the SFA material within the pH range of 10–12. It is important
to note that all heavy metals exhibited mobility at pH of levels ≤ 4, resulting in their
leaching from the SFA material.
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3.5. Column Leaching Modeling Results

The pH behavior was effectively simulated by employing a dual-porosity modeling
approach, utilizing portlandite, ettringite, gypsum, and calcite as pH-buffering minerals
(Figure 6). The leaching behavior of Ca and SO4 can also be described by the mineral
assemblage. While the modeled levels of K and Cl were relatively high compared to the
measured data, a satisfactory trend was observed. The leaching concentrations of Na
closely followed the simulated curve. As for K, it is possible that it is contained within more
complex minerals or combined with hardly soluble phases present in the cement matrix
of the SFA material. Although there is limited information available on solute transport
and simplistic values were employed, the results offer valuable insights into the long-term
leaching mechanisms of the SFA material.
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Due to the consistent alkalinity of the material, even at high L/S ratios, significant
quantities of heavy metals were immobilized. The mineral assemblage and concentration
amounts presented in Table 2 indicate a stable dissolution that sustains an alkaline condition
over an extended period. Considering the saturated condition and the pH of the inflow
solution, the pH remains constant for more than 500 years in relation to the L/S ratio. The
modeling results offer insights into the long-term stability of SFA-F material, suggesting
that the depletion of certain pH-buffering minerals may require more than 500 years to
occur in a real-life scenario. Therefore, the model suggests that the pH buffering minerals in
SFA can maintain their alkaline condition for an extended period, making them a suitable
choice for various environmental applications.

4. Conclusions

The study investigates the long-term evolution of leachate characteristics and the
fixation of heavy metals in recycled roadbed material using ash from the industrial waste
incineration of waste tires and biomass (SFA-F). The SFA-F material exhibits a strong
binding effect on heavy metals. In comparison to the total content of the fresh SFA material
sample, column leaching test results revealed leaching ratios of 27% for Pb, 12% for T-Cr,
5% for Cu, and 0.1% for Zn. The pH-stat leaching test results for SFA indicated the minimal
mass release of the total heavy metal content, even under acidic pH conditions (pH < 4),
with a leaching order of Ni > Pb > Cd> Cu > Zn > T-Cr > As. The leaching mechanism for
T-Cr is attributed to dissolution processes, affecting mineral phases within the pH range of
8–12 for samples SFA-N, SFA-D, and SFA-N.
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To prevent significant heavy metal release, utilizing the SFA material within a pH range
of 10–12 is recommended, as less than 1% of heavy metals were leached within this range.
Numerical simulations demonstrated that the pH profile is primarily controlled by the
dissolution and precipitation of calcium minerals, such as portlandite, ettringite, gypsum,
and calcite. The SFA-F material shows promise as a candidate for roadbed construction,
contributing to the reduction in natural aggregate consumption. This study emphasizes
the importance of the selected mixing ratio method for SFA-F production in recycling
applications. To further minimize the release of hazardous heavy metals, a pre-washing
step is recommended before utilization.

Further studies are necessary to evaluate the sustainability of SFA-F as a safe aggregate
resource, considering different scenarios in numerical simulations, such as unsaturated
conditions and conducting sensitivity analyses to different combinations of hydraulic pa-
rameters and mineral phase contents. These efforts will facilitate a more accurate prediction
of leachate quality from recycled materials by using HP1. The findings of this study provide
valuable information for the development of technical standards specifically related to
the incineration ashes of waste tires and woody biomass, as well as cement solidification,
regarding structural design and pollution control. Future research should explore other po-
tential engineering applications of the material, including its physical properties, strength,
and life cycle analysis. This comprehensive approach will encourage societal acceptance of
these types of materials.
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